Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna II: Teorema de Pascal, Brianchon y Pappus

Por Armando Arzola Pérez

Introducción

Tres teoremas importantes en la razón cruzada son el Teorema de Pascal, Brianchon y Pappus. Con estos se muestran propiedades de colinealidad y concurrencia.

Teorema de Pascal

Sea un hexágono inscrito en una circunferencia, los puntos de intersección de sus lados opuestos son colineales.

Demostración. Sea el hexágono inscrito $ABCDEF$ en la circunferencia $O$, donde sus lados opuestos $AB,DE$, $BC,EF$ y $CD,FA$ se intersecan en los puntos $P,Q$ y $R$ son colineales. Ahora $FA$ interseca a $DE$ en $H$ y $EF$ interseca a $CD$ en $K$.

Pascal 1

Por propiedades de razón cruzada en la circunferencia se tiene $A\{EDBF\}=C\{EDBF\}$ y por lo cual $\{EDPH\}=\{EKQF\}$, como se observa en la siguiente imagen.

Pascal 2


Así mismo se tiene que al unir $R$ con estos puntos se cumple la propiedad $R\{EDPH\}=R\{EKQF\}$. Donde $RE$ coincide con $RE$, $RD$ coincide con $RK$ y $RH$ coincide con $RF$, por ende estos dos haces coinciden en la primera, segunda y cuarta recta, y al tener 3 rectas y una constante distinta de -1, es posible construir una única cuarta recta tal que la razón cruzada sea la constante elegida por ello $RP$ coincide con $RQ$. Y, por lo tanto, $PQR$ son colineales y a esta es la línea de Pascal del hexágono.

Pascal 3

$\square$

Teorema de Brianchon

Este es un teorema dual al de Pascal, el cual es aplicable a hexágonos circunscritos a cualquier sección cónica. En nuestro caso se mostrará para una circunferencia.

Teorema. Sea un hexágono circunscrito a una circunferencia, entonces las líneas que unen sus vértices opuestos son concurrentes.

Demostración. Sea el hexágono $ABCDEF$ circunscrito a la circunferencia $O$, ahora los puntos de tangencia de los lados del hexágono $ABCDEF$ son los vértices del hexágono $A’B’C’D’E’F’$.

Brianchon 1

Si observamos los lados opuestos del hexágono $A’B’C’D’E’F’$ estos se intersecan de la siguiente forma:

  • $A’B’$ y $D’E’$ en $P$
  • $B’C’$ y $E’F’$ en $Q$
  • $C’D’$ y $F’A’$ en $R$
Brianchon 2

Por propiedad de los Polos y Polares, las polares de $A$ y $D$ pasan por $P$ y la polar de $P$ es $AD$. De igual forma, la polar de $Q$ es $BE$ y la polar de $R$ es $CF$, y por el Teorema de Pascal el hexágono inscrito $A’B’C’D’E’F’$ los puntos de intersección de sus lados opuestos $P$, $Q$ y $R$ son colineales, y por lo cual sus polares $AD$, $BE$ y $CF$ son concurrentes y a este es el punto de Brianchon.

Brianchon 3

$\square$

Teorema de Pappus

Si los vértices de un hexágono están alternativamente en dos líneas rectas, entonces la intersección de los pares de lados opuestos genera puntos los cuales son colineales.

Demostración. Este es un caso especial del Teorema de Pascal para un hexágono inscrito en una sección cónica. Sea el hexágono $ABCDEF$, donde la intersección de los lados opuestos son:

  • $AB$ y $DE$ en $P$
  • $BC$ y $EF$ en $Q$
  • $CD$ y $FA$ en $R$

Se tiene que $AF$ interseca a $ED$ en $H$, y $EF$ interseca a $CD$ en $K$.

Pappus 1

Por lo cual $A\{EBDF\}$ es igual a $C\{EBDF\}$, entonces $\{EPDH\}=\{EQKF\}$.

Pappus 2

Uniendo $RQ$ los cuatro puntos de las líneas $ED$ y $EF$, se tiene que $R\{EPDH\}=R\{EQKF\}$.
Ahora como $RE$ coincide con $RE$, $RD$ coincide con $RK$ y $RH$ coincide con $RF$, entonces $RP$ y $RQ$ coinciden, por lo tanto, $P$, $Q$ y $R$ son colineales.

Pappus 3

$\square$

Más adelante…

Otro tema interesante por abordar es la involución tanto en Hileras de puntos como Haces de líneas.

Entradas relacionadas

Álgebra Moderna I: Teorema de Jordan-Hölder

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Éste es un momento emotivo. Hemos llegado a la última entrada del curso. Así que sin mucho preámbulo comencemos a hablar del tema que nos compete.

El Teorema de Jordan-Hölder nos dice que cada par de series de composición de un grupo $G$ siempre son del mismo tamaño y con factores de composición isomoforfos entre sí. De nuevo, es un teorema que nos describe cómo es un grupo y los subgrupos que lo conforman.

Debido a que los factores de composición son grupos simples, obtenemos una descomposición del grupo $G$ en elementos mínimos (en el sentido de que no tienen una subestructura del mismo tipo) y de nuevo, podemos hacer una analogía con el Teorema fundamental de la aritmética, aunque esto se ve mejor cuando $G = \z_n.$

Por último, así como el Cuarto teorema de isomorfía justifica que los factores de composición son simples, en la demostración del Teorema de Jordan-Hölder usamos mucho el Segundo teorema de isomorfía para justificar la isomorfía que existe entre los factores de composición, así que es recomendable repasarlo.

El último teorema del curso

Teorema. (de Jordan – Hölder) Sean $G$ un grupo finito y
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$. Entonces $s = t$ y existe una permutación $\sigma \in S_t$ tal que para toda $i\in\{1,2,\dots ,s\}$
\begin{align*}
G_i/G_{i+1} \cong H_{\sigma(i)}/ H_{\sigma(i)+1}.
\end{align*}

Demostración.

Sea $G$ un grupo finito.
Por inducción sobre $|G|$.

H.I. Supongamos que el resultado se cumple si el orden del grupo es menor que $|G|.$

Sean
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$.

Caso 1. $G_2 = H_2$, entonces
\begin{align*}
G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son series de composición de $G_2$.

Dado que $G_1/G_2$ es simple, en particular $G_1/G_2\neq \{e_{G_1/G_2}\}$ y así $G=G_1\neq G_2$. En consecuencia $G_2\leq G$ y $|G_2|<|G|$ y por H.I. $s-1 = t-1$ y existe $\sigma\in S_{t-1}$ tal que
\begin{align*}
G_i/ G_{i+1} \cong H_{\sigma(i)} / H_{\sigma(i) + 1} \quad \forall i\in\{2,\dots,t\}.
\end{align*}

Como $G_1 = G = H_1$ y $G_2 = H_2$, entonces $G_1/G_2 = H_1/H_2$.

Así, $s=t$ y $\alpha\in S_t$ con $\alpha(1) = 1$, $\alpha(i) = \sigma(i)$ para $i\in\{2,\dots, t\}$ cumple que
\begin{align*}
G_i/G_{i+1} \cong H_{\alpha(i)} / H_{\alpha(i)+1} \quad \forall i \in \{1,\dots, t\}.
\end{align*}

Caso 2. $G_2 \neq H_2$

Como $G_2 \unlhd G$ y $H_2 \unlhd G$ se tiene que $G_2H_2 \unlhd G$.

Además
\begin{align*}
G_2 &\leq G_2H_2 \unlhd G \\
H_2 &\leq G_2H_2 \unlhd G.
\end{align*}

Como $G/G_2$ es simple, por el ejercicio 2 de Grupos simples y series de grupos se tiene que $G_2$ es un subgrupo normal de $G$ máximo. Así, $G_2H_2 = G$ ó $G_2H_2 = G_2$. Análogamente $G_2H_2 = G$ ó $G_2H_2 = H_2$. Pero si $G_2H_2 = G_2$ y $G_2H_2 = H_2$ tendríamos que $G_2=H_2$, lo que es una contradicción. Por lo tanto \begin{equation}\label{ec1}G_2H_2 = G.\end{equation}

Como $G_2\unlhd G$ entonces usamos el 2do Teorema de Isomorfía y nos dice que $G_2\cap H_2 \unlhd H_2$ y

\begin{align*}
G_2H_2/G_2 \cong H_2/(G_2\cap H_2).
\end{align*}

Pero, como también $H_2 \unlhd G$, el 2do teorema de isomorfía también nos dice que $G_2 \cap H_2 \unlhd G_2$ y
\begin{align*}
G_2H_2/H_2 \cong G_2/(G_2\cap H_2).
\end{align*}

Por (\ref{ec1}) tenemos que $G = G_2H_2$ obteniendo así que

\begin{align*}
G/G_2 &\cong H_2/(G_2\cap H_2)\\
G/H_2 &\cong G_2/(G_2\cap H_2).
\end{align*}

Diagrama de retícula para el Segundo Teorema de Isomorfía.

Como $G/G_2$ es simple, $H_2/(G_2\cap H_2)$ también lo es. Así, $G_2\cap H_2$ es un subgrupo normal máximo de $H_2$.

Análogamente como $G/H_2$ es simple, $G_2/(G_2\cap H_2)$ también lo es. Así, $G_2 \cap H_2$ es un subgrupo normal máximo de $G_2$.

Sea $K_3 = G_2\cap H_2$. Consideremos una serie de composición para $K_3$
\begin{align*}
K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}.
\end{align*}

Tenemos las siguientes series de composición
\begin{align}
G &= G_1\unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\} \\
G &= G_1 \unrhd G_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align}

Por el caso 1 aplicado a $(2)$ y $(3)$, $s= r$ y los factores de composición de
\begin{align*}
G_2 &\unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.

Por el caso 1 aplicado a $(4)$ y $(5)$, $r=t$ y los factores de composición de
\begin{align*}
H_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}\\
H_2 &\unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.
Tenemos entonces que $s = t$.

Consideremos $G_i/G_{i+1}$ con $i\in\{2,\dots,t\}$:

Si $G_i/G_{i+1} \cong K_j/K_{j+1}$ con $j\in \{3,\dots, t\}$, entonces sabemos que existe $l\in\{2,\dots, t\}$ tal que $K_j/K_{j+1} \cong H_l/H_{l+1}.$

Por otro lado si $G_i/ G_{i+1} \cong G_2/K_3$, entonces $G_2/K_3=G_2/(G_2\cap H_2) \cong G/H_2=H_1/H_2.$

Entonces, para $i\in\{2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Finalmente consideremos el cociente $G/G_2$. Tenemos que $G/G_2\cong H_2/(G_2\cap H_2)=H_2/K_3 \cong H_m/H_{m+1}$, para alguna $m\in \{2,\dots, t\}$.

Por lo tanto para $i\in\{1,2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Así, los factores de composición de las series $(1)$ y $(4)$ son isomorfos salvo por el orden en que aparecen.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que el Teorema de Jordan-Hölder induce el Teorema fundamental de la aritmética.
    1. Toma el grupo cíclico $\z_n$ con $n \in \z$ no necesariamente primo.
    2. Encuentra el orden de un subgrupo máximo de $\z_n$.
    3. Observa la forma de las series de composición de $\z_n$.
    4. Usa el teorema de Jordan-Hölder para concluir el Teorema fundamental de la aritmética.

Más adelante…

Nuestro curso abarca hasta este teorema, pero el estudio del álgebra continúa en un curso de Álgebra Moderna II donde se estudia la Teoría de anillos y la Teoría de Galois. Estas dos teorías son igualmente interesantes y apasionantes y tienen muchas aplicaciones.

Entradas relacionadas

2.4. TRANSFORMACIÓN LINEAL: descripción a partir de su efecto en una base

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

En ocasiones se tiene desde un inicio la regla de correspondencia de una función y a partir de ella analizamos su comportamiento y los valores que se obtienen al aplicar la función. Sin embargo, a veces sólo se conoce su comportamiento y/o su evaluación en algunos elementos de su dominio y a partir de ello se busca describir la función por completo. En el caso de las transformaciones lineales entenderemos qué información nos ayuda a comprenderlas por completo y para ello las bases de un espacio jugarán un papel fundamental, veamos de qué forma.

En una función cuadrática, sabemos cómo cada coeficiente influye en el comportamiento de la gráfica.
En una ecuación lineal, sabemos cómo la pendiente y el término independiente determinan la gráfica.
Podemos identificar las cónicas y cada uno sus elementos de acuerdo a la ecuación que se describa.

Comencemos con un resultado que nos dice que siempre podemos construir una transformación lineal que mande a los elementos de una base a cualesquiera elementos en el codominio deseado y hay una única manera de hacerlo:

Teorema: Sean $V,W$ $K$ – espacios vectoriales donde $V$ es de dimensión finita $n$. Si $\beta =\{ v_1,v_2,…,v_n\}$ es una base de $V$, entonces para cualesquiera $w_1,w_2,…,w_n\in W$ existe una única $T\in\mathcal{L}(V,W)$ tal que $\forall i\in\{1,2,…,n\}(T(v_i)=w_i)$.

Demostración: Sea $\beta =\{v_1,v_2,…,v_n\}$ una base arbitraria de $V$.
Sean $w_1,w_2,…,w_n\in W$.

Entonces para cada $v\in V$ hay una única combinación lineal de elementos de $\beta$ que es igual a $v.$ Es decir, existen únicos $\lambda_1,\lambda_2,…,\lambda_n\in K$ tales que $v=\sum_{i=1}^{n}\lambda_iv_i$.

Primero propondremos una función que cumpla que $\forall i\in\{1,2,…,n\}(T(v_i)=w_i)$.
Después veremos que esa función es una transformación lineal.
Por último probaremos que es única.

Definamos $T:V\longrightarrow W$ como $T(v)=\sum_{i=1}^{n}\lambda_iw_i$.
Como $\lambda_1,\lambda_2,…,\lambda_n$ son únicos (y por tanto ya son fijos), entonces $T$ le asigna un único valor a cada $v\in V$ y así aseguramos que $T$ está bien definida.

Notemos que para cada $i\in\{1,2,…,n\}$ tenemos que $$v_i=0v_1+0v_2+…+0v_{i-1}+1v_i+0v_{i+1}+…+0v_n,$$ lo que implica por la forma en que se definió $T$ que para cada $i\in\{1,2,…,n\}$ $$T(v_i)=0w_1+0w_2+…+0w_{i-1}+1w_i+0w_{i+1}+…+0w_n=w_i.$$ Por lo tanto, $\forall i\in\{1,2,…,n\}(T(v_i)=w_i)$.

Sabemos que $T$ es lineal si y sólo si para cualquier $\delta\in K$ y cualesquiera $v,u\in V$ se cumple que $T(\delta v+u)=\delta T(v)+T(u)$.

Sean $\delta\in K$ y $v,u\in V$. Como $\beta$ es una base de $V$ podemos escribir a $v$ y a $u$ como combinación lineal de los elementos de $\beta$, es decir existen $\lambda_1,\lambda_2,…,\lambda_n\in K$ y $\mu_1,\mu_2,…,\mu_n\in K$ tales que $v=\sum_{i=1}^{n}\lambda_iv_i$ y $u=\sum_{i=1}^{n}\mu_iv_i$.
Entonces:

\begin{align*}
\delta v+u & =\delta \left( \sum_{i=1}^{n}\lambda_i v_i\right) + \sum_{i=1}^{n}\mu_i v_i= \sum_{i=1}^{n}\delta(\lambda_i v_i) +\sum_{i=1}^{n}\mu_i v_i
\\&= \sum_{i=1}^{n}(\delta\lambda_i+\mu_i) v_i\\
\therefore \delta v+u&= \sum_{i=1}^{n}(\delta\lambda_i+\mu_i) v_i
\end{align*}

Así,

\begin{align*}T(\delta v+u)&=T\left( \sum_{i=1}^{n}(\delta\lambda_i+\mu_i) v_i\right)=\sum_{i=1}^{n}(\delta\lambda_i+\mu_i) w_i\\&=\delta\left( \sum_{i=1}^{n}\lambda_i w_i\right) + \sum_{i=1}^{n}\mu_i w_i=\delta T(v)+T(u).\end{align*}

Por lo tanto, $T\in\mathcal{L}(V,W)$.

Para ver que la transformación lineal es única, tomemos $S\in\mathcal{L}(V,W)$ tal que $\forall i\in\{ 1,2,…,n\}(S(v_i)=w_i)$. Sea $v\in V$ y sean $\lambda_1,\lambda_2,…,\lambda_n\in K$ tales que $v=\sum_{i=1}^{n}\lambda_iv_i$.

Entonces $S(v)=S\left( \sum_{i=1}^{n}\lambda_iv_i \right)$$=\sum_{i=1}^{n}\lambda_i S(v_i)=\sum_{i=1}^{n}\lambda_iw_i=T(v)$.
Por lo tanto $S=T$.

Como consecuencia del resultado anterior se tiene que lo que una transformación lineal le haga a una base del dominio determina por completo a la transformación:

Corolario: Sean $V,W$ $K$ – espacios vectoriales con $V$ de dimensión finita $n$ y $\beta =\{v_1,v_2,…,v_n\}$ una base de $V$. Se cumple que si $T,S\in\mathcal{L}(V,W)$ son tales que $\forall i\in \{1,2,…,n\}(T(v_i)=S(v_i))$, entonces $T=S$.

Demostración: Sean $T,S\in\mathcal{L}(V,W)$ tales que $\forall i\in\{1,2,…,n\}(T(v_i)=S(v_i))$.

Para cada $i\in\{1,2,…,n\}$ $T(v_i)$ es un elemento de $W$ al que denotaremos por $w_i$. Con esta notación tenemos que $\forall i\in\{1,2,…,n\}(T(v_1)=w_i).$

Por el teorema anterior, $T$ es la única transformación lineal de $V$ a $W$ tal que $\forall i\in\{1,2,…,n\}(T(v_i)=w_i)$.

Y como por hipótesis $\forall i\in\{1,2,…,n\}(T(v_1)=S(v_i))$, entonces $\forall i\in\{1,2,…,n\}(S(v_i)=w_i)$. Por lo que $T=S$.

Tarea Moral

  1. Exhibe dos transformaciones lineales diferentes $T, U$ tales que $Núc\,T=Núc\,U$ y $Im\,T=Im\,U.$
  2. Da un ejemplo de transformación lineal $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ tal que $Núc\,T=Im\,T$.
  3. Exhibe explícitamente la regla de correspondencia de la transformación lineal tal que $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ tal que $T(2,3)=(5,-14)$ y $T(-2,3)=(-2,3)$.

Más adelante…

Veremos cómo operar transformaciones lineales y qué espacio vectorial podemos definir gracias a éstas.

Entradas relacionadas

Álgebra Moderna I: Grupos simples y series de grupos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como hemos visto en las entradas anteriores, muchas pruebas de grupos se realizan por inducción sobre $|G|$ usando información de un subgrupo normal $N$ y el cociente $G/N$.

Pero para poder usar $G/N$ se requiere que exista un subgrupo normal $N$ de $G$ con $1\lneq |N| \lneq |G|.$ Y en ocasiones no existe un $N$ normal que no sea el mismo $G$ o $\{e_G\}$, entonces conviene estudiar a los grupos $G$ no triviales tales que tienen sólo dos subgrupos normales.

Por otro lado, ¿es posible tener una serie de grupos normales contenidos entre sí? A esta situación lo conocemos como una serie de composición.

Esta entrada está dedicada a los conceptos de Grupos simples y Series de composición de grupos, será útil para que, más adelante, entendamos el Teorema de Jordan Hölder.

Qué simples son los grupos simples

Definición. Sea $G$ un grupo con $G\neq \{e\}$. Decimos que $G$ es simple si sus únicos subgrupos normales son $G$ y $\{e\}$.

Ejemplo.
Sea $p\in \z^+$ un número primo, $G$ un grupo con $|G| = p$. Entonces $G$ es un grupo simple ya que si $N\unlhd G$ se tiene que $|N| \Big| |G| = p$ y así $|N| = 1$ ó $|N| = p$, esto implica que $N = \{e\}$ ó $N = G$.

Observación. Todo grupo finito simple abeliano es isomorfo a $\z_p$.

Demostración.
Sea $G$ un grupo finito simple abeliano. Dado que $G\neq\{e\}$ consideremos $a\in G, a\neq e$. Como $G$ es abeliano, todo subgrupo es normal, así
\begin{align*}
\{e\} \lneq \left< a \right> \unlhd G
\end{align*}
pero $G$ es simple, entonces $\left< a \right> = G$ y $G$ es cíclico.

Más aún, $G\cong \z_n$ con $n= |G|$. Veamos que $n$ es primo.

P. D. $n$ es primo.

Supongamos por reducción al absurdo que $n$ es compuesto, es decir $n = st$ con $s,t\in \z^+$, donde $s<n$ y $t< n$.

Entonces $a^s \neq e$ ya que $s<n = o(a)$, por lo que $\{e\} \lneq \left< a^s\right>$.

Además $$(a^s)^t = e$$ y así $o(a^s)\Big| t$, lo que implica que $o(a^s) \leq t < n$ y en consecuencia $\left< a^s\right> \lneq \; G$.

Por lo tanto $\{e\} \lneq \left< a^s\right> \lneq \; G$. Pero como $G$ es un grupo abeliano todos sus subgrupos son normales, por lo que $\left< a^s\right>$ sería un subgrupo normal de $G$ distinto de $\{e\} $ y de $G$, lo que es una contradicción.

Concluimos que $n$ es primo y así $G\cong \z_n$ con $n$ primo.

$\blacksquare$

Nota. Hay grupos simples no abelianos finitos e infinitos.

Series de grupos

Definición. Sea $G$ un grupo. Una secuencia de subgrupos
\begin{align*}
G = G_1 \geq G_2 \geq \cdots \geq G_{k+1} = \{e\}
\end{align*}
es una serie de composición para $G$ si $G_{i+1} \unlhd G_{i}$ y $G_i/G_{i+1}$ es simple para toda $i\in\{1,\dots, k\}$.
Esto cocientes se llaman factores de composición.

A pesar de que estamos dando una definición, es importante señalar que en el caso de un grupo finito es el Cuarto teorema de isomorfía el que justifica que en efecto estas series de composición existen:

Observación 1. Sean $G$ un grupo finito y $N$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad, es decir tal que si $N\leq H\lneq G$ con $H$ normal en $G$, entonces $N=H$. Se tiene que $G/N$ es simple.

Demostración.

Sean $G$ un grupo finito y $N$ un subgrupo normal de $G$ tal que es máximo con esta propiedad. Supongamos que $\mathcal{H}$ es un subgrupo normal de $G/N$ con $$\{e_{G/N}\}\leq \mathcal{H}\lneq G/N.$$ Por el Cuarto teorema de isomorfía sabemos que $\mathcal{H}=H/N$ para algún $N\leq H\lneq G.$ Además, como $\mathcal{H}\unlhd G/N$ sabemos que $H\unlhd G$. Pero al ser $N$ un subgrupo normal máximo tenemos que $N=H$ por lo cual $\mathcal{H}=N/N=\{e_{G/N}\}$. Así, $G/N$ es simple.

Observación 2. Si $G$ es finito, estas series de composición existen.

Demostración (sencilla).

Si $G$ es trivial entonces $G$ mismo es una serie de composición para $G$.

Supongamos entonces que $G$ es no trivial. Consideramos $G_1=G$ y $G_2$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad. Entonces por la observación 1 $G_1/G_2$ es simple.

Si $G_2=\{e\}$, $G_1\geq G_2$ es una serie de composición para $G$.

Si $G_2\neq\{e\}$ tomamos $G_3$ un subgrupo normal propio de $G_2$, máximo, y así sucesivamente. Como $G$ es finito este proceso termina y da lugar a una serie de composición para $G$.

$\blacksquare$

Ejemplos

Ejemplo 1. Tomemos $\z_{12}$. Notemos que en este caso el grupo es abeliano por lo que todos sus subgrupos son normales. Proponemos
\begin{align}\label{ejemplo1}
\z_{12} \unrhd \left<\bar{3}\right> \unrhd \left<\bar{6}\right> \unrhd\{\bar{0}\}.
\end{align}

Como $\left| \left<\bar{3}\right>\right| = 4$, entonces $\left| \z_{12} \Big/ \left<\bar{3}\right>\right| = \frac{12}{4} = 3$ y así $\z_{12} \Big/ \left<\bar{3}\right> \cong \z_3$ que es simple.

Sabemos que $\left| \left<\bar{6}\right> \right|= 2$, así $\left| \left<\bar{3}\right> \Big/ \left<\bar{6}\right>\right| = \frac{4}{2} = 2$ y entonces $ \left<\bar{3}\right> \Big/ \left<\bar{6}\right> \cong \z_2$ que es simple.

Finalmente $ \left<\bar{6}\right> \Big/ \{\bar{0}\} \cong \left<\bar{6}\right> \cong \z_2$ que es simple. Así $(\ref{ejemplo1})$ es una serie de composición para $\z_{12}$.

También $\z_{12} \unrhd \left<\bar{2}\right> \unrhd \left<\bar{6}\right> \unrhd \{\bar{0}\}$ lo es.

Ejemplo 2. Tomemos $D_{2(4)} = \{\text{id}, a, a^2, a^3, b, ab, a^2b, a^3b\}$. Donde $a$ es la rotación de $\frac{\pi}{4}$ y $b$ es la reflexión respecto al eje $x$.

Tenemos que
\begin{align*}
\left<a^2,b\right> = \{\text{id}, a^2, b, a^2b\}
\end{align*}
es de orden cuatro, entonces $\left[ D_{2(4)} : \left<a^2,b\right> \right] = 2$. Así $D_{2(4)} \unrhd \left< a^2, b \right>$ y $D_{2(4)}/ \left< a^2,b \right> \cong \z_2$ que es simple.

También $\left[ \left<a^2,b\right> : \left< b \right> \right] = 2$ y $ \left<a^2,b\right> / \left<b\right>\cong \z_2$ que es simple. Finalmente $\left< b \right> / \{\text{id}\} \cong \z_2$ que es simple.

Así,
\begin{align*}
D_{2(4)} \unrhd \left< a^2, b\right> \unrhd \left<b\right> \unrhd \{\text{id}\}
\end{align*}
es una serie de composición para $D_{2(4)}$.

También
\begin{align*}
D_{2(4)} \unrhd \left< a \right> \unrhd \left< a^2 \right> \unrhd \{\text{id}\}.
\end{align*}

Observación 3. En una serie de composición $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.

Observación 4. Puede ser que dos grupos no isomorfos tengan los mismos factores de composición salvo isomorfía.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera la nota que aparece en esta entrada: hay grupos simples no abelianos finitos e infinitos.
    • Encuentra un grupo simple no abeliano finito.
    • Encuentra un grupo simple no abeliano infinito.
    • ¿Qué pasará con los grupos abelianos infinitos? ¿existirán los grupos abelianos infinitos simples?
  2. Encuentra un grupo $G$ que cumpla la observación: $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.
  3. Describe un ejemplo de grupos tales que no sean isomorfos y tengan los mismos factores de composición salvo isomorfía.
  4. En cada uno de los siguientes casos encuentra todas las series de composición de $G$ y compara los factores de composición obtenidos:
    • $G = \z_{60}$.
    • $G = \z_{48}$.
    • $S_3 \times \z_2.$

Más adelante…

Estos conceptos que pueden parecer muy sencillos, al combinarlos nos dan el último teorema que veremos en este curso: el Teorema de Jordan-Hölder. Una poderosa herramienta que nos dice que los factores de composición de dos series distintas de un mismo grupo son los mismos salvo isomorfía.

Entradas relacionadas

Álgebra Moderna I: Teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El temario de este curso consiste principalmente en el estudio de la Teoría de grupos, comenzamos su construcción desde las operaciones binarias, estudiamos distintos tipos de grupos y funciones entre ellos (homomorfismos) y seguimos intentando describir a los grupos. El primer gran escalón de nuestro curso fueron los Teoremas de isomorfía, luego los Teoremas de Sylow y ahora llegamos al tercero: el Teorema fundamental de los grupos abelianos finitos.

Otros dos teoremas fundamentales que seguramente conoces son el Teorema fundamental del álgebra y el Teorema fundamental de la aritmética, conviene recordar el segundo. Básicamente nos dice que a todo número entero lo podemos ver como un producto de primos, además nos dice que estos primos son únicos excepto por el orden en que aparecen. Este teorema es importante porque intuitivamente nos dice que los números primos son los ladrillos básicos para construir a cualquier número.

¿Cuáles son estos mismos ladrillos para los grupos abelianos finitos? En la entrada de Producto directo interno vimos un teorema en el que para ciertos casos podemos descomponer a un grupo finito $G$ en sus $p$-subgrupos de Sylow, donde cada $p$ corresponde a un factor primo del orden del grupo. ¿Qué podría ser más fundamental que eso?

Usaremos el teorema que vimos en Producto directo interno y veremos que un grupo abeliano finito $G$ es isomorfo a un producto directo de grupos ajenos a $G$ en lugar de los $p$-subgrupos de Sylow que dependen del grupo que los contiene. ¿Qué grupos finitos relacionados con primos conocemos aparte de los $p$-subgrupos? Los candidatos ideales son $\z_n$, con $n$ una potencia de un primo, que de acuerdo a lo que hemos estudiado son abelianos y finitos.

Así, el Teorema fundamental de los grupos abelianos finitos nos presenta a los $\z_n$, con $n$ una potencia de un primo, como nuestros ladrillos elementales para describir cualquier grupo abeliano finito $G$.

Último lema numerado

Como prometimos en la entrada anterior, aquí está el tercer lema numerado que usaremos para demostrar el Teorema fundamental de los grupos abelianos finitos.

Lema 3. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Tenemos que $G$ es un producto directo interno de grupos cíclicos.

Demostración.
Por el segundo principio de inducción.

Sea $p\in\z^+$ un primo, $G$ un $p$-grupo abeliano.

Sea $g\in G$ un elemento de orden máximo (podemos suponer que $g\neq e$ ya que si $g = e$, entonces $G = \{e\}$).

H.I. Supongamos que todo $p$-grupo abeliano de orden menor que el orden de $G$ es un producto directo interno de grupos cíclicos.

Por el lema 2, $G$ es el producto directo de $\left< g \right>$ y un subgrupo $H$ de $G$. Entonces $|G| = |\left< g \right>|\,|H|$ lo que implica que $\displaystyle |H| = \frac{|G|}{|\left< g \right>|}$ y, esto implica que $ \displaystyle |H| < |G|$.

Además, $H$ también es un $p$-grupo abeliano. Así que por la hipótesis de inducción $H$ es el producto directo de grupos cíclicos.

Por lo tanto $G$ es producto directo de grupos cíclicos, a saber $\left< g \right>$ y los grupos cíclicos cuyo producto directo es $H$.

$\blacksquare$

Teorema fundamental de los grupos abelianos finitos

Recordemos que los isomorfismos preservan la estructura algebraica de los grupos. Recordemos que los grupos $\z_n$, con $n$ una potencia de un primo, son abelianos y finitos, por lo que sólo pueden ser isomorfos a otros grupos abelianos y finitos. Más aún, todo grupo abeliano finito es isomorfo a un producto directo de este tipo de grupos.

Teorema. (Fundamental de los Grupos Abelianos Finitos) Todo grupo abeliano finito $G$ es isomorfo a un producto directo de grupos cíclicos de la forma $$\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}$$ con $p_1,\dots, p_r,\alpha_1,\dots, \alpha_r \in \z^+$ y $p_1,\dots,p_r$ primos no necesariamente distintos.

Demostración.

Sea $G$ un grupo abeliano finito. Por ser $G$ abeliano todos sus subgrupos son normales, en particular sus subgrupos de Sylow.

Por el teorema de la entrada Producto directo interno, $G$ es isomorfismo al producto directo de sus subgrupos de Sylow, y por el lema 3 cada uno de ellos es un producto directo de subgrupos cíclicos. Además, como los subgrupos de Sylow son de orden una potencia de un primo, sus subgrupos también, por lo que son isomorfos a $\z_{p^\alpha}$ con $p,\alpha \in \z^+$ y $p$ un primo.

Así, $G$ es isomorfo a un producto directo de la forma
\begin{align*}
\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}
\end{align*}
con $p_1,\dots,p_r,\alpha_1,\dots, \alpha_r \in\z^+$, $p_1,\dots,p_r$ primos no necesariamente distintos.

$\blacksquare$

Apreciemos cómo la demostración de los lemas anteriores, nos facilitaron la demostración de este teorema fundamental.

Ejemplo.

Sea $G$ un grupo abeliano de orden $180 = 4\cdot 45 = 2^2\cdot 3^2 \cdot 5$.

Entonces, de acuerdo con el Teorema fundamental de los grupos abelianos finitos, $G$ es isomorfo a alguno de

  • $\z_2\times\z_2\times\z_3\times\z_3\times\z_5$,
  • $\z_4\times\z_3\times\z_3\times\z_5$,
  • $\z_2\times\z_2\times\z_9\times\z_5$ ó
  • $\z_4\times\z_9\times\z_5$.

Podría ser isomorfo a cualquiera de ellos, pero para saber a cuál requeriríamos más información. De cualquier modo este primer análisis nos ayuda mucho a entender cómo debe ser el grupo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si $G$ es un grupo abeliano finito, definimos $v_k(G)$ como el número de elementos de $G$ de orden $k$.
    Prueba que si dos grupos finitos abelianos, $G$ y $G^*$ son isomorfos si y sólo si $v_k(G) = v_k(G^*)$ para todo entero $k$. (Este resultado no es cierto para grupos no abelianos).
  2. Prueba el Teorema Fundamental de la Aritmética aplicando el Teorema Fundamental de Grupos Abelianos Finitos a $G = \z_n$, con $n\in\n$.
  3. Usa el Teorema Fundamental de Grupos abelianos finitos para describir a…
    • Un grupo de orden $144.$
    • Un grupo de orden $360.$
    • Un grupo de orden $2783.$
  4. Encuentra para cuáles $n \in \z^+$ los grupos de orden $n$ son cíclicos.
  5. Prueba que $A$ es un grupo abeliano finito de orden $n$ si y sólo si para cada $d$ divisor de $n$, hay a lo más $d$ elementos $a\in A$ tales que $a^d = 1_A.$

Más adelante…

Esta entrada fue un tema muy anticipado. Ahora comenzaremos otro tema que, aunque sea corto, es igual de importante que el Teorema fundamental de grupos finitos abelianos. De hecho, comparte que también es semejante con el Teorema fundamental de la aritmética. Comenzaremos a estudiar el Teorema de Jordan-Hölder

Entradas relacionadas