Archivo del Autor: Juan Manuel Naranjo Jurado

Cálculo Diferencial e Integral I: Límites infinitos

Por Juan Manuel Naranjo Jurado

Introducción

¿Qué sucede cuando $f$ comienza a crecer o decrecer arbitrariamente cuando $x \to x_0$ ó $x \to \infty$? En este sentido, el límite de una función en un punto puede tener un comportamiento divergente y éste será el tema de la presente entrada.

Divergencia en un punto

Iniciaremos dando la definición de divergencia del límite de una función en un punto $x_0$.

Definición. Sean $A \subset \mathbb{R}$ y $f: A \rightarrow \mathbb{R}.$

$i$) Se dice que $f$ tiende a $\infty$ cuando $x \rightarrow x_0$ y lo denotamos como $$\lim_{x \to x_0} f(x) = \infty$$
si para todo $M \in \mathbb{R}$ existe $\delta > 0$ tal que para todo $x \in A$ con $0 < |x-x_0|< \delta$, entonces $f(x) > M.$

$ii$) Se dice que $f$ tiende a $- \infty$ cuando $x \rightarrow x_0$ y lo denotamos como $$\lim_{x \to x_0} f(x) = -\infty$$
si para todo $m \in \mathbb{R}$ existe $\delta > 0$ tal que para todo $x \in A$ con $0 < |x-x_0|< \delta$, entonces $f(x) < m.$

Iniciaremos con uno de los ejemplos clásicos.

Ejemplo 1. Prueba que $$\lim_{x \to 0} \frac{1}{x^2} = \infty.$$

Demostración.

Sea $M \in \mathbb{R}$, sin pérdida de generalidad, supongamos que $M > 0$; consideremos $\delta = \frac{1}{\sqrt{M}}$. Si $0 < |x-0| = |x| < \delta = \frac{1}{\sqrt{M}}$, entonces $|x| < \frac{1}{\sqrt{M}}, es decir, \frac{1}{x^2} > M.$

$\square$

Antes de dar el siguiente ejemplo, demostraremos un teorema que nos ayudara a hacer el cálculo de este tipo de límites.

Proposición. Sean $A \subset \mathbb{R}$ y $f: A \rightarrow \mathbb{R}$ y $x_0 \in A$. Supongamos que $f(x) \leq g(x)$ para todo $x \in A$ con $x \neq x_0$.

$i)$ Si $$\lim_{x \to x_0} f(x) = \infty, \quad \text{ entonces } \quad \lim_{x \to x_0} g(x) = \infty.$$
$ii)$ Si $$\lim_{x \to x_0} g(x) = -\infty, \quad \text{ entonces } \quad \lim_{x \to x_0} f(x) = -\infty.$$

Demostración.
$i)$ Sea $M \in \mathbb{R}$. Como $f$ tiende a $\infty$ cuando $x \rightarrow x_0$, existe $\delta > 0$ tal que si $0 < |x-x_0| < \delta$, entonces $f(x) > M.$

Por hipótesis $f(x) \leq g(x)$ para todo $x \in A$ con $x \neq x_0$, de esta forma tenemos que si $0 < |x-x_0| < \delta$, entonces $g(x) \geq f(x) > M$. Es decir, $g(x) > M$. Por lo tanto $$\lim_{x \to x_0} g(x) = \infty.$$

$ii)$ La demostración es análoga.

$\square$

Ejemplo 2. Prueba que $$\lim_{x \to 0} \left( \frac{1}{x^2} + |cos(x)| \right) = \infty.$$

Demostración.

Sabemos que

$$\lim_{x \to 0} \frac{1}{x^2} = \infty.$$

Además,
\begin{gather*}
& |cos(x)| \geq 0. \\ \\
\Rightarrow & \frac{1}{x^2} \leq \frac{1}{x^2} + |cos(x)|.
\end{gather*}

Usando el teorema anterior, podemos concluir que

$$\lim_{x \to 0} \left( \frac{1}{x^2} + |cos(x)| \right) = \infty.$$

$\square$

Divergencia en el infinito

La definición de divergencia la podemos extender para los límites en el infinito.

Definición.
$i)$ Sean $A \subset \mathbb{R}$ y $f: A \rightarrow \mathbb{R}$. Supongamos que $(a, \infty) \subset A$ para algún $a \in A$. Se dice que $f$ tiende a $\infty$ cuando $x \rightarrow \infty$ y lo denotamos como $$\lim_{x \to \infty} f(x) = \infty$$ si para cualquier $M \in \mathbb{R}$ existe $K \in \mathbb{R}$ tal que para cualquier $x>K$, entonces $f(x) > M.$


$ii)$ Sean $A \subset \mathbb{R}$ y $f: A \rightarrow \mathbb{R}$. Supongamos que $(a, \infty) \subset A$ para algún $a \in A$. Se dice que $f$ tiende a $- \infty$ cuando $x \rightarrow \infty$ y lo denotamos como $$\lim_{x \to \infty} f(x) = -\infty$$ si para cualquier $m \in \mathbb{R}$ existe $K \in \mathbb{R}$ tal que para cualquier $x>K$, entonces $f(x) < m.$

Ejemplo 3. Prueba que $$\lim_{x \to \infty} x = \infty.$$

Demostración.

Sea $M \in \mathbb{R}$, consideremos $K = M+1$. Si $x > K$, como $f(x) = x$, entonces $f(x) > M+1 > M$. Es decir, $f(x) > M.$

$\square$

Ejemplo 4. Prueba que $$\lim_{x \to \infty} 3x^2 = \infty.$$

Demostración.

Sea $M \in \mathbb{R}$, consideremos $K = \sqrt{\frac{M}{3}}$. Si $x > K$, se tiene que $x > \sqrt{\frac{M}{3}}$. Lo anterior implica que $3x^2 > M$, es decir, $f(x) > M.$

$\square$

Divergencia lateral

A continuación daremos la definición de divergencia para los límites laterales y finalizaremos esta entrada con un ejemplo de los mismos.

Definición. Sean $A \subset \mathbb{R}$ y $f: A \rightarrow \mathbb{R}$. Se dice que el límite por la derecha de $f$ en $x_0$ diverge a infinito si para todo $M \in \mathbb{R}$ existe $\delta > 0$ tal que si $0<x – x_0<\delta$ entonces $f(x) > M$. Y lo denotamos $$\lim_{x \to x_0^+} f(x) = \infty.$$

Análogamente, tenemos la siguiente definición.

Definición. Sean $A \subset \mathbb{R}$ y $f: A \rightarrow \mathbb{R}$. Se dice que el límite por la izquierda de $f$ en $x_0$ diverge a infinito si para todo $M \in \mathbb{R}$ existe $\delta > 0$ tal que si $0<x_0 – x<\delta$ entonces $f(x) > M$. Y lo denotamos $$\lim_{x \to x_0^-} f(x) = \infty.$$

Notemos que existen definiciones análogas para cuando $f$ diverge a $-\infty$ en $x_0$.

Ejemplo 5. $$\lim_{x \to 0^+} \frac{1}{x} = \infty.$$
Demostración.
Sea $M \in \mathbb{R}$, sin pérdida de generalidad, consideremos $M > 0.$

Tomemos $\delta = \frac{1}{M}.$
Si $0<x-0< \delta = \frac{1}{M}$, entonces $f(x) = \frac{1}{x} > M$, así se tiene que

$$\lim_{x \to 0^+} \frac{1}{x} = \infty.$$

$\square$

Más adelante…

En la siguiente entrada haremos uso del límite de una función en toda su extensión y emplearemos las propiedades revisadas en las entradas anteriores mediante la resolución de límites para las funciones trigonométricas que, particularmente, se habían destinado para los temas finales de esta unidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $a \in \mathbb{R}$. Prueba que $$\lim_{x \to \infty} x-a = \infty.$$
  • Prueba que $$\lim_{x \to \infty} x^2-x = \infty.$$
  • Escribe las definiciones de divergencia a $-\infty$ para los límites laterales.
  • Usando la definición que propusiste en el ejercicio anterior, prueba que $$\lim_{x \to 0^-} \frac{1}{x} = -\infty.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Límite de una función a través de sucesiones

Por Juan Manuel Naranjo Jurado

Introducción

Alternativamente a la definición épsilon-delta revisada en la entrada anterior, se puede estudiar el límite de una función a través de límites de sucesiones; este enfoque tiene varias bondades en el sentido de que podremos hacer un amplio uso de las propiedades demostradas anteriormente para el límite de una sucesión. En esta entrada nos enfocaremos en probar un teorema que nos indica la equivalencia entre ambas formas de concebir el límite de una función.

Negación de la definición del límite de una función

Veamos primero qué significa que el límite de una función no exista, es decir, revisaremos la negación del concepto dado en la entrada anterior, para ello retomemos la definición de límite de una función:

Definición. Decimos que $f$ tiende hacia el límite $L$ en $x_0$ si para todo $\varepsilon > 0$ existe algún $\delta > 0$ tal que, para todo $x$, si $0<|x-x_0|< \delta$, entonces $|f(x)-L|< \varepsilon.$

De esta forma, si no se cumple la definición anterior, entonces tenemos lo siguiente: $f$ no tiende hacia el límite $L$ en $x_0$ si existe algún $\varepsilon > 0$, tal que para todo $\delta > 0$, hay algún $x$ que satisface $0 < |x-x_0| < \delta$, pero $|f(x)-L| \geq \varepsilon.$

Criterio de sucesiones para límites

Es momento de revisar un teorema que será particularmente útil para demostrar las propiedades del límite de una función. Este teorema nos indica que una función $f$ tiende al límite $L$ en $x_0$ si y solo si para toda sucesión $\{ a_n \}$ en el dominio de $f$ que converja a $x_0$ se tiene que la sucesión generada por $\{f(a_n) \}$ converge a $L.$

Teorema. Sean $A \subset \mathbb{R}$, $f:A \rightarrow \mathbb{R}$ y $x_0$ un punto de acumulación de $A$. Los siguientes enunciados son equivalentes.

  1. $$\lim_{x \to x_0} f(x) = L.$$
  2. Para toda sucesión $\{ a_n \}$ en $A$ que converge a $x_0$ tal que $a_n \neq x_0$ para todo $n\in \mathbb{N}$, la sucesión $\{f(a_n)\}$ converge a $L.$

Demostración.

$1) \Rightarrow 2)]$ Sea $\varepsilon >0$. Supongamos que $$\lim_{x \to x_0} f(x) = L.$$
Y sea $\{ a_n \}$ una sucesión en $A$ que converge a $x_0$ tal que $a_n \neq x_0$ para todo $n\in \mathbb{N}$.

Por hipótesis $f$ converge a $L$ en $x_0$, entonces existe $\delta > 0$ tal que si
$0<|x-x_0|<\delta$, entonces $|f(x)-L| < \varepsilon.$

Además, como la sucesión $\{a_n\}$ converge a $x_0$, para el valor $\delta > 0$ dado, existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ entonces $0<|a_n- x_0| < \delta$ y por hipótesis de la convergencia de $f$ a $L$ en $x_0$, podemos concluir que $|f(a_n)-L| < \varepsilon$. Así la sucesión $\{f(a_n)\}$ converge a $L$, es decir,
$$\lim_{n \to \infty} f(a_n) = L.$$


$1) \Leftarrow 2)]$ Procederemos a hacer esta implicación por contrapositiva, es decir, demostraremos que si no sucede $1)$, entonces tampoco sucede $2).$

Supongamos que $1)$ no se cumple, es decir, existe algún $\varepsilon_0 > 0$, tal que para todo $\delta > 0$, hay al menos un real $x$ que cumple $0<|x-x_0| < \delta$, pero $|f(x)-L| \geq \varepsilon_0$. Así, consideremos justo ese valor de $\varepsilon_0.$ Notemos que para todo natural $n \in \mathbb{N}$, si consideramos $\delta=\frac{1}{n}$, entonces existe al menos un término $a_n$ en $A$ tal que $0<|a_n-x_0| < \frac{1}{n}$, pero $|f(a_n)-L| \geq \varepsilon_0.$

Tomemos la sucesión generada por $\{a_n\}$, se tiene que la sucesión $\{ a_n \}$ converge a $x_0$ y $a_n \neq x_0$ para todo $n \in \mathbb{N}$, pero la sucesión $\{f(a_n)\}$ no converge a $L$. Así, si no se cumple $1)$, entonces tampoco $2)$. Por lo anterior, podemos concluir que $2) \Rightarrow 1).$

$\square$

Límite de una función a través de sucesiones

Ahora nos enfocaremos en hacer uso del teorema anterior. En el momento de hacer las demostraciones correspondientes, debemos tener presente que una vez que expresamos el límite de una función en términos del límite de una sucesión, podemos hacer uso de las propiedades del mismo.

Ejemplo 1. Sea $A =\mathbb{R} \backslash \{ 1 \}$. Consideremos la función $f: A \to \mathbb{R}$ con $f(x) = \frac{x^3-x^2+x-1}{x-1}$. Prueba que $$\lim_{x \to 1} f(x) = 2.$$

Demostración.

Primero notemos que
\begin{align*}
f(x) & = \frac{x^3-x^2+x-1}{x-1} \\ \\
& = \frac{(x-1)(x^2+1)}{x-1} \\ \\
& = x^2+1.
\end{align*}

$$\therefore f(x) = x^2+1.$$

Sea $\{a_n\}$ una sucesión en $\mathbb{R}$ tal que

  • $\lim\limits_{n \to \infty} a_n = 1.$
  • Para todo $n \in \mathbb{N}$, $a_n \neq 1.$
  • Para todo $n \in \mathbb{N}$, $a_n \in A.$

Entonces tenemos que

\begin{align*}
\lim_{x \to 1} f(x) & = \lim_{n \to \infty} f(a_n) \\ \\
& = \lim_{n \to \infty} (a_n^2+1) \\ \\
& = \lim_{n \to \infty} a_n^2 + \lim_{n \to \infty} 1 \tag{1} \\ \\
& = 1+1 \\ \\
& = 2.
\end{align*}

$$\therefore \lim_{x \to 1} \frac{x^3-x^2+x-1}{x-1} = 2.$$

$\square$

Es importante resaltar que aún no hemos probado ninguna propiedad del límite de una función, por lo que el criterio de sucesiones para límites es lo que nos permite emplear las propiedades que conocemos respecto a sus operaciones aritméticas y así realizar el paso $(1)$ en el ejemplo anterior.

Ejemplo 2. Sea $A = [0, \infty)$. Consideremos la función $f: A \to \mathbb{R}$ con $f (x) = \sqrt{x}$. Demuestra que $$\lim_{x \to 2} f(x) = \sqrt{2}.$$

Sea $\{a_n\}$ una sucesión en $\mathbb{R}$ tal que

  • $\lim\limits_{n \to \infty} a_n = 2.$
  • Para todo $n \in \mathbb{N}$, $a_n \neq 2.$
  • Para todo $n \in \mathbb{N}$, $a_n \in A.$

Sabemos que si $\{a_n\}$ converge a $2$, entonces $\{ \sqrt{a_n} \}$ converge a $\sqrt{2}$. Así, tenemos que

\begin{align*}
\lim_{x \to 2} f(x) & = \lim_{n \to \infty} f(a_n) \\
& = \lim_{n \to \infty} \sqrt{a_n} \\
& = \sqrt{2}.
\end{align*}

$$\therefore \lim_{x \to 2} \sqrt{x} = \sqrt{2}.$$

$\square$

Ejemplo 3. Sea $A =\mathbb{R} \backslash \{ 0 \}$. Consideremos la función $f: A \to \mathbb{R}$ con $f (x)= \frac{(3+x)^2-9}{x}$. Prueba que $$\lim_{x \to 0} f(x) = 6.$$

Demostración.

Primero notemos que

\begin{align*}
f (x) & = \frac{(3+x)^2-9}{x} \\ \\
& = \frac{9+6 x+x^2-9}{x} \\ \\
& = \frac{6x+x^2}{x} \\ \\
& = 6+x.
\end{align*}

$$\therefore f(x) = 6+x.$$

Sea $\{a_n\}$ una sucesión en $\mathbb{R}$ tal que

  • $\lim\limits_{n \to \infty} a_n = 0.$
  • Para todo $n \in \mathbb{N}$, $a_n \neq 0.$
  • Para todo $n \in \mathbb{N}$, $a_n \in A.$

\begin{align*}
\lim_{x \to 0} f(x) & = \lim_{n \to \infty} f(a_n) \\ \\
& = \lim_{n \to \infty} (6+a_n) \\ \\ 
& = 6.
\end{align*}

$$\therefore \lim_{x \to 0} \frac{(3+x)^2-9}{x} = 6.$$

$\square$

Hasta este momento, solo hemos hecho uso del criterio de sucesiones para límites para probar la existencia de los mismos. Sin embargo, es posible usarlo también para el caso en el que tal límite no existe. Derivado directamente del teorema anterior se tiene que:

  • Si existen dos sucesiones $\{ a_n \}$, $\{b_n\}$ en el dominio de $f$, ambas convergentes a $x_0$, tal que $a_n$, $b_n \neq x_0$ para todo $n \in \mathbb{N}$, pero $\lim\limits_{n \to \infty} f(a_n) \neq \lim\limits_{n \to \infty} f(b_n)$ entonces no existe el límite de $f$ en $x_0.$

Veremos ahora un ejemplo donde el límite no existe.

Ejemplo 4. Sea $A =\mathbb{R} \backslash \{ 1 \}$. Consideremos la función $f: A \to \mathbb{R}$ con $f(x) = \frac{|x-1|}{x-1}$. Prueba que el límite

$$\lim_{x \to 1} f(x)$$

no existe.

Demostración.

Veamos primero la gráfica de la función:

Podemos observar que es conveniente tomar una sucesión que se aproxime a $x_0 = 1$ por la derecha y otra que se aproxime por la izquierda. Sean $\{a_n\}$, $\{b_n\}$ dos sucesiones en el dominio de $f$ definidas de la siguiente forma:

$$a_n = 1 + \frac{1}{n} \quad \text{y} \quad b_n = 1 – \frac{1}{n}.$$

Se sigue que

$$ \lim_{n \to \infty} a_n = 1 \quad \text{y} \quad \lim_{n \to \infty} b_n = 1.$$

Además, $a_n \neq 1$, $b_n \neq 1$ para todo $n \in \mathbb{N}$.

Se tiene que

\begin{align*}
\lim_{n \to \infty} f(a_n) & = \lim_{n \to \infty} \frac{|a_n-1|}{a_n-1} \\ \\
& = \lim_{n \to \infty} \frac{ |1 + \frac{1}{n} – 1|}{1 + \frac{1}{n} -1} \\ \\
& = \lim_{n \to \infty} \frac{ |\frac{1}{n}|}{ \frac{1}{n} } \\ \\
& = \lim_{n \to \infty} \frac{ \frac{1}{n} }{ \frac{1}{n} } \\ \\
& = 1.
\end{align*}

$$\therefore \lim_{n \to \infty} f(a_n) = 1 \tag{1}.$$

Por otro lado,

\begin{align*}
\lim_{n \to \infty} f(b_n) & = \lim_{n \to \infty} \frac{|b_n-1|}{b_n-1} \\ \\
& = \lim_{n \to \infty} \frac{ |1 – \frac{1}{n} – 1|}{1 – \frac{1}{n} -1} \\ \\
& = \lim_{n \to \infty} \frac{ |- \frac{1}{n}|}{- \frac{1}{n} } \\ \\
& = \lim_{n \to \infty} \frac{ \frac{1}{n} }{ – \frac{1}{n} } \\ \\
& = – 1.
\end{align*}

$$\therefore \lim_{n \to \infty} f(b_n) = -1. \tag{2}$$

De $(1)$ y $(2)$, se tiene que

\begin{gather*}
\lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n). \\ \\
\therefore \lim_{x \to 1} \frac{|x-1|}{x-1} \text{ no existe.}
\end{gather*}

$\square$

Más adelante…

En las siguientes entradas veremos propiedades específicas que nos ayudarán a calcular el límite de una función; y, como podrás imaginar, varias de estas propiedades son un símil a las revisadas para las sucesiones convergentes.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

A través del criterio de sucesiones para límite, prueba si existen o no los siguientes límites:

  • $$\lim_{x \to 0} \frac{x}{x+1}.$$
  • $$\lim_{x \to 0} x \cdot |x|.$$
  • $$\lim_{x \to 7} \frac{x^2-5x+10}{2-x}.$$
  • $$\lim_{x \to 0} \frac{x}{|x|}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Funciones acotadas y teorema del máximo-mínimo

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada revisaremos el teorema del máximo-mínimo que nos indica que para una función continua en un intervalo $[a, b]$, existe un punto $x_0$ tal que $f(x_0) \geq f(x)$ para todo valor de $x$ en el intervalo. Para llegar a la prueba de tal teorema, revisaremos antes la definición de función acotada y probaremos que toda función continua en un intervalo está acotada en tal intervalo.

Funciones acotadas

Comenzaremos dando la definición de función acotada.

Definición. Decimos que $f$ está acotada superiormente en $A$ si existe $M \in \mathbb{R}$ tal que para todo $x \in A$ se cumple que $f(x) \leq M$. De manera similar, decimos que $f$ está acotada inferiormente en $A$ si existe $m \in \mathbb{R}$ tal que para todo $x \in A$ se tiene que $m \leq f(x)$. Finalmente, diremos que $f$ está acotada si existen $m$, $M \in \mathbb{R}$ tales que para todo $x \in A$ se tiene que $m \leq f(x) \leq M$.

Revisaremos el siguiente ejemplo para aplicar esta nueva definición.

Ejemplo 1. Sea $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida como $f(x) = \frac{1}{x}.$

Afirmación. $f$ está acotada en el intervalo $A = [1, \infty)$.

Demostración.

Sea $x \in [1, \infty)$. Como $1 \leq x$, entonces $\frac{1}{x} \leq 1$. Se sigue que
\begin{gather*}
& 0 < \frac{1}{x} \leq 1 \quad \forall x \in [1, \infty). \\ \\
& \therefore 0 \leq f(x) \leq 1 \quad \forall x \in [1, \infty).
\end{gather*}

Por tanto, $f$ está acotada en el intervalo $A = [1, \infty)$.

$\square$

Afirmación. $f$ no está acotada superiormente en $B = (0, 1].$

Demostración.

Supongamos que la función $f$ sí está acotada superiormente en $B$, entonces existe $M \in \mathbb{R}$ tal que para todo $x \in B$ se tiene que $f(x) = \frac{1}{x} \leq M$.

Para todo $n \in \mathbb{N}$, se tiene que $n \geq 1$, entonces $0 < \frac{1}{n} \leq 1$ y, por tanto, $\frac{1}{n} \in B$.

\begin{gather*}
& f \left( \frac{1}{n} \right) = \frac{1}{\frac{1}{n}} \leq M. \\ \\
\therefore & n \leq M \quad \forall n \in \mathbb{N}.
\end{gather*}

Lo cual es una contradicción pues el conjunto de los números naturales no está acotado superiormente, por lo tanto $f$ no está acotada superiormente.

De forma análoga, se puede probar que $f$ está acotada en el intervalo $(-\infty, 1]$ y que no está acotada inferiormente en $[-1,0)$.

$\square$

Ahora veremos dos proposiciones respecto a las funciones acotadas. La primera nos indica que si $f$ es una función acotada en $A$ y se tiene un subconjunto $B$ de $A$, entonces $f$ también está acotada en $B$; mientras que la segunda nos indica que si $B$ y $C$ son subconjuntos de $A$, entonces $f$ también estará acotada en la unión de $B$ y $C.$

Proposición. Si $f$ está acotada en $A$ y $B \subset A$, entonces también está acotada en $B.$

Demostración.

Dado que $f$ está acotada en $A$, existen $m$, $M \in \mathbb{R}$ tal que para todo $x \in A$ se tiene que $m \leq f(x) \leq M$. Como $B \subset A$, entonces para todo $x \in B$ se tiene que $x \in A$, así $f$ también está acotada en $B.$

$\square$

Proposición. Si $B \subset A$, $C \subset A$. Si $f$ está acotada en $B$ y en $C$, entonces $f$ está acotada en $B \cup C.$

El razonamiento detrás de la prueba de esta proposición es similar al anterior, por lo que se dejará como tarea moral.

Continuaremos revisando una equivalencia de la definición de función acotada donde, en lugar de tener dos reales $m$, $M$ que acoten inferior y superiormente, solo se considerará un real $T$ que cumpla que $|f(x)| \leq T.$

Proposición. Existen $m$, $M \in \mathbb{R}$ tales que para todo $x \in A$, $m \leq f(x) \leq M$ si y solo si existe $T \in \mathbb{R}$ tal que para todo $x \in A$, $|f(x)| \leq T.$

Demostración.

$\Rightarrow]$ Sabemos que existen $m$, $M$ en $\mathbb{R}$ tales que para todo $x \in A$, $m \leq f(x) \leq M.$

Consideremos $T = max\{ |m|, |M| \}.$

Sea $x \in A$, entonces

\begin{gather*}
& f(x) \leq M \leq |M| \leq T. \\
\Rightarrow & f(x) \leq T. \tag{1}
\end{gather*}

Por otro lado

\begin{gather*}
& m \leq f(x). \\
\Leftrightarrow & – m \geq -f(x).
\end{gather*}

De esta forma, se sigue que
\begin{gather*}
-f(x) \leq -m \leq |m| \leq T.
\end{gather*}

Es decir,
\begin{gather*}
& -f(x) \leq T. \\
\therefore & -T \leq f(x). \tag{2}
\end{gather*}

De $(1)$ y $(2)$ podemos concluir que $|f(x)| \leq T.$

$\Leftarrow]$ Supongamos que existe $T$ tal que para todo $x \in A$, $|f(x)| \leq T.$

Consideremos $m = -T$ y $M = T$, entonces $ m \leq f(x) \leq M.$

$\square$

Teorema de acotabilidad

La siguiente propiedad nos indica que si $f$ es continua en un punto, entonces existe un intervalo alrededor de dicho punto donde la función está acotada. Esta propiedad será ampliamente usada para probar el teorema del máximo-mínimo.

Proposición. Sea $a \in A$, si $f$ es continua en $a$, entonces existe $\delta > 0$ tal que $f$ está acotada en el intervalo $(a-\delta, a+\delta) \cap A.$

Demostración.

Como $f$ es continua en $a$, considerando particularmente $\varepsilon = 1$, existe $\delta > 0$ tal que si $|x-a| < \delta$, $x \in A$, entonces

$$|f(x)-f(a)|<1.$$

Es decir, si $x \in (a – \delta, a + \delta) \cap A$, entonces

\begin{gather*}
& |f(x)|- |f(a)| < |f(x)- f(a)| < 1. \\
\Rightarrow & |f(x)| < 1 + |f(a)|.
\end{gather*}

Por tanto, $f$ está acotada en el intervalo $(a – \delta, a + \delta) \cap A.$

$\square$

El último teorema que veremos antes del máximo-mínimo nos indica que toda función continua en un intervalo cerrado está acotada en tal intervalo. De forma ilustrativa, podemos observarlo en la siguiente gráfica.

Teorema de acotabilidad. Sea $f: [a,b] \to \mathbb{R}$ tal que $f$ es continua en $[a,b]$. Entonces $f$ está acotada en $[a,b].$

Demostración.

Sea $A = \{ t \in [a, b] \quad | \quad f \text{ sí está acotada en } [a, t] \}$.

Veamos que $A \neq \varnothing$.
Consideremos $a \in [a,b]$. Como $f$ es continua en $[a,b]$ y por la proposición anterior, existe $\delta_1 > 0$ tal que para todo $x \in (a-\delta_1, a+\delta_1) \cap [a, b]$ se tiene que $f$ está acotada.
Por lo tanto, para todo $x \in [a, a+\delta_1)$, $f$ sí está acotada.

Notemos que tenemos dos casos derivados de si $a+ \delta_1$ está o no en el intervalo $[a,b].$

  • Si $b > a + \delta_1$, entonces $a+\delta_1 \in A$.
  • Si $b \leq a + \delta_1$, entonces $b \in A$.

$$\therefore A \neq \varnothing.$$

Además, $A$ está acotado superiormente pues si $t \in A$, por definición del conjunto, $t \leq b$.

Como $A$ es no vacío y está acotado superiormente, entonces tiene supremo. Sea $\alpha = supA$, notemos que $\alpha \leq b$, pues $\alpha$ es el supremo y $b$ es una cota superior.

Probaremos que $\alpha = b$, es decir, veremos que el supremo del conjunto $A$ es justamente $b$ y, en consecuencia, $f$ está acotada en $[a,b].$

Supongamos que $\alpha \neq b$. Entonces $a < \alpha < b$. Como $f$ es continua en $[a,b]$, entonces $f$ es continua en $\alpha$. Por la proposición anterior, existe $\delta_2$ tal que $f$ está acotada en $(\alpha-\delta_2, \alpha + \delta_2) \cap [a, b].$

Como $\alpha – \delta_2 < \alpha$, existe $t \in A$ tal que $\alpha – \delta_2 \leq t \leq \alpha$. Tomemos $s$ tal que $\alpha < s < \alpha + \delta_2$ y $s < b$. De esta forma se tiene que $[t,s] \subset (a- \delta_2, a + \delta_2) \cap [a, b]$ y $f$ está acotada en $[a, t]$ pues $t \in A$. Por lo tanto $f$ está acotada en $[a,s] = [a,t] \cup [t,s].$

Así $s \in A$ y $\alpha < s$, lo cual es una contradicción al hecho de que $\alpha$ es el supremo del conjunto $A.$

Por tanto, concluimos que $\alpha = b$. Ahora solo falta probar que $b \in A$ y, en consecuencia, $f$ está acotada en $[a,b].$

Dado que $b \in [a, b]$, f es continua en b, entonces existe $\delta_3 > 0$ tal que $f$ está acotada en $(b- \delta_3, b + \delta_3) \cap [a,b] = (b- \delta_3, b]$. Como $b = supA$ y $b-\delta_3 < b$, entonces existe $t \in A$ tal que $b-\delta_3 < t \leq b$, entonces $f$ está acotada en $[a,t]$. Como $[t, b] \subset (b – \delta_3, b]$ entonces $f$ está acotada en $[a,b] = [a,t] \cup [t, b].$

$\square$

Teorema del máximo-mínimo

Estamos listos para demostrar que para toda función continua en un intervalo $[a,b]$ existen $x_0, x_1 \in [a,b]$ donde la función alcanza su máximo y su mínimo respectivamente.

Teorema. Sea $f: [a,b] \to \mathbb{R}$ y continua en $[a,b]$, entonces existe $x_0 \in [a,b]$ tal que para todo $x \in [a,b]$ se tiene que $f(x) \leq f(x_0).$

Demostración.

Sea $B = \{ y = f(x) | x \in [a,b] \}.$

Por el teorema anterior, sabemos que existe $M \in \mathbb{R}$ tal que para todo $x \in [a,b]$ se tiene que $y = f(x) \leq M$. Por lo tanto $B$ está acotado.

Además $a \in [a,b]$, entonces $f(a) \in B$, así $B \neq \varnothing$. Por tanto, sabemos que existe $\alpha \in \mathbb{R}$ tal que $\alpha = supB$. Notemos que para todo $y \in B$, $y \leq \alpha$. Es decir, para todo $x \in [a,b]$, se tiene que $f(x) \leq \alpha.$

Ahora probaremos que existe $x_0 \in [a,b]$ tal que $f(x_0) = \alpha$ y, por tanto, para todo $x \in [a,b]$, $f(x) \leq f(x_0).$

Supongamos que para todo $x \in [a, b]$, $f(x) \neq \alpha.$
Entonces para todo $x \in [a,b]$, se tiene que $f(x) < \alpha.$ Es decir,

$$0 < \alpha – f(x).$$

Consideremos la siguiente función auxiliar $g(x) = \frac{1}{\alpha – f(x)}$. Se tiene que

$$g(x) = \frac{1}{\alpha – f(x)} > 0 \quad \forall x \in [a,b]. \tag{1}$$

Además, $g$ es la división de dos funciones continuas y el denominador no se hace cero en $[a,b]$, entonces $g$ es continua en $[a,b]$, por lo tanto $g$ está acotada en $[a,b]$. Es decir, existe $T \in \mathbb{R}$ tal que para todo $x \in [a,b]$ se tiene

\begin{gather*}
&|g(x)|\leq T. \\
\Rightarrow & 0 < \frac{1}{\alpha – f(x)} \leq T \text{, por }(1).
\end{gather*}

Se sigue que
\begin{gather*}
& \alpha – f(x) \geq \frac{1}{T} \quad \forall x \in [a,b]. \\
\therefore & \alpha – \frac{1}{T} \geq f(x) \quad \forall x \in [a,b]. \\
\end{gather*}

Entonces se tiene que $\alpha – \frac{1}{T}$ es cota superior de $B$, pero como $\frac{1}{T} > 0$, entonces $\alpha – \frac{1}{T} < \alpha$ y esto es una contradicción al hecho de que $\alpha$ es el supremo.

Por lo tanto, podemos concluir que sí existe $x_0 \in [a,b]$ tal que $f(x_0) = \alpha.$
$$\therefore f(x) \leq f(x_0) \quad \forall x \in [a,b].$$

$\square$

Corolario. Sea $f: [a,b] \to \mathbb{R}$ continua en $[a,b]$. Entonces existe $x_1 \in [a,b]$ tal que para todo $x \in [a,b]$ se tiene que $f(x_1) \leq f(x)$.

Demostración.

Consideremos la función $g: [a,b] \to \mathbb{R}$, $g(x) = -f(x)$ continua en $[a,b]$.

Por el teorema anterior existe $x_1 \in [a,b]$ tal que

\begin{gather*}
& g(x) \leq g(x_1) \quad \forall x \in [a,b]. \\
\Rightarrow & -f(x) \leq -f(x_1) \quad \forall x \in [a,b]. \\
\end{gather*}

$$\therefore f(x_1) \leq f(x) \quad \forall x \in [a,b].$$

$\square$

Más adelante…

En la siguiente entrada estudiaremos resultados derivados del teorema del valor intermedio y del teorema del máximo-mínimo, razón por la cual será fundamental tenerlos presentes.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sean $f$, $g: \mathbb{R} \to \mathbb{R}$. Prueba que si $f$ y $g$ están acotadas en $\mathbb{R}$, entonces la suma $f+g$ también está acotada en $\mathbb{R}$.
  • Si $B \subset A$, $C \subset A$. Si $f$ está acotada en $B$ y en $C$, entonces $f$ está acotada en $B \cup C$.
  • Prueba que si $f : \mathbb{R} \to \mathbb{R}$ está acotada en $\mathbb{R}$ y definimos $g: \mathbb{R} \to \mathbb{R}$ tal que $g(x)=xf(x)$, entonces $g$ es continua en $x_0=0.$
  • Si $f$ es una función continua en $[0,1]$, sea $||f||$ el valor máximo de $|f|$ en $[0,1]$. Prueba que $||c \cdot f|| = |c|\cdot||f||$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Teorema del valor intermedio

Por Juan Manuel Naranjo Jurado

Introducción

En la entrada anterior se revisó el concepto de continuidad en un punto, así como algunas de sus propiedades. Además, se definió la continuidad en un intervalo, concepto que se empleará en esta entrada para probar uno de los resultados más relevantes para las funciones continuas: el teorema del valor intermedio.

Idea intuitiva

Este teorema nos dice que para una función continua en determinado intervalo $[a,b]$, si el valor de $f$ al evaluarla en $a$ cambia de signo con respecto al valor que se obtiene al evaluarla en $b$, entonces existe algún punto $x$ tal que al evaluar la función en dicho punto, toma el valor de cero.

Recordemos la idea intuitiva de continuidad, una función es continua si puedes dibujarla sin soltar el lápiz; pensemos en el caso particular que $f(a)  < 0$ y $f(b) > 0$. En la siguiente imagen se muestra una función continua que pasa por ambos.

¿Podrías dibujar una función continua que pase por ambos puntos sin pasar por $0$ en el eje horizontal? Probaremos que esto no es posible en el siguiente teorema; pero antes desarrollemos la intuición de lo que debe suceder. Para ello, recordemos el último teorema revisado en la entrada anterior.

Teorema. Supongamos que $f$ es continua en $x_0$ y $f(x_0)>0$. Entonces $f(x) >0$ para todo $x$ en un intervalo que contiene a $x_0$, es decir, existe $\delta > 0$ tal que $f(x) >0$ para todo $x$ tal que $|x-x_0|< \delta$.

De forma análoga, si $f(x_0) <0$, entonces existe $\delta > 0$ tal que $f(x) < 0$ para todo $x$ tal que $|x-x_0|< \delta$.

Es decir, si una función continua toma un valor positivo en un punto $x_0$, entonces debe suceder que es positiva en todo un intervalo: $(x_0-\delta, x_0+\delta)$. Análogamente, si la función es negativa en determinado punto, entonces debe suceder que es negativa en todo un intervalo. Así, podemos pensar en el intervalo más grande que captura el comportamiento negativo (o positivo), ¿en qué punto se termina? Para responder esta pregunta, haremos uso de un concepto revisado anteriormente, el supremo.

Teorema del valor intermedio

Teorema del valor intermedio. Sea $f:[a,b] \to \mathbb{R}$ continua en todo el intervalo $[a,b]$. Si $f(a) < 0$ y $f(b) > 0,$ entonces existe $c$, $a<c<b,$ tal que $f(c) = 0$.

Demostración.

Como $f(a) < 0$, sabemos que existe $\delta_1$ tal que para todo $x \in (a – \delta_1, a + \delta_1) \cap [a,b]$ se tiene que $f(x) < 0$. Es decir,

$$\forall x \in [a, a+\delta_1), \quad f(x) <0. \tag{1}$$

Como $f(b) > 0$, sabemos que existe $\delta_2$ tal que para todo $x \in (b – \delta_2, b + \delta_2) \cap [a,b]$ se tiene que $f(x) > 0$. Es decir,

$$\forall x \in (b-\delta_2,b], \quad f(x) > 0. \tag{2}$$

Definamos ahora el siguiente conjunto:

$$A = \{ t \in [a,b] \quad | \quad \forall x \in [a, t], f(x) < 0 \}.$$


Es decir, el conjunto $A$ está formado por todos los números reales que forman un intervalo $[a, t]$ donde $f$ toma valores negativos. Utilizando la ilustración del inicio, se puede ejemplificar cómo se ve $t$, que estará en el eje $x$ entre $a$ y el punto rojo marcado.

Primero veamos que $A \neq \varnothing$.

Consideremos $t_0 = a + \frac{\delta_1}{2}$. Es inmediato que $a< a + \frac{\delta_1}{2} < a +\delta_1 $ y como $[a, a + \frac{\delta_1}{2}] \subset [a, a+\delta_1)$, por $(1)$ se tiene que, para todo $x \in [a, a + \frac{\delta_1}{2}]$, $f(x) < 0$.

$$\therefore t_0 \in A \Rightarrow A \neq \emptyset.$$

Notemos que el conjunto $A$ está acotado. Por definición si $t \in A$, entonces $t \in [a,b]$, es decir, $t \leq b$. Ahora, como nuestro conjunto $A$ es no vacío y está acotado, sí tiene supremo. Sea $\alpha = supA$.

Adicionalmente, notemos que

  1. $t_0 = a+\frac{\delta_1}{2} \in A$ y $a+\frac{\delta_1}{2} \leq \alpha \leq b$.
  2. Por $(2)$, para todo $x \in (b-\delta_2, b]$ se tiene que $f(x) >0$, entonces $\alpha \leq b-\delta_2$.

Por lo anterior, se tiene
\begin{gather*}
& a< a+\frac{\delta_1}{2} \leq \alpha \leq b-\delta_2 < b.
\end{gather*}
Se sigue que $a<\alpha<b.$

Para finalizar con la prueba, demostraremos que $f(\alpha) = 0$.

Para demostrarlo procederemos por contracción, es decir, supongamos que $f(\alpha) \neq 0$, entonces existen dos casos, $f(\alpha) > 0$ ó $f(\alpha) < 0$.

  • Caso 1: $f(\alpha) < 0$.

    Se tiene que $f(\alpha) < 0$, entonces existe $\delta_3$ tal que para todo $x \in (\alpha – \delta_3, \alpha + \delta_3) \cap [a,b]$ se cumple que $f(x) < 0$.

    Dado que $\alpha = supA \quad$ y $\quad \alpha – \delta_3 < \alpha$, entonces existe $t \in A$ tal que $\alpha-\delta_3 < t \leq \alpha$. Adicionalmente, consideremos $s$ tal que $\alpha < s < \alpha + \delta_3$ y $s <b$.

    Como $[t, s] \subset (\alpha – \delta_3, \alpha + \delta_3)$, entonces

    $$\forall x \in [a,s], \quad f(x) < 0.$$

    Además, por definición del conjunto A, para todo $x \in [a,t]$ se tiene $f(x) < 0$. Entonces

    $$\forall x \in [a,s] = [a,t] \cup [t,s], \quad f(x) < 0.$$

    Entonces $s \in A$ y $\alpha < s$, lo cual es una contradicción pues $\alpha$ es el supremo de $A$.

    $$\therefore f(\alpha) \geq 0.$$
  • Caso 2: $f(\alpha) > 0$.

    Dado que $f$ es continua en $\alpha$, entonces existe $\delta_4 > 0$ tal que para todo $x \in (\alpha – \delta_4, \alpha + \delta_4)$, $f(x) > 0$.

    Como $\alpha – \delta_4 < \alpha$, entonces existe $t \in A$ tal que $\alpha – \delta_4 < t \leq \alpha$. Como $t \in A$, entonces $f(t) < 0$ y como $\alpha – \delta_4<t \leq \alpha < \alpha + \delta$, $f(t) >0$, lo cual es una contradicción.

    Por tanto, $f(\alpha) = 0$.

Así, consideremos $c = \alpha$, $a<c<b$ y $f(c) = 0.$

$\square$

Podemos notar que el teorema no solo vale cuando la función va de negativo ($f(a) < 0$) a positivo ($f(b) > 0$), sino también en el caso inverso ($f(a) > 0$ y $f(b) < 0$) y lo probaremos en el siguiente corolario.

Corolario. Sea $f: [a, b] \to \mathbb{R}$, continua en $[a, b]$. Si $f(a) > 0$ y $f(b) < 0$, entonces existe $c$, $a<c<b$, tal que $f(x) = c$.

Demostración.

Consideremos la función $h: [a, b] \to \mathbb{R}$, $h(x) = -f(x).$

Notemos que $h$ es continua pues $f$ lo es. Además $h(a) = -f(a) <0$ y $h(b) = -f(b) >0$. Aplicando el teorema del valor intermedio, existe $c$ que cumple $a<c<b$ tal que

\begin{gather*}
h(c) = 0.
\end{gather*}

Se sigue que
\begin{gather*}
& -f(c) = 0. \\
\therefore & f(c) = 0.
\end{gather*}

$\square$

Más aún, si en un intervalo $[a, b]$ se cumple que $f(a) < M$ y $f(b) > M$, entonces también existe un punto $c$ tal que $f(c) = M$.

Corolario. Sea $M \in \mathbb{R}$, si $f(a) < M$ y $f(b) > M$. Entonces existe $c$, $a<c<b$, tal que $f(c) = M$.

Demostración.

Consideremos la función $h:[a,b] \to \mathbb{R}$, con $h(x) = f(x)-M$.

Notemos que $h$ es continua. Además $h(a) = f(a)-M < 0$ y $h(b) = f(b)-M > 0$. Por el teorema del valor intermedio, existe $c$, $a<c<b$, tal que $h(c) = 0$. Entonces $f(c)-M = 0$.

$$\therefore f(c) = M.$$

$\square$

Análogamente, tenemos el siguiente resultado.

Corolario. Sea $M \in \mathbb{R}$, si $f(a) >M$ y $f(b) < M$. Entonces existe $c$, $a<c<b$, tal que $f(c) = M$.

Más adelante…

En la siguiente entrada demostraremos otra propiedad fuerte respecto a las funciones continuas: si una función es continua en un intervalo, entonces está acotada. Más aún, existe un valor $x_0$ en el intervalo tal que la función alcanza su máximo en dicho punto. De forma análoga, existe un punto en el que la función alcanza su mínimo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $f$ continua en el intervalo $[0,1]$ y tal que $f(0) = f(1)$. Demostrar que existe un punto $c \in [0, \frac{1}{2}]$ tal que $f(c) = f(c + \frac{1}{2}).$
  • Sea $M \in \mathbb{R}$, si $f(a) >M$ y $f(b) < M$. Prueba que existe $c$, $a<c<b$ tal que $f(c) = M.$
  • Dado $f(x) = x^2 + 2x – 7$, demuestra que existe $c$ tal que $f(c) = 50.$
  • Para la ecuación $2x^7= x-1$, encuentra una solución en $[0,1].$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Definición de continuidad y sus propiedades

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada definiremos la continuidad de una función, es probable que hayas estudiado antes tal concepto y la manera en que se suele definir de forma intuitiva es mediante la siguiente sentencia: «Si puedes dibujar la función sin levantar el lápiz, entonces es una función continua». Nosotros revisaremos el tema con mayor formalidad, pero notarás que tal enunciado será de ayuda para interpretar la definición.

Definición de continuidad

En palabras sencillas, una función es continua en un punto $x_0$ si el límite en tal punto es igual a evaluar la función en $x_0$.

Definición. Sean $f: A \to \mathbb{R}$ con $A \subset \mathbb{R}$ y $x_0 \in A$. La función $f$ es continua en $x_0$ si para todo $\varepsilon > 0$, existe $\delta > 0$ tal que para todo $x \in A$ que satisface que $0<|x-x_0|< \delta$, entonces se cumple que $|f(x)-f(x_0)|< \varepsilon$.

Observación. Si además $x_0$ es un punto de acumulación de $A$, entonces se dice que $f$ es continua en $x_0$ si $$ \lim_{x \to x_0} f(x) = f(x_0).$$

En la entrada de definición formal de límite se vieron algunos ejemplos de funciones continuas; específicamente se dejaron dos ejercicios como tarea moral que procederemos a probar en esta entrada.

Ejemplo 1. La función $f(x) = c$, es continua en $x_0$ para todo $x_0 \in \mathbb{R}$.

Demostración.

Sea $\varepsilon > 0$. Dado que la función es constante, cualquier valor de delta nos funciona, así consideremos $\delta = 1$.

Si $0<|x-x_0|< \delta$, entonces

\begin{align*}
|f(x)-f(x_0)| & = |c-c|\\
& = 0 \\
& < \varepsilon.
\end{align*}

$$\therefore \lim_{x \to x_0} f(x) = f(x_0).$$

$\square$

Ejemplo 2. La función $f(x) = x$ es continua en $x_0$ para todo $x_0 \in \mathbb{R}$.

Demostración.

Sea $\varepsilon > 0$. Consideremos $\delta = \varepsilon$.

Si $0<|x-x_0|<\delta$, entonces
\begin{align*}
|f(x)-f(x_0)| & = |x-x_0|\\
& < \delta \\
& = \varepsilon.
\end{align*}

$$\therefore \lim_{x \to x_0} f(x) = f(x_0).$$

Antes de revisar el siguiente ejemplo, demostraremos un resultado que nos será muy útil al momento de calcular límites.

Proposición. Sea $f: A \to \mathbb{R}$, entonces

$$\lim_{x \to x_0} f(x) = L \Leftrightarrow \lim_{h \to 0} f(x_0+h) = L.$$

Demostración.

$\Rightarrow]$ Supongamos que $$\lim_{x \to x_0} f(x) = L.$$

Sea $\varepsilon > 0$. Existe $\delta > 0 $ tal que si $0 < |x-x_0| < \delta$, entonces $|f(x)-L| < \varepsilon.$

Notemos que si $0 < |h| < \delta$, entonces $0 < |(h+x_0)-x_0| < \delta$. Por lo tanto, $|f(x_0+h)-L| < \varepsilon.$

$$\therefore \lim_{h \to 0} f(x_0+h) = L.$$

$\Leftarrow]$ Supongamos que $$\lim_{h \to 0} f(x_0+h) = L.$$

Sea $\varepsilon>0$. Existe $\delta >0$ tal que si $0<|h|<\delta$, entonces $|f(x_0+h)-L|< \varepsilon.$

Notemos que si $0<|x−x_0|<\delta$, entonces $|f(x_0+(x−x_0))−L|=|f(x)−L|<\varepsilon$.

$$\therefore \lim_{x \to x_0} f(x) = L.$$

$\square$

Ejemplo 3. La función $f(x) = sen(x)$ es continua en $x_0$ para todo $x_0 \in \mathbb{R}.$

Demostración.

Para probar la continuidad de esta función, procederemos a calcular sus límites laterales y emplearemos el hecho de que las funciones seno y coseno son continuas en $x = 0$, lo cual se demostró en esta entrada. Además, usaremos las siguientes identidades trigonométricas:

  1. $$sen(a+b) = sen(a)cos(b) + cos(a)sen(b).$$
  2. $$sen(a-b) = sen(a)cos(b) – cos(a)sen(b).$$

Calculando el límite por la derecha, usando la primera identidad y empleando la proposición anterior, tenemos

\begin{align*}
\lim_{x \to x_0^+} sen(x) & = \lim_{h \to 0^+} sen(x_0+h) \\
& = \lim_{h \to 0^+} sen(x_0)cos(h) + cos(x_0)sen(h) \text{, pues $h > 0$} \\
& = sen(x_0)cos(0) + cos(x_0)sen(0) \\
& = sen(x_0).
\end{align*}

Calculando el límite por la izquierda, usando la segunda identidad y empleando la proposición anterior, tenemos

\begin{align*}
\lim_{x \to x_0^-} sen(x) & = \lim_{h \to 0^-} sen(x_0+h) \\
& = \lim_{h \to 0^-} sen(x_0)cos(h) – cos(x_0)sen(h) \text{, pues $h < 0$} \\
& = sen(x_0)cos(0) + cos(x_0)sen(0)\\
& = sen(x_0).
\end{align*}

Como los límites laterales existen y coinciden, se concluye que

$$\lim_{x \to x_0} sen(x) = sen(x_0).$$

Por lo tanto, la función es continua.

$\square$

Propiedades básicas de la continuidad

A continuación revisaremos tres propiedades aritméticas de las funciones continuas.

Teorema. Si $f$ y $g$ son funciones continuas en $x_0$, entonces

  1. $f+g$ es continua en $x_0$.
  2. $f \cdot g$ es continua en $x_0$.
  3. Si además $g(x_0) \neq 0$, entonces $\frac{1}{g}$ es continua en $x_0$.

Demostración.

Como $f$ y $g$ son continuas en $x_0$, entonces
$$\lim_{x \to x_0} f(x) = f(x_0) \quad \text{ y } \quad \lim_{x \to x_0} g(x) = g(x_0).$$
Por las propiedades del límite, tenemos lo siguiente
\begin{align*}
\lim_{x \to x_0} (f + g)(x) & = \lim_{x \to x_0} [f(x) + g(x)] \\
& = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) \\
& = f(x_0) + g(x_0) \\
& = (f+g)(x_0).
\end{align*}

$$\therefore \lim_{x \to x_0} (f + g)(x) = (f+g)(x_0).$$

Por lo tanto, $f+g$ es continua en $x_0$.

Podemos notar que los incisos siguientes tienen demostraciones análogas ocupando las propiedades demostradas para el límite de una función, por lo cual su prueba se omitirá.

$\square$

Gracias al teorema anterior y los ejemplos vistos, tenemos una gama de funciones continuas, las funciones polinomiales: $p(x) = \alpha_n x^n + \alpha_{n-1} x^{n-1} + \ldots + \alpha_1 x +\alpha_0$.

La siguiente propiedad que veremos hace referencia a la composición de funciones continuas.

Teorema. Si $g$ es continua en $x_0$ y $f$ es continua en $g(x_0)$, entonces la composición de funciones $f \circ g$ es continua en $x_0.$

Demostración.

Queremos probar que $$\lim_{x \to x_0} (f \circ g)(x) = (f \circ g)(x_0)$$
y para demostrarlo procederemos mediante la definición épsilon-delta.

Sea $\varepsilon > 0$.

Como $f$ es continua en $g(x_0)$, existe $\delta’ > 0$ tal que para todo $y$ que cumpla $|y-g(x_0)|< \delta’$, entonces $|f(y)-f(g(x_0))|< \varepsilon$.

Dado que estamos viendo la composición, podemos considerar particularmente $y = g(x)$, de esta manera se tiene que si $|g(x)-g(x_0)|< \delta’$, entonces
\begin{align*}|f(g(x))-f(g(x_0))| <\varepsilon. \tag{1} \end{align*}

Como $g$ es continua en $x_0$, para cualquier valor positivo arbitrario, en este caso consideraremos $\delta’>0$, existe $\delta > 0$ tal que si $0<|x-x_0|<\delta$, entonces
\begin{align*} |g(x)-g(x_0)| < \delta’. \tag{2} \end{align*}

De (1) y (2), se sigue que $$\text{si } 0<|x-x_0|<\delta \Rightarrow |g(x)-g(x_0)| < \delta’ \Rightarrow |f(g(x))-f(g(x_0))| <\varepsilon.$$

Es decir, si $0<|x-x_0|<\delta$, entonces $|f(g(x))-f(g(x_0))| <\varepsilon$.

$\square$

El teorema anterior nos permite extender aún más el almacén de funciones continuas. Por ejemplo, sabemos que $g(x) = x^2+x-10$ es continua en $x_0$ para todo $x_0 \in \mathbb{R}$ y la función $f(x) = sen(x)$ es continua en cualquier punto, particularmente en $g(x_0)$, entonces la composición $(f \circ g) (x) = sen(x^2+x-10)$ también es continua en $x_0$.

Existen cierto tipo de funciones que no están definidas en algún punto en particular. Por ejemplo $f(x) = xsen(\frac{1}{x})$, no está definida en $x_0=0$ y, por tanto, no puede ser continua en tal punto, pero a partir de ella podemos construir una nueva función que sí sea continua en $x_0=0$. En una entrada anterior, vimos que $$\lim_{x \to 0} xsen \left( \frac{1}{x} \right) = 0.$$

De esta forma, podemos definir una nueva función:

$$f(x) = \begin{cases} xsen(\frac{1}{x}) & \text{si } x \neq 0 \\
0 & \text{si } x = 0. \end{cases}$$

Esta nueva función $f$ es continua en $x_0 = 0$. A este tipo de funciones que podemos convertirlas en funciones continuas en $x_0$ redefiniéndolas en tal punto, se dice que tienen una discontinuidad removible o evitable.


Por otro lado, también hay funciones cuya discontinuidad es no removible. Consideremos la función $f(x) = sen\left( \frac{1}{x} \right)$, revisamos anteriormente que el límite de tal función no existe. Por lo cual, aunque la definiéramos en $x_0$, seguiría siendo discontinua en dicho punto.

Hasta ahora estuvimos empleando la definición de continuidad en un punto, sin embargo, para la mayoría de los ejemplos revisados probamos la continuidad para todo $\mathbb{R}$, puesto que consideramos un $x_0$ arbitrario. Es conveniente tener una definición para la continuidad en un intervalo. Y, como podrás imaginarlo, para que una función sea continua en un intervalo $(a,b)$, se requiere que la función sea continua en cada punto del intervalo (con una pequeña particularidad para intervalos cerrados).

Definición (Continuidad en un intervalo abierto). Si $f$ es continua en todo $x$ con $x \in (a,b)$, se dice que $f$ es continua en el intervalo $(a,b)$.

Definición (Continuidad en un intervalo cerrado). Si $f$ es continua en todo $x$ con $x \in (a,b)$ y se cumple que

$$\lim_{x \to a^+} f(x) = f(a) \quad \text{ y } \quad \lim_{x \to b^-} f(x) = f(b).$$

Entonces se dice que $f$ es continua en el intervalo $[a,b]$.

Terminaremos esta entrada probando un teorema que nos dice que si $f$ es continua en $x_0$ y $f(x_0)$ es mayor a cero (o menor a cero), entonces existe todo un intervalo en el que es mayor a cero (o menor a cero).

Teorema. Supongamos que $f$ es continua en $x_0$ y $f(x_0)>0$. Entonces $f(x) >0$ para todo $x$ en un intervalo que contiene a $x_0$, es decir, existe $\delta > 0$ tal que $f(x) >0$ para todo $x$ tal que $|x-x_0|< \delta$.

De forma análoga, si $f(x_0) <0$, entonces existe $\delta > 0$ tal que $f(x) < 0$ para todo $x$ tal que $|x-x_0|< \delta$.

Demostración.

Supongamos que $f$ es continua en $x_0$ y $f(x_0)>0$, entonces para $\varepsilon = \frac{1}{2}f(x_0) > 0$, existe $\delta>0$ tal que si $|x-x_0|< \delta$, entonces
\begin{gather*}
& |f(x)-f(x_0)|< \frac{1}{2}f(x_0). \\
\Leftrightarrow & -\frac{1}{2}f(x_0) < f(x)-f(x_0) < \frac{1}{2}f(x_0). \\
\Leftrightarrow & -\frac{1}{2}f(x_0) + f(x_0) < f(x) < \frac{1}{2}f(x_0) + f(x_0). \\
\Leftrightarrow & f(x) > \frac{1}{2}f(x_0) > 0.
\end{gather*}

La demostración para cuando $f(x_0)< 0$ es análoga usando $\varepsilon = – \frac{1}{2}f(x_0) > 0.$

$\square$

Más adelante…

Tras revisar las propiedades básicas de las funciones continuas, estamos listos para revisar resultados muy interesantes derivados de la continuidad. En la siguiente entrada revisaremos el popular teorema del valor intermedio, que nos indica que si una función continua en un intervalo $[a,b]$ y que al evaluarla en $a$ toma un valor negativo, $f(a) < 0$, y al evaluarla en $b$ toma un valor positivo, $f(b) > 0$, entonces dicha función necesariamente toma el valor cero, es decir, existe un $x_0$ en el intervalo $[a,b]$ tal que $f(x_0) = 0$. Para probar este resultado, se hará uso del último teorema revisado en esta entrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba que la función $f(x) = cos(x)$ es continua en cualquier punto $x_0 \in \mathbb{R}$.
  • Sea $f: A \to \mathbb{R}$. Prueba que si $f$ es continua en un punto $x_0 \in A$, entonces la función $|f|(x):= |f(x)|$ también es continua en $x_0$. ¿Se cumple el regreso? Es decir, ¿si $|f|$ es continua en $x_0$ entonces $f$ también es continua en tal punto?
  • Se dice que una función $f$ es aditiva si $f(x+y) = f(x)+f(y)$ para todo $x$, $y$ en $\mathbb{R}$. Prueba que para una función aditiva $f$ tal que es continua en algún punto $x_0$, entonces es continua en todo su dominio.
  • Da un ejemplo de dos funciones $f$ y $g$ discontinuas en $x_0$ tales que la suma $f+g$ sea continua en $x_0.$
  • Da un ejemplo de dos funciones $f$ y $g$ discontinuas en $x_0$ tales que el producto $f \cdot g$ sea continuo en $x_0.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»