Archivo del Autor: Lizbeth Fernández Villegas

Convergencia y diferenciación

Por Lizbeth Fernández Villegas

Introducción

En la entrada anterior vimos que cuando una sucesión de funciones continuas converge uniformemente, podemos concluir que el límite es también una función continua. ¿Qué ocurrirá con funciones diferenciables?

Considera el espacio de funciones con dominio en $[a,b]$ con $a,b$ e imagen en $\mathbb{R}.$ Tal vez intuimos que si tenemos una sucesión de funciones diferenciables $(f_n)_{n \in \mathbb{N}}$ que convergen uniformemente a una función $f$ en $[a,b]$ entonces $f$ también es diferenciable y la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $f’.$ Esto es falso, como muestra el siguiente:

Ejemplo. La sucesión $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:[0,1] \to \mathbb{R} \,$ tal que $f_n(x)=\dfrac{sen (nx)}{\sqrt{n}}.$ Ocurre que $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}$ converge uniformemente a la función $f(x)=0.$

Sucesión $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}.$

Esto es porque, para cualquier $x \in [0,1], \, |sen(nx)|<1.$ Por otro lado, $\sqrt{n} \to \infty.$ Por lo tanto $\left|\dfrac{sen (nx)}{\sqrt{n}} \right| = \dfrac{|sen(nx)|}{\sqrt{n}} \leq \dfrac{1}{\sqrt{n}} \to 0.$

Por otro lado, para cada $n \in \mathbb{N}$ se tiene que $f'(x)= \sqrt{n} \, cos(nx).$ Pero $(f’_n)_{n \in \mathbb{N}} \,$ no converge a $f’$ ni de forma puntual. Por ejemplo $f’_n(0)=\sqrt{n}$ tiende a $\infty$ mientras que $f'(0)=0.$

Ejemplo. La sucesión $\left( \dfrac{x}{1 + n x^2} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:\mathbb{R} \to \mathbb{R}$ tal que $f_n(x)=\dfrac{x}{1 + n x^2}.$

Sucesión $\left( \dfrac{x}{1 + n x^2} \right) _{n \in \mathbb{N}}.$

Comencemos identificando la función límite $f$ de la sucesión $(f_n)_{n \in \mathbb{N}}$ y la función límite $g$ de la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}.$

Ya la imagen anterior nos induce a proponer $f=0.$ También podemos observar que cada función tiene máximo y mínimo global cuya distancia a $0$ coincide. Además, estos se van acercando más al eje horizontal a medida que avanzamos en las funciones de la sucesión.

En efecto, cuando la derivada es $0,$ la función $f_n$ alcanza su máximo o mínimo global:
$$\dfrac{1-nx^2}{(nx^2+1)^2}=0 \, \iff \, 1-nx^2 = 0 \, \iff \, x = \pm \sqrt{\frac{1}{n}}$$

Esto significa que cada $f_n$ está acotada como sigue:
$|f_n(x)|= \left| \dfrac{x}{1 + n x^2} \right| \leq \left|\dfrac{\sqrt{\frac{1}{n}}}{1 + n \sqrt{\frac{1}{n}}^2}\right| = \dfrac{1}{2\sqrt{n}} \, \to \, 0.$

Lo cual prueba que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a $0.$

Para el límite de la sucesión de derivadas veamos la siguiente imagen.

Esto incentiva proponer $g$ como:

\begin{equation*}
g(x) = \begin{cases}
0 & \text{si x $\neq$ 0} \\
1 & \text{si $x = 0$}
\end{cases}
\end{equation*}

Entonces $f’$ no coincide con $g,$ pues asignan valores diferentes al ser evaluadas en $0.$ Dejaremos como ejercicio lo siguiente:

  1. Probar que $(f’_n)_{n \in \mathbb{N}} \to g.$ ¿La convergencia es puntual o uniforme?
  2. Identifica para qué valores de $x \in \mathbb{R}$ sí se cumple que $f'(x)=g(x).$
  3. ¿En qué intervalos de $\mathbb{R}$ se da la convergencia uniforme de $(f_n)_{n \in \mathbb{N}}$ en $f.$
  4. ¿En qué intervalos de $\mathbb{R}$ se da la convergencia uniforme de $(f’_n)_{n \in \mathbb{N}}$ en $g.$

Ejemplo. La sucesión $\left( \dfrac{1}{n} \, e^{-n^2x^2} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:\mathbb{R} \to \mathbb{R}$ tal que $f_n(x)=\dfrac{1}{n} \, e^{-n^2x^2}.$

Sucesión $\left( \dfrac{1}{n} \, e^{-n^2x^2} \right) _{n \in \mathbb{N}}.$

Veamos que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathbb{R}$ a la función $f=0.$

Para cada $n \in \mathbb{N}$ y para cada $x \in \mathbb{R}, \, f'(x)= -2nxe^{-n^2x^2}.$ Se puede demostrar que esta función alcanza su máximo global cuando $f'(x)=0, \,$ lo cual ocurre cuando $x=0.$ Entonces el máximo de $f_n$ está dado por $f(0)= \frac{1}{n} \, \to \, 0.$ Por lo tanto $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathbb{R}$ a la función $f=0.$

Ahora observemos la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}.$

Dejamos como ejercicio al lector probar que $(f’_n)_{n \in \mathbb{N}}$ converge puntualmente a la función $g=0.$ No obstante, esta convergencia no es uniforme en ningún intervalo que contenga al origen.

Habiendo visto estas situaciones, conozcamos algunas condiciones de convergencia para $(f_n)_{n \in \mathbb{N}} \,$ y para $(f’_n)_{n \in \mathbb{N}} \,$ que implican que $f’ =g.$

Proposición: Para cada $n \in \mathbb{N}$ sea $f_n:[a,b] \to \mathbb{R}$ continua y diferenciable en $[a,b],$ tal que la sucesión $(f_n)_{n \in \mathbb{N}}$ converge puntualmente a $f:[a,b] \to \mathbb{R}$ y la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente a $g:[a,b] \to \mathbb{R}.$ Entonces $f$ es continua y diferenciable en $[a,b]$ y $f’=g.$

Demostración:
Sean $j,k \in \mathbb{N}$ y $x_0 \in (a,b).$ La función $f_j-f_k$ es continua y diferenciable en $[a,b],$ particularmente, para cada $x \in (a,b),$ también lo será en el intervalo $(x_0,x)$ (o $(x,x_0)$ dependiendo del orden de los puntos). Según el teorema del valor medio, que se puede consultar en Cálculo Diferencial e Integral I: Teorema de Rolle y teorema del valor medio, existe $\xi_x \in (x_0,x)$ tal que:

$$\frac{(f_j-f_k)(x)-(f_j-f_k)(x_0)}{x-x_0}=(f’_j-f’_k)(\xi_x)$$

Entonces
$$(f_j-f_k)(x)-(f_j-f_k)(x_0)=((f’_j-f’_k)(\xi_x))(x-x_0)$$
Y si desarrollamos vemos que
$$f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)=(f’_j(\xi_x)-f’_k(\xi_x))(x-x_0)$$
Así
\begin{align*}
|f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)|&=|(f’_j(\xi_x)-f’_k(\xi_x))(x-x_0)| \\
& \leq \norm{f’_j-f’_k}_\infty |x-x_0|
\end{align*}

Dado que $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathcal{C}^0[a,b],$ para cada $\varepsilon >0$ existe $N_1 \in \mathbb{N}$ tal que para cada $x \in (a,b)$ y para cada $j,k \geq N_1:$

\begin{align*}
|f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)|& \leq \norm{f’_j-f’_k}_\infty |x-x_0| \\
& \leq \frac{\varepsilon}{3}|x-x_0|.
\end{align*}
Haciendo $j \to \infty$ se sigue que
$$|f(x)-f(x_0)-f_k(x)+f_k(x_0)|\leq \frac{\varepsilon}{3}|x-x_0|.$$

Por otro lado, como $(f’_n(x_0))_{n \in \mathbb{N}} \to g(x_0)$ existe $N_2 \in \mathbb{N}$ tal que para cada $k \geq N_1, \, |f’_k(x_0) – g(x_0)|< \frac{\varepsilon}{3}$

Sea $N= máx \{ N_1,N_2 \}.$ Existe $\delta >0$ tal que si $|x – x_0| < \delta$ entonces
$$\left| \frac{f_N(x)-f_N(x_0)}{x-x_0}-f’_N(x_0) \right| <\frac{\varepsilon}{3}.$$

Finalmente aplicamos la desigualdad de triángulo para concluir que
\begin{align*}
\left| \frac{f(x)-f(x_0)}{x-x_0}-g(x_0) \right| &\leq \left| \frac{f(x)-f(x_0)}{x-x_0} – \frac{f_N(x)-f_N(x_0)}{x-x_0} \right| + \left| \frac{f_N(x)-f_N(x_0)}{x-x_0}-f’_N(x_0) \right|+ |f’_N(x_0) – g(x_0)|\\
&\leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}\\
&= \varepsilon
\end{align*}

Por lo tanto $f$ es diferenciable en $x_0$ y $f'(x_0)=g(x_0).$ Ya que las derivadas $f’_n$ son continuas y convergen uniformemente se sigue por lo visto en la entrada anterior que $f$ es continuamente diferenciable.

Hay un resultado más fuerte sobre convergencia uniforme y diferenciación. La prueba de este se omite pero puede consultarse en Apostol, T., Análisis Matemático (2a ed.). México: Editorial Reverté, 1996. Pag 278. Se enuncia como sigue:

Proposición: Para cada $n \in \mathbb{N}$ sea $f_n:(a,b) \to \mathbb{R}.$ Supongamos que para un punto $x_0 \in (a,b)$ la sucesión $(f_n(x_0))_{n \in \mathbb{N}}$ converge. Supongamos además que la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $(a,b)$ a una función $g.$ Entonces la sucesión $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $(a,b)$ a una función $f$ derivable en $(a,b)$ y $f’=g.$

Más adelante…

Conoceremos la relación entre una sucesión de funciones integrables con su función límite. ¿Bajo qué condiciones será también integrable?

Tarea moral

  1. Resuelve las actividades que quedaron pendientes en los ejemplos de esta entrada.

Enlaces:

Convergencia uniforme y continuidad

Por Lizbeth Fernández Villegas

Introducción

El propósito de esta entrada será conocer criterios para determinar cuándo el límite de una sucesión de funciones es una función continua. (El concepto de función continua se vio en la entrada Funciones continuas en espacios métricos).

Nuestra intuición podría proponer que esto ocurre cuando todas las funciones de la sucesión son también continuas. No obstante, esto no basta cuando el límite de convergencia es puntual. Como ejemplo tomemos la sucesión de funciones continuas dada por:

$(x^n)_{n \in \mathbb{N}}$ donde para cada $n \in \mathbb{N}, \, x^n:[0,1] \to \mathbb{R}$

Queda como ejercicio al lector demostrar que $(x^n)_{n \in \mathbb{N}}$ converge puntualmente a la función:

\begin{equation*}
f(x) = \begin{cases}
0 & \text{si $0 \leq x < 1$} \\
1 & \text{si $x = 1$}
\end{cases}
\end{equation*}

Pero $f$ no es una función continua en $[0,1].$

¿Qué ocurre en los casos donde el límite es uniforme? A continuación mostraremos que bajo esa situación, la función a la que la sucesión converge sí es continua. Pero antes hagamos una aclaración sobre la notación a usar:

En la entrada anterior (Convergencia puntual y convergencia uniforme) las funciones suelen definirse como funciones de $A$ en $X$ $(f:A \to X),$ donde $A$ se considera como un conjunto cualquiera (que no necesariamente es un espacio métrico y por tanto la distancia de los puntos en el dominio no es relevante), y $X$ es un espacio métrico con distancia indicada como $d$.

Ahora pasamos a tratar con funciones continuas, donde sí comparamos distancias entre puntos del dominio (la famosa distancia menor que $\delta$) y distancias en puntos del contradominio (la famosa distancia menor que $\varepsilon$). Así, las funciones de esta entrada están definidas entre dos espacios métricos $(X,d_X)$ y $(Y,d_Y).$ Nota la importancia de señalar si la distancia a considerar es en $X$ o en $Y.$

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. Si $(f_n)_{n \in \mathbb{N}}$ con $f_n: X \to Y, \, n \in \mathbb{N} \, $ es una sucesión de funciones continuas que converge uniformemente a $f:X \to Y$ en $X$ entonces $f$ es continua.

Demostración:
Sea $\varepsilon > 0$ y $x_0 \in X.$ Buscamos probar que $f$ es continua en $x_0.$ Como $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $f$ entonces existe $N \in \mathbb{N}$ tal que para todo $k \geq N$ y para todo $x \in X, \, d_Y(f_k(x),f(x)) < \frac{\varepsilon}{3}.$

Por otro lado, como $f_N$ es continua, existe $\delta > 0$ tal que si $d_X(x,x_0)< \delta$ entonces $d_Y(f_N(x),f_N(x_0)) < \frac{\varepsilon}{3}.$

En consecuencia, si $d_X(x,x_0)< \delta$ se sigue que

\begin{align*}
d_Y(f(x),f(x_0)) & \leq d_Y(f(x),f_N(x)) + d_Y(f_N(x),f_N(x_0)) + d_Y(f_N(x_0),f(x_0)) \\
& < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\
& = \varepsilon
\end{align*}

Lo cual demuestra que el límite uniforme de una sucesión de funciones continuas, es una función continua.

Es importante notar que esto no significa que toda sucesión de funciones continuas que converge en una función continua, lo hace de manera uniforme. Puede hacerlo solo de forma puntual. Veamos un ejemplo.

La sucesión de funciones continuas $(f_n)_{n \in \mathbb{N}}$ donde para cada $n \in \mathbb{N}, \, f_n:[0,1] \to \mathbb{R}$ se define como $f_n(x)= n^2x(1-x)^n,$ converge de forma puntual a la función $f(x)=0.$ Queda como ejercicio probar que la convergencia solo es puntual y no uniforme.

Ahora pensemos en funciones continuas y acotadas a través de la siguiente definición. (El concepto de función acotada se vio en Espacios de funciones).

Definición. El espacio métrico $\mathcal{C}_b^0(X,Y)$: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. El espacio de funciones continuas y acotadas de $X$ a $Y$ se define como:
$\mathcal{C}_b^0(X,Y):= \{f:X \to Y: f \text{ es continua y acotada } \}$
Y la métrica está dada por:
$$d_\infty(f,g)= \underset {x \in X}{sup} \, \, d_Y(f(x),g(x))$$

Donde $f,g \in \mathcal{C}_b^0(X,Y).$

Este espacio es cerrado en el espacio de funciones acotadas, de acuerdo con la siguiente:

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. Entonces $\mathcal{C}_b ^0(X,Y)$ es un subespacio cerrado de $\mathcal{B}(X,Y).$ (El espacio de funciones acotadas).

Demostración:
Buscamos probar que $\mathcal{C}_b ^0(X,Y)$ es igual a su cerradura. Sea $f \in \overline{\mathcal{C}_b ^0(X,Y)}.$ En la última proposición de la entrada Convergencia vimos que esto significa que existe una sucesión de funciones $(f_n)_{n \in \mathbb{N}}$ en $\mathcal{C}_b ^0(X,Y)$ que convergen a $f$ en $\mathcal{B}(X,Y).$ En la entrada anterior vimos que esto implica que $f$ es límite uniforme de $(f_n)_{n \in \mathbb{N}}. \, $ La proposición anterior nos permite concluir que $f$ es continua, es decir $f \in \mathcal{C}_b ^0(X,Y),$ probando así que $\mathcal{C}_b ^0(X,Y)$ es cerrado en $\mathcal{B}(X,Y).$

Ahora veamos la siguiente:

Proposición: Sea $Y$ un espacio métrico completo. Se cumple que:

  1. Si $A$ es un conjunto entonces $\mathcal{B}(A,Y)$ es completo.
  2. Si $X$ un espacio métrico entonces $\mathcal{C}^0_b(X,Y)$ es completo.
El conjunto $\mathcal{B}(A,Y)$ es completo
El conjunto $\mathcal{C}^0_b(X,Y)$ es completo.

Demostración:
Para probar que $\mathcal{B}(A,Y)$ es completo toma $(f_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en $\mathcal{B}(A,Y).$ Veamos que es convergente.
Sea $\varepsilon >0.$ Por definición, existe $N \in \mathbb{N}$ tal que $\forall \, l,m \geq N, \, d_\infty(f_l,f_m) < \varepsilon.$ Así, para cada $a \in A$ se cumple que $d_Y(f_l(a),f_m(a)) \leq d_\infty(f_l,f_m) < \varepsilon$ de modo que $(f_n)_{n \in \mathbb{N}}$ es uniformemente de Cauchy. De acuerdo con el Criterio de convergencia uniforme de Cauchy visto en la entrada anterior esto significa que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $A$ y por tanto converge en el espacio métrico de funciones $\mathcal{B}(A,Y).$

Para probar que $\mathcal{C}^0_b(X,Y)$ es completo partimos de la proposición anterior donde concluimos que es subespacio cerrado de $\mathcal{B}(A,Y)$ que ya sabemos es completo. A partir de una proposición vista en Espacios métricos completos se sigue que $\mathcal{C}^0_b(X,Y)$ es completo.

Si $Y$ es un espacio de Banach entonces está provisto de una norma $\norm{\cdot}$ que induce una métrica bajo la cual $Y$ es completo.

Al final se te pedirá probar que el conjunto $\mathcal{B}(A,Y)$ es un espacio vectorial normado con
$\norm{f}_\infty = \underset {a \in A}{sup} \, \norm{f(a)}$

En esta situación, las proposiciones se plantean de la siguiente manera:

  1. Si $A$ es un conjunto entonces $\mathcal{B}(A,Y)$ es de Banach.
  2. Si $X$ un espacio métrico entonces $\mathcal{C}^0_b(X,Y)$ es de Banach.

Unos resultados que requieren el concepto de compacidad

En entradas posteriores hablaremos del concepto de espacios métricos compactos. En la sección Funciones en espacios topológicos compactos verás que toda función continua en un compacto es acotada. Ese resultado en suma con la proposición anterior, permite concluir que si $A$ es compacto y $X$ es completo entonces $\mathcal{C}^0(A,X)=\{\phi:A \to X :\phi \text{ es continua } \}$ es un espacio completo.

Ahora presentamos condiciones que aseguran la convergencia uniforme de una sucesión de funciones continuas en un espacio compacto a partir de la monotonía. Es decir:

Proposición: Sea $A$ un espacio métrico compacto, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones continuas con $f_n:A \to \mathbb{R}, n \in \mathbb{N}$ tal que $(f_n)$ converge puntualmente a una función continua $f$. Si para cada $x \in A$ y $n \in \mathbb{N} \, f_n(x) \geq f_{n+1}(x),$ entonces $(f_n)$ converge a $f$ uniformemente en $A.$

Demostración:
Podrá consultarse en la entrada Compacidad en espacios métricos.

Más adelante…

Continuaremos analizando resultados de convergencia uniforme, ahora en funciones diferenciables. ¿Será diferenciable también la función límite? ¿Será convergente también la sucesión de derivadas? ¿Coincide el límite de derivadas con la derivada de la función límite?

Tarea moral

  1. Demuestra que $(x^n)_{n \in \mathbb{N}}$ con $x^n:[0,1] \to \mathbb{R}$ converge puntualmente a la función:
    \begin{equation*}
    f(x) = \begin{cases}
    0 & \text{si $0 \leq x < 1$} \\
    1 & \text{si $x = 1$}
    \end{cases}
    \end{equation*}
    Pero $f$ no es una función continua en $[0,1].$
  2. Demuestra que la sucesión de funciones continuas $(f_n)_{n \in \mathbb{N}}$ donde para cada $n \in \mathbb{N}, \, f_n:[0,1] \to \mathbb{R}$ se define como $f_n(x)= n^2x(1-x)^n,$ converge de forma puntual a la función $f(x)=0$ pero el límite no es uniforme.
  3. Sea $A$ un conjunto, y $(Y, \norm{\cdot})$ un espacio normado. Prueba que $\mathcal{B}(A,Y)$ es un espacio vectorial con las operaciones
    $(f+g)(x):= f(x) + g(x)$
    $(\lambda f)(x):= \lambda f(x)$
    Y que $\norm{f}_\infty = \underset {a \in A}{sup} \, \norm{f(a)}$
    es una norma en $\mathcal{B}(A,Y).$

Enlaces:

Funciones en espacios topológicos compactos

Por Lizbeth Fernández Villegas

Introducción

En esta entrada conoceremos más propiedades de los espacios métricos compactos. Veremos qué ocurre cuando les es aplicada una función continua. Esto nos relacionará dos espacios métricos entre sí a través de los subconjuntos. Podremos concluir información acerca de la imagen de una función cuando ciertas condiciones se cumplen. Comencemos con la siguiente:

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. Si $\phi:X \to Y$ es una función continua y $A \subset X$ es compacto, entonces la imagen de $A$ bajo $\phi$, es decir, $\phi(A),$ es un conjunto compacto en $(Y,d_Y).$

La imagen continua de un compacto es compacta

Demostración:
Sea $\mathcal{C}= \{A_i: i \in \mathcal{I}\}$ una cubierta abierta de $\phi (A)$. Como $\phi$ es continua entonces la imagen inversa de $A_i,$ es decir, el conjunto $\phi ^{-1}(A_i), i \in \mathcal{I}$ es un conjunto abierto en $X$. No es difícil probar que $\{\phi ^{-1}(A_i):i \in \mathcal{I}\}$ es una cubierta abierta de $A.$ (Ejercicio).

La imagen inversa define una cubierta abierta en $X$

Como $A$ es compacto, entonces existe una subcubierta finita $\{\phi ^{-1}(A_{i_1}),\phi ^{-1}(A_{i_2}),…,\phi ^{-1}(A_{i_m}) \}$ con $m \in \mathbb{N}$ tal que $A \subset \underset{1\leq j \leq m}{\bigcup}\phi ^{-1}(A_{i_j}).$ Esto significa que $\{A_{i_1},A_{i_2},…,A_{i_m}\}$ es una subcubierta en $Y$ de $\mathcal{C}$ para $\phi (A)$. (¿Por qué?) Por lo tanto $\phi (A)$ es compacto.

Los conjuntos correspondientes en $X$ definen una cubierta finita en $Y$

Ejemplos

La función valor absoluto en un intervalo cerrado

Considera $\mathbb{R}$ con la métrica euclidiana y la función $f:[-1,1] \to \mathbb{R}$ donde $f(x)= |x|.$ Entonces $f$ es una función continua y $f([-1,1]) = [0,1]$ es compacto en $\mathbb{R}.$

La función $sen(4x)$

Considera $\mathbb{R}$ con la métrica euclidiana y la función $f:[0, \pi ] \to \mathbb{R}$ donde $f(x)= sen(4x).$ Entonces $f$ es una función continua y $f([0, \pi]) = [-1,1]$ es compacto en $\mathbb{R}.$

La función $e^x$

Considera $\mathbb{R}$ con la métrica euclidiana y la función $f:[0, 2 ] \to \mathbb{R}$ donde $f(x)= e^x .$ Entonces $f$ es una función continua y $f([0, 2]) = [1,e^2]$ es compacto en $\mathbb{R}.$

Es resultado conocido que si $\phi: [0,1] \to \mathbb{R}$ es una función continua, entonces $\phi([0,1])= [a,b]$ donde $a = min \{f(x)|0 \leq x \leq 1 \} \, $ y $ \, b = max \{f(x)|0 \leq x \leq 1 \}.$ (Ver Teorema del máximo-mínimo). En efecto $[a,b]$ es un intervalo cerrado en $\mathbb{R}$ y por tanto es compacto.

Bajo la misma idea podemos considerar a la función $\psi: \mathbb{R} \to \mathbb{R}^2$ dada por $\psi(t)=(t,\phi(t))$. Entonces, la curva de esta función es un conjunto compacto en $\mathbb{R}^2$

En la entrada anterior vimos que un conjunto compacto es cerrado y acotado. Podemos concluir el siguiente:

Corolario: Sea $A$ compacto. Entonces una función continua $\phi:A \subset X \to Y$ es acotada, pues la imagen bajo $\phi$ en el compacto es compacta y, por lo tanto, acotada. También podemos concluir que $\phi(A)$ es cerrada.

$\phi$ es acotada

Este resultado nos permite delimitar una función en el espacio euclidiano de $\mathbb{R}$ con dos puntos importantes en el contradominio de la función: el máximo y el mínimo.

Probablemente este resultado te sea familiar de los cursos de cálculo:

Proposición: Sea $f:A\subset \mathbb{R}^n \to \mathbb{R}$ una función continua con $A$ cerrado y acotado (y por tanto compacto en $\mathbb{R}^n$). Entonces $f \,$ alcanza su mínimo y máximo en $A.$

En otros espacios métricos puede generalizarse como sigue:

Proposición: Sea $f:A \to \mathbb{R}$ una función continua con $A$ espacio métrico compacto y $\mathbb{R}$ con la métrica usual. Entonces $f$ alcanza su mínimo y máximo en $A$, es decir, existen puntos $x_1$ y $x_2$ en $A$ tales que para toda $x \in A$ se cumple que:
$$f(x_1) \leq x \leq f(x_2)$$

Demostración:
Si $A$ es compacto, la proposición anterior nos muestra que $f(A)$ es cerrado y acotado. Sea $m_0= inf\{f(x):x \in A\}$. Entonces $m_0 \in \overline{f(A)}$ y como $f(A)$ es cerrado, se concluye que $m_0 \in f(A)$, de modo que existe $x_1 \in A$ tal que $f(x_1)=m_0 \, $ por lo tanto $f$ alcanza su mínimo en $A$.

La demostración de que $f$ alcanza su máximo es análoga y se deja como ejercicio.

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos con $X$ compacto y $\phi:X \to Y$ inyectiva y continua. Entonces existe la función inversa $\phi^{-1}$ en $\phi(X)$ y es continua en $\phi(X)$.

Demostración:
Para demostrar que $\phi^{-1}:\phi(X) \to X$ es una función continua, basta probar que la imagen inversa de esta función aplicada en conjuntos cerrados en $X$, es un conjunto cerrado en $Y$. Si $A$ es cerrado en $X$ entonces la imagen inversa respecto a la función $\phi^{-1}$ está dada por $\phi(A)$. Como $A$ es cerrado en un compacto entonces es compacto, de modo que $\phi(A)$ también es compacto y, por lo tanto, es cerrado en $Y$. Esto prueba que $\phi^{-1}$ es continua.

Finalizaremos esta entrada presentando un resultado que se deduce del anterior. La solución se propone como ejercicio al lector:

Proposición: Si $\phi:X \to Y$ es una función biyectiva y continua entre espacios métricos compactos, entonces es un homeomorfismo.

$\phi$ es un homeomorfismo

Más adelante…

Continuaremos visualizando aplicaciones de funciones continuas sobre conjuntos compactos, pero esta vez bajo una nueva definición: la continuidad uniforme.

Tarea moral

  1. Como parte de la prueba de la primera proposición, muestra que en efecto $\{\phi ^{-1}(A_i):i \in \mathcal{I}\}$ es una cubierta abierta de $A$.
  2. Argumenta la parte de la demostración de la primera proposición, en la que se afirma que si $A \subset \underset{1\leq j \leq m}{\bigcup}\phi ^{-1}(A_{i_j}),$ entonces $\{A_{i_1},A_{i_2},…,A_{i_m}\}$ es una subcubierta en $Y$ de $\mathcal{C}$ para $\phi (A)$.
  3. Prueba que si $f:A \to \mathbb{R}$ es una función continua con $A \subset \mathbb{R}^n$ cerrado y acotado, entonces $f$ alcanza su máximo en $A.$
  4. Prueba que si $X$ y $Y$ son homeomorfos, entonces $X$ es compacto si y solo si $Y$ es compacto.
  5. Demuestra que si $\phi:X \to Y$ es una función biyectiva y continua entre espacios métricos compactos, entonces es un homeomorfismo.

Enlaces

Convergencia puntual y convergencia uniforme

Por Lizbeth Fernández Villegas

Introducción

En entradas anteriores trabajamos ideas de convergencia de sucesiones. En ellas se observa una secuencia de puntos de un espacio métrico y se analiza si se pueden acercar mucho entre ellos o si se acercan a algún otro punto. En esta entrada, y otras correspondientes a la sección, observaremos sucesiones originadas por puntos obtenidos al evaluar funciones. Al comparar distancias entre puntos de la imagen de esas funciones podemos pensar ahora en cercanía de funciones, más aún, en si se aproximan a alguna función específica. ¡Comenzamos!

Sea $A$ un conjunto y $(X,d)$ un espacio métrico. Para cada $n \in \mathbb{N}$ considera una función $f_n:A \to X.$ Esto define una sucesión de funciones $(f_n)_{n \in \mathbb{N}}.$

Representación de una sucesión de funciones

A partir de un punto $a \in A$ (fijo) podemos definir otra sucesión con los valores que cada una de las funciones anteriores asignan a ese punto. Es decir, con los términos $f_1(a), f_2(a), f_3(a), …$ definimos la sucesión $(f_n(a))_{n \in \mathbb{N}}.$

Representación de una sucesión $(f_n(a))_{n \in \mathbb{N}}.$

Es natural preguntarse si esa sucesión de puntos es convergente. Gráficamente podemos observar que esto depende de cómo están definidas las funciones y también del valor $a$ elegido en el dominio $A.$ Por ejemplo, en el siguiente dibujo, la sucesión generada con las funciones evaluadas en $a_1$ es convergente, pues los puntos se van aproximando al eje horizontal. Por otro lado, la generada a partir del punto $a_2$ no lo es; sus puntos tienden a infinito.

Sucesiones $(f_n(a_1))_{n \in \mathbb{N}} \,$ y $(f_n(a_2))_{n \in \mathbb{N}},$

Para formalizar estas ideas, al final de esta sección se te pedirá demostrar que la sucesión de funciones del ejemplo anterior evaluadas en $a_1$ (un punto menor que cero), es convergente. ¿Cuál es el límite? Por el contrario, para un punto mayor que cero la sucesión tiende a infinito. ¿Qué pasa al evaluar las funciones en cero?

Pero en un conjunto donde todos los puntos $a$ forman sucesiones convergentes $(f_n(a))_{n \in \mathbb{N}},$ podemos pensar en cada límite de esas sucesiones como el valor que otra función $f$ asigna en cada punto $a.$ Eso inspira la siguiente:

Definición. Convergencia puntual: Si $(f_n)_{n \in \mathbb{N}} \,$ es una sucesión de funciones donde para cada $n \in \mathbb{N}$ se tiene $f_n: A \to X,$ decimos que $(f_n)_{n \in \mathbb{N}} \,$ converge puntualmente en $A$ a una función $f:A \to X$ si para cada punto $a \in A$ se cumple que $\underset {n \to \infty}{lim} \, f_n(a) = f(a).$

Aunque la sucesión de funciones del ejemplo anterior no converge puntualmente en $\mathbb{R},$ sí lo hace en el intervalo $(- \infty , 0].$ Converge puntualmente a la función dada por:

\begin{equation*}
f(x) = \begin{cases}
0 & \text{si $x < 0$} \\
1 & \text{si $x = 0$}
\end{cases}
\end{equation*}

La sucesión de funciones converge puntualmente a la función $f.$

La función $f$ recibe el nombre de límite puntual de la sucesión de funciones $(f_n)_{n \in \mathbb{N}}.$

De acuerdo con la definición de convergencia puntual, para cada $\varepsilon >0$ y cada $a \in A$ se requiere de la existencia de un número $N_a \in \mathbb{N}$ tal que $\forall \, n\geq N_a, \, d(f_n(a),f(a)) < \varepsilon.$

Es importante notar que, incluso cuando todas las sucesiones $(f_n(a))_{n \in \mathbb{N}} \,$ son convergentes, posiblemente el natural $N_a \,$ que satisface la definición de convergencia será diferente al variar el punto $a$ en el dominio, de ahí que lo indiquemos con un subíndice.

Tomemos nuevamente el ejemplo anterior en el intervalo $(- \infty, 0]$ donde la sucesión de funciones converge puntualmente. Partiendo de un $\varepsilon_0 >0$ fijo, observemos las siguientes sucesiones, en distintos valores del intervalo.

Puntos dentro del radio $\varepsilon_0$

Mientras que para el punto $a_1$ la sucesión se acerca al punto de convergencia $f(a_1) = 0$ en distancias menores que $\varepsilon _0$ a partir del punto evaluado en $f_2,$ para el punto $a_2$ no se acerca lo suficiente sino hasta $f_3.$ Por otra parte, los puntos de las funciones evaluadas en $a_3$ del dibujo, no se acercan en menos que $\varepsilon _0$ a su respectivo punto de convergencia sino hasta a partir de $f_k.$ Entonces, los naturales que satisfacen la condición pueden proponerse como:
$$N_{a_1} = 2; \, N_{a_2}=3; \, N_{a_3} = k$$
¿Es posible reasignar un mismo natural a los puntos $a_1, \, a_2, \, a_3$ y satisfacer también la definición de convergencia?
¿Será posible hacerlo en todos los puntos de $(- \infty ,0]$

Cuando para todo $\varepsilon>0$ sí sea posible asegurar la existencia de un mismo valor natural $N$ que afirme la convergencia de todas las sucesiones $(f_n(a))_{a \in A} \,$ hablaremos de que la sucesión de funciones converge uniformemente:

Definición. Convergencia uniforme: Considera una sucesión de funciones $(f_n)_{n \in \mathbb{N}} \,$ donde para cada $n \in \mathbb{N}, \, f_n:A \to X \, $ con $A$ un conjunto y $(X,d)$ un espacio métrico. Decimos que $(f_n)_{n \in \mathbb{N}} \,$ converge uniformemente a una función $f:A \to X$ si para toda $\varepsilon >0$ existe $N \in \mathbb{N}$ tal que para toda $n \geq N$ y para toda $a \in A$ se cumple que $d(f_n(a),f(a))< \varepsilon.$

En este caso nos referiremos a $f$ como el límite uniforme de $(f_n)_{n \in \mathbb{N}}.$

Ejemplo
Consideremos la misma sucesión de funciones $(n^x)_{n \in \mathbb{N}} \,$ pero ahora con dominio $(- \infty, a]$ con $a < 0.$

Sea $\varepsilon >0$. Toma el $N_a \in \mathbb{N}$ que satisface que $\forall n\geq N_a, \, d(f_n(a),0) < \varepsilon$ el cual existe, pues $f_n(a) \to 0.$ Nota que este mismo natural funciona para probar la convergencia de la sucesión de puntos de funciones evaluadas en cualquier otro punto de $(- \infty,a].$ La demostración de este hecho quedará como ejercicio.

A partir de la función morada, todas las siguientes están dentro de la región de $\varepsilon$ en el dominio.

Nota que si una sucesión $(f_n)$ converge uniformemente a $f$ entonces también converge puntualmente a $f.$ Por el contrario, podemos tener sucesiones que convergen puntualmente pero no uniformemente:

Ejemplo: Aunque la sucesión $(n^x)_{n \in \mathbb{N}} \,$ converge puntualmente en $(- \infty , 0]$ no converge uniformemente en el mismo dominio. Sea $\varepsilon = \frac{1}{2}$ y $k \in \mathbb{N}.$ Como la imagen de $k^x$ es $(0,1]$ entonces existe $a_0 \in (- \infty , 0)$ (donde $(n^{a_0})_{n \in \mathbb{N}} \to 0$) tal que $k^{a_0}> \varepsilon .$ Por lo tanto, el límite no es uniforme.

Esta no es la primera vez que hablamos de identificar distancias entre una función y otra. En la entrada Espacios de funciones definimos el espacio $\mathcal{B}(A,X)$ cuyos elementos son funciones acotadas de un conjunto $A$ en un espacio $X$ y la métrica está dada por:
$$d_\infty(f,g)= \underset{a \in A}{sup \,} \, d(f(a),g(a)), \, f,g \in \mathcal{B}(A,X)$$

Representación distancia entre funciones acotadas

La convergencia uniforme de una sucesión de funciones acotadas es equivalente a la convergencia como elementos del espacio métrico de funciones $\mathcal{B}(A,X),$ es decir:

Proposición: Sea $(f_n)_{n \in \mathbb{N}} \,$ una sucesión en $\mathcal{B}(A,X).$ Entonces, $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a $f: A \to X$ en $A$ si y solo si $(f_n)_{n \in \mathbb{N}}$ converge a $f$ en $\mathcal{B}(A,X).$

Demostración (ida):
Sea $\varepsilon >0.$ Como $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a $f: A \to X$ en $A,$ existe $N \in \mathbb{N} \,$ tal que para cada $k \geq N$ se cumple que para cada $a \in A, \, d(f_k(a),f(a)) < \frac{\varepsilon}{2} .$

1. $f$ está en el espacio $\mathcal{B}(A,X):$
Como $f_N$ es acotada, existen $x_0 \in X$ y $M \in \mathbb{R}$ tales que para toda $a \in A,$
$d(f_N(a),x_0) \leq M$
En consecuencia $d(f(a),x_0) \leq d(f(a),f_N(a))+d(f_N(a),x_0) < \frac{\varepsilon}{2} + M < \varepsilon + M$
Y como esto es posible $\forall \varepsilon >0$ concluimos que $f$ es acotada.

2. $(f_n)_{n \in \mathbb{N}} \to f$ en $\mathcal{B}(A,X):$
Teniendo a $\varepsilon$ como cota superior del conjunto $\{ d(f_k(a),f(a)) : a \in A \}$ se sigue que $d_\infty(f_k,f)= \underset{a \in A}{sup \,} \, d(f_k(a),f(a)) \leq \frac{\varepsilon}{2} < \varepsilon ,$ lo cual demuestra que $(f_n)_{n \in \mathbb{N}}$ converge a $f$ en $\mathcal{B}(A,X).$

El regreso es análogo y se propone como ejercicio.

Definición. Sucesión uniformemente de Cauchy: Sea $(f_n)_{n \in \mathbb{N}} \,$ una sucesión de funciones con $f_n:A \to X, \, n \in \mathbb{N}.$ Decimos que $(f_n)$ es uniformemente de Cauchy en $A,$ si para todo $\, \varepsilon >0$ existe $N \in \mathbb{N}$ tal que para todo $\, l,m \geq N$ y para todo $ \, a \in A,$
$$d(f_l(a),f_m(a))< \varepsilon .$$

Nota que en la definición solo se menciona que las funciones de la sucesión se vuelven arbitrariamente cercanas dos a dos (en cualquier punto del dominio), a partir de alguna función.

La siguiente imagen muestra una sucesión uniformemente de Cauchy.

$f_k:[0,2] \to \mathbb{R}, \, f_k=\frac{x}{kx+1}, \, k \in \mathbb{N}$

¿Cuándo podremos decir que una sucesión de funciones con esta propiedad converge de manera uniforme?

Para finalizar, veamos el siguiente resultado en espacios donde toda sucesión de Cauchy es convergente.

Teorema. Criterio de convergencia uniforme de Cauchy. Sea $(X,d)$ un espacio métrico completo. Una sucesión de funciones $(f_n)_{n \in \mathbb{N}} \,$ con $f_n:A \to X, \, n \in \mathbb{N}$ converge uniformemente en $A$ si y solo si $(f_n)_{n \in \mathbb{N}}$ es uniformemente de Cauchy en $A.$

Demostración:
Partamos de suponer que $(f_n)_{n \in \mathbb{N}} \,$ converge uniformemente en $A$ a alguna función $f:A \to X.$ Sea $\varepsilon >0.$ Existe $N \in \mathbb{N}$ tal que para cada $l, m \geq N$ se cumple que para cada $a \in A$:
$$d(f_l(a),f_m(a)) \leq d(f_l(a),f_N(a))+d(f_N(a),f_m(a)) < \frac{\varepsilon}{2}+\frac{\varepsilon}{2} = \varepsilon.$$
Por lo tanto $(f_n)_{n \in \mathbb{N}} \,$ es uniformemente de Cauchy en $A.$

Ahora supón que $(f_n)_{n \in \mathbb{N}} \,$ es uniformemente de Cauchy en $A.$ Sea $\varepsilon>0.$ Existe $N \in \mathbb{N}$ tal que para cada $l, m \geq N$ se cumple que para cada $a \in A, \, d(f_l(a),f_m(a))< \varepsilon.$ Esto significa que la sucesión $(f_n(a))_{n \in \mathbb{N}}$ (formada por los puntos de las funciones evaluadas en un $a \in A$ fijo) es de Cauchy. Como $X$ es completo, se sigue que $(f_n(a))_{n \in \mathbb{N}} \to L_a$ para algún $L_a \in X.$
Sea $f:A \to X$ tal que para cada $a \in A, \, f(a) = L_a.$ Queda como ejercicio al lector demostrar que $f$ es el límite uniforme de $(f_n)_{n \in \mathbb{N}}.$

Más adelante…

Observaremos sucesiones de funciones continuas que convergen. ¿Será continua la función límite? ¿Dependerá de si la convergencia es puntual o uniforme?

Tarea moral

  1. Para cada $n \in \mathbb{N}$ considera la función $n^x: \mathbb{R} \to \mathbb{R}.$ Donde tanto en el dominio como en el contradominio, $\mathbb{R}$ tiene la métrica euclidiana. Sea $a \in \mathbb{R}.$ Demuestra que:
    a) Si $a<0$ entonces $(n^a)_{n \in \mathbb{N}}$ es convergente. ¿Cuál es el límite?
    b) Si $a >0$ entonces $(n^a)_{n \in \mathbb{N}}$ tiende a infinito.
    c) ¿Qué ocurre con la sucesión cuando $a=0?$
  2. Consideremos la misma sucesión de funciones $(n^x)_{n \in \mathbb{N}} \,$ pero ahora con dominio $(- \infty, a]$ con $a < 0.$ Sea $\varepsilon >0$. Toma el $N_a \in \mathbb{N}$ que satisface que $\forall n\geq N_a, \, d(f_n(a),0) < \varepsilon$ el cual existe, pues $f_n(a) \to 0.$ Demuestra que para todo $a^*<a$ también se cumple que $\forall n\geq N_a, \, d(f_n(a^*),0) < \varepsilon$ y por tanto la convergencia en $(- \infty,a]$ es uniforme.
  3. Demuestra el regreso de la siguiente proposición:
    Sea $(f_n)_{n \in \mathbb{N}} \,$ una sucesión en $\mathcal{B}(A,X).$ Entonces, $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a $f: A \to X$ en $A$ si y solo si $(f_n)_{n \in \mathbb{N}}$ converge a $f$ en $\mathcal{B}(A,X).$
  4. En la demostración del criterio de convergencia uniforme de Cauchy, demuestra que $f$ como fue definida, es el límite uniforme de $(f_n)_{n \in \mathbb{N}}.$
  5. Supón que para cada $x \in A$ se cumple que $\underset{n \in \mathbb{N}}{lim} \, f_n(x) =f(x).$ Si definimos $M_n$ como $M_n=\underset{n \in \mathbb{N}}{sup} \, \, d(f_n(x),f(x))$ entonces $f_n \to f$ de manera uniforme si y solo si $M_n \to 0$ en $\mathbb{R}.$

Enlaces:

Continuidad uniforme

Por Lizbeth Fernández Villegas

Introducción

Hasta este punto, ya hemos visto varias propiedades que las funciones continuas tienen entre espacios métricos. De acuerdo a la definición, la continuidad en un punto se da cuando los puntos cercanos a él, son enviados a puntos cercanos en el otro espacio métrico.

Dado $\varepsilon >0$, incluso cuando la función $\phi :X \to Y$ es continua en todos los puntos $x_0$ de $X$, el valor de una $\delta_{x_0}$ que cumple que $\phi (B_X(x_0,\delta_{x_0})) \subset B_Y(\phi(x_0), \varepsilon)$ podría ser diferente para cada punto.

Por ejemplo, sabemos que la función identidad $I:[0,1] \to [0,1]$ es continua en $[0,1]$. Si suponemos $\varepsilon = \frac{1}{3}$ podemos hablar más explícitamente de la continuidad en los puntos $\frac{1}{3}$ y $\frac{2}{3}$ asignando $\delta_1 = \frac{1}{3}$ y $\delta_2 = \frac{1}{6}$, respectivamente.

Podemos comprobar que ambas deltas satisfacen la definición de continuidad y sin embargo son diferentes. No obstante, eligiendo $\delta$ como la mínima entre las dos, podemos argumentar también la continuidad en ambos puntos con la misma $\delta.$

En general, en una cantidad finita de puntos donde la función es continua, también es posible elegir el valor de $\delta$ mínimo y este funciona para demostrar la continuidad en cada punto, pero si la continuidad es en un conjunto infinito no siempre existe una delta general .

En los ejemplos de continuidad que hemos visto, fijamos un punto en el espacio del dominio $X$ y observamos un conjunto en torno a él (la bola de radio $\delta$).

¿Qué pasa si nos fijamos en bolas de radio $\delta$ de manera arbitraria en el dominio? ¿Serán enviados a puntos cercanos en el espacio métrico $Y$?

Esta discusión incentiva la siguiente:

Definición. Función uniformemente continua: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. Decimos que una función $\phi :X \to Y$ es uniformemente continua en $X$ si dada $\varepsilon >0$ existe $\delta >0$ tal que para cualesquiera $x_1, x_2 \, \in \, X$, si satisfacen que $d_X(x_1,x_2)< \delta$, entonces $d_Y(\phi(x_1), \phi(x_2)) < \varepsilon$.

Al final de esta sección se propone demostrar que toda función uniformemente continua es continua. No obstante, hay funciones continuas que no son uniformemente continuas.

Ejemplo: La función $f:(0,\infty) \to \mathbb{R}, \, f(x)= \frac{1}{x}$ es continua en $(0,\infty)$ pero no es uniformemente continua, pues si consideramos $\varepsilon=1$ y cualquier $\delta>0$ todos los pares de puntos en el intervalo $(0,\delta)$ tienen distancia menor que $\delta.$ Sea $x_1 \in (0,\delta).$ Como $f$ es decreciente y tiende a $\infty$ en cero por la derecha entonces existe $x_2 < x_1$ tal que $f(x_2)>1+f(x_1)$ por lo tanto, aunque $|x_2-x_1|< \delta$ se tiene que $|f(x_2)-f(x_1)|>1= \varepsilon$ y en consecuencia, la función no es uniformemente continua.

$f$ no es uniformemente continua

Pero hay una propiedad que hace equivalentes ambos tipos de funciones:

Proposición: Sea $A$ un espacio métrico compacto. Si $\phi : A \to Y$ es una función continua, entonces $\phi$ es uniformemente continua.
Demostración:
Supón por el contrario que $\phi:A \to Y$ no es uniformemente continua. Entonces existe $\varepsilon >0$ tal que $\forall \, \delta>0$ existen $a_1,a_2$ con distancia menor que $\delta$ pero cuya distancia correspondiente en $Y$ para $\phi(a_1)$ y $\phi(a_2)$ es mayor igual que \varepsilon.

Particularmente, para cada $n \in \mathbb{N}$ existen $x_n,x’_n \in A$ tales que $d_A(x_n,x’_n)<\frac{1}{n}$ y $d_Y(\phi(x_n),\phi(x’_n)) \geq \varepsilon.$

Entonces la sucesión $(x_n)_{n \in \mathbb{N}}$ que está en $A$ compacto, tiene una subsuseción $(x_{k_j})$ que converge en algún $x \in A.$ La sucesión correspondiente $(x’_{k_j})$ también converge en $x,$ pues:

$$d_A(x,x’_{k_j}) \leq d_A(x,x_{k_j})+d_A(x_{k_j},x’_{k_j}) \to 0$$

Entonces, como $\phi$ es continua se cumple que $\phi(x_{k_j}) \to \phi(x)$ y $\phi(x’_{k_j}) \to \phi(x)$ de modo que existe $J \in \mathbb{N}$ tal que.

$d_Y(\phi(x_{k_j}),\phi(x’_{k_j})) \leq d_Y(\phi(x_{k_j}),\phi(x))+d_Y(\phi(x),\phi(x’_{k_j})) < \frac{\varepsilon}{2}+\frac{\varepsilon}{2} = \varepsilon.$

Pero esto es una contradicción, pues al principio se seleccionaron términos que satisfacen que $d_Y(\phi(x_{k_j}),\phi(x’_{k_j})) \geq \varepsilon.$ Por lo tanto la función sí es uniformemente continua.

Más adelante…

Ya que conocemos algunos resultados de la compacidad en los conjuntos, mostraremos una herramienta para identificarla en espacios de funciones: el teorema de Arzelá-Azcoli. En la siguiente sección veremos las definiciones que nos llevarán a ella.

Tarea moral

  1. Demuestra que toda función uniformemente continua es continua.
  2. ¿Es cierto que toda función Lipschitz continua es uniformemente continua?
  3. ¿Es cierto que toda función uniformemente continua es Lipschitz continua?
  4. ¿Es la función $f:[a,\infty) \to \mathbb{R}, \, f(x)= \frac{1}{x}, \, a>0,$ uniformemente continua?

Enlaces