Archivo de la etiqueta: negación del límite de una función

Cálculo Diferencial e Integral I: Teoremas sobre el límite de una función

Introducción

Después de haber revisado algunos ejemplos de límite de funciones, estamos listos para conocer y demostrar algunas de las propiedades; para este fin, estableceremos una relación entre el límite de una función y el de una sucesión con lo que podremos hacer uso de las propiedades antes demostradas para el límite de sucesiones.

Negación de la definición del límite de una función

Antes de enunciar el teorema, revisaremos qué significa que el límite de una función no exista, es decir, revisaremos la negación del concepto dado en la entrada anterior, para ello retomemos la definición de límite de una función:

Definición. Decimos que $f$ tiende hacia el límite $L$ en $x_0$ si para todo $\epsilon > 0$ existe algún $\delta > 0$ tal que, para todo $x$, si $0<|x-x_0|< \delta$, entonces $|f(x)-L|< \epsilon$.

De esta forma, si no se cumple la definición anterior, entonces tenemos lo siguiente: existe algún $\epsilon > 0$ tal que para toda $\delta > 0$ existe algún $x$ que satisface $0 < |x-x_0| < \delta$, pero $|f(x)-L| \geq \epsilon$.

Límite de una función a través de sucesiones

Es momento de revisar un teorema que será particularmente útil para demostrar las propiedades del límite de una función. Este teorema nos indica que una función $f$ tiende al límite $L$ en $x_0$ si y solo si para toda sucesión $\{ a_n \}$ en el dominio de $f$ que converja a $x_0$ se tiene que la sucesión generada por $\{f(a_n) \}$ converge a L.

Teorema. Sea $f:A \rightarrow \mathbb{R}$ y sea $x_0 \in A$. Entonces los siguientes enunciados son equivalentes.

  1. $$\lim_{x \to x_0} f(x) = L$$
  2. Para toda sucesión $\{ a_n \}$ en $A$ que converge a $x_0$ tal que $a_n \neq x_0$ para todo $n\in \mathbb{N}$, la sucesión $\{f(x_n)\}$ converge a $L$

Demostración.

$1) \Rightarrow 2)]$ Sea $\epsilon >0$. Supongamos que $$\lim_{x \to x_0} f(x) = L$$
Y sea $\{ a_n \}$ una sucesión en $A$ que converge a $x_0$ tal que $a_n \neq x_0$ para todo $n\in \mathbb{N}$,

Por hipótesis $f$ converge a $L$ en $x_0$, entonces existe $\delta > 0$ tal que si
$0<|x-x_0|<\delta$, entonces $|f(x)-L| < \epsilon$

Además como la sucesión $\{a_n\}$ converge a $x_0$, para el valor $\delta > 0$ dado, existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ entonces $0<|a_n- x_0| < \delta$ y por hipótesis de la convergencia de $f$ a $L$ en $x_0$, podemos concluir que $|f(a_n)-L| < \epsilon$. Así la sucesión $\{f(a_n)\}$ converge a $L$, es decir,
$$\lim_{n \to \infty} f(a_n) = L$$


$1) \Leftarrow 2)]$ Procederemos a hacer esta implicación por contrapositiva, es decir, demostraremos que si no sucede $1)$, entonces tampoco sucede $2)$.

Supongamos que $1)$ no se cumple, es decir, existe $\epsilon > 0$ tal que para toda $\delta$ existe al menos un real $x$ que cumple $0<|x-x_0| < \delta$ pero $|f(x)-L| \geq \epsilon$. Así, consideremos justo ese valor de $\epsilon$. Notemos que para todo natural $n \in \mathbb{N}$, si consideramos $ \frac{1}{n}$, entonces existe al menos un valor $x_n$ en $A$ tal que $0<|x_n-x_0| < \frac{1}{n}$, pero $|f(x_n)-L| \geq \epsilon_0$.

Tomemos la sucesión generada por $\{x_n\}$, se tiene que la sucesión $\{ x_n \}$ converge a $x_0$ y $x_n \neq x_0$ para toda $n \in \mathbb{N}$, pero la sucesión $\{f(a_n)\}$ no converge a $L$. Así, si no se cumple $1)$, entonces tampoco $2)$. Por lo anterior, podemos concluir que $2) \Rightarrow 1)$.

$\square$

Teoremas sobre el límite de una función

Una vez probado el teorema anterior, es natural que haya una gran cantidad de propiedades que se hereden del límite de sucesiones. A continuación revisaremos algunas de ellas y podremos aprovechar la relación de ambos conceptos para hacer la demostración de las mismas.

Teorema. Sean $f: A \rightarrow \mathbb{R}$ y $g: A \rightarrow \mathbb{R}$ dos funciones y sea $c \in \mathbb{R}$. Si $$\lim_{x \to x_0} f(x) = L \quad \text{ y } \quad \lim_{x \to x_0} g(x) = M.$$
Entonces

  1. $$\lim_{x \to x_0} c \cdot f(x) = cL$$
  2. $$\lim_{x \to x_0} (f+g)(x) = L+M$$
  3. $$\lim_{x \to x_0} (f-g)(x) = L-M$$
  4. $$\lim_{x \to x_0} (f \cdot g)(x) = L\cdot M$$
  5. Si además $g(x) \neq 0$ para toda $x$ y $M \neq 0$, entonces $$\lim_{x \to x_0} (\frac{f}{g})(x) = \frac{L}{M}$$

Demostración

Daremos la demostración del inciso 2 y la demostración de los demás será análoga.

Sea $\{ a_n \}$ una sucesión en $A$ que converge a $x_0$ tal que $a_n \neq x_0$ para todo $n\in \mathbb{N}$, por el teorema anterior tenemos que
$$\lim_{n \to \infty} f(a_n) = L \quad \text{ y } \quad \lim_{n \to \infty} g(a_n) = M$$

De esta forma podemos usar las propiedades de convergencia de una sucesión, así

$$\lim_{n \to \infty} (f \cdot g)(a_n) = \lim_{n \to \infty} \left( f(a_n) \cdot g(a_n) \right) = \lim_{n \to \infty} f(a_n) \cdot \lim_{n \to \infty} g(a_n) = L \cdot M$$
Por el teorema revisado, podemos concluir que $$\lim_{x \to x_0} (f \cdot g)(x) = L \cdot M$$

$\square$

Observación. Particularmente podemos generalizar los puntos 2 y 4 mediante inducción matemática, de tal forma que si $f_1, f_2, \dots, f_n$ son funciones definidas de $A$ a $\mathbb{R}$ cada una con límite $L_1, L_2, \dots L_n$ en $x_0$. Entonces

\begin{gather*}
\lim_{x \to x_0} (f_1 + f_2 + \cdots + f_n) = L_1 + L_2 + \cdots + L_n \\
\text{y} \\
\lim_{x \to x_0} (f_1 \cdot f_2 \cdot \cdots \cdot f_n)(x) = L_1 \cdot L_2 \cdot \cdots \cdot L_n
\end{gather*}

Revisaremos un par de ejemplos donde aplicaremos las propiedades anteriores.

Ejemplo. Calcula $$\lim_{x \to 2} \frac{5x-12}{2x + 10}.$$
\begin{align*}
\lim_{x \to 2} \frac{5x-12}{2x + 10} =& \frac{ \lim_{x \to 2} ( 5x-12 ) }{ \lim_{x \to 2} (2x + 10) } \text{, por el punto 5 del teorema anterior} \\ \\
= & \frac{ \lim_{x \to 2} 5x – \lim_{x \to 2} 12 }{ \lim_{x \to 2} 2x + \lim_{x \to 2} 10 } \text{, por los puntos 2 y 3 del teorema anterior} \\ \\
= & \frac{10-12}{4+10} \\ \\
= & – \frac{1}{7}
\end{align*}
$$\therefore \lim_{x \to 2} \frac{5x-12}{2x + 10} = \frac{1}{7}$$

Ejemplo. Calcula $$\lim_{x \to 5} \frac{x^3+3}{8x^2 + 7}$$
\begin{align*}
\lim_{x \to 5} \frac{x^3+3}{8x^2 + 7} = & \frac{\lim_{x \to 5} (x^3+3)}{ \lim_{x \to 5} (8x^2 + 7)} \text{, por el punto 4 del teorema anterior} \\ \\
= & \frac{\lim_{x \to 5} x^3+ \lim_{x \to 5} 3}{ \lim_{x \to 5} 8x^2 + \lim_{x \to 5} 7} \text{, por el punto 2 del teorema anterior} \\ \\
= & \frac{125+ 3}{200 + 7} \\ \\
= & \frac{128}{207}
\end{align*}
$$\therefore \lim_{x \to 5} \frac{x^3+3}{8x^2 + 7} = \frac{128}{207}$$

En los ejemplos anteriores se hizo énfasis en las propiedades que nos permitieron calcular el límite con la finalidad de mostrar claramente cómo se emplean, sin embargo, esto no será necesario y, de hecho, no se hará tal hincapié de ahora en adelante.

A continuación probaremos el teorema del sándwich para el límite de una función.

Teorema. Sean $f$, $g$, $h : A \rightarrow \mathbb{R}$ y sea $x_0 \in A$. Si

$$f(x) \leq g(x) \leq h(x) \text{, para toda } x \in A, x \neq x_0$$

y si $$\lim_{x \to x_0} f(x) = L \quad \text{ y } \quad \lim_{x \to x_0} h(x) = L$$

Entonces

$$\lim_{x \to x_0} g(x) = L$$
Demostración

Sea $\epsilon > 0 $, como $f$ y $h$ convergen a $L$ en $x_0$, entonces existen $\delta_1$, $\delta_2$ tales que

\begin{gather*}
0<|x-x_0|< \delta_1 \quad \Rightarrow \quad |f(x)-L|< \epsilon \\
0<|x-x_0|< \delta_2 \quad \Rightarrow \quad |h(x)-L| < \epsilon
\end{gather*}

Consideremos $\delta = min\{ \delta_1, \delta_2 \}$, si $0<|x-x_0|< \delta$, se cumple que

\begin{gather*}
-\epsilon < f(x)-L < \epsilon \quad \Rightarrow \quad L-\epsilon < f(x) < L + \epsilon \\
-\epsilon < h(x)-L < \epsilon \quad \Rightarrow \quad L-\epsilon < h(x) < L + \epsilon
\end{gather*}

Además por hipótesis se tiene que $f(x) \leq g(x) \leq h(x)$, entonces

\begin{gather*}
L-\epsilon < f(x) \leq g(x) \quad \text{ y } \quad g(x) \leq h(x) < L + \epsilon \\ \\
\Rightarrow L-\epsilon < g(x) < L + \epsilon \\ \\
\Rightarrow -\epsilon < g(x) – L< \epsilon \\ \\
\therefore |g(x) – L| < \epsilon \\ \\
\therefore \lim_{x \to x_0} g(x) = L
\end{gather*}

$\square$

A continuación veremos un ejemplo donde podemos aplicar el teorema del sándwich.

Ejemplo. Encuentra el siguiente límite: $$\lim_{x_0 \to 0} x^2 e^{sen(\frac{1}{x})}$$
Sabemos que

\begin{gather*}
– 1 \leq sen(\frac{1}{x}) \leq 1 \text{, para todo } x \neq 0
\end{gather*}
Dado que la función exponencial no altera la relación de orden, entonces tenemos
\begin{gather*}
e^{- 1} \leq e^{sen(\frac{1}{x})} \leq e^{ 1} \\
\Rightarrow x^2 e^{- 1} \leq x^2 e^{sen(\frac{1}{x})} \leq x^2 e^{ 1}
\end{gather*}

Entonces la función original está acotada por $f(x) = x^2 e^{- 1}$ y $f(x) = x^2 e^{1}$. Notemos que
$$\lim_{x \to 0} x^2 e^{- 1} = 0 \quad \text{ y } \quad \lim_{x \to 0} x^2 e^{1} = 0$$
Por el teorema del sándwich podemos concluir que $$\lim_{x_0 \to 0} x^2 e^{sen(\frac{1}{x})} = 0.$$

En esta entrada revisamos algunas de las propiedades que tiene el límite de una función haciendo uso del límite de sucesiones, pero vale la pena destacar que también se pudo recorrer este tramo del camino usando la definición $\epsilon$-$\delta$ y te invitamos a realizar el ejercicio de demostrar algunas de las propiedades haciendo uso de tal definición con la finalidad de tener un dominio mayor del concepto.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Prueba que si $$\lim_{x \to x_0} f(x) = L \text{, entonces } \lim_{x \to x_0} |f(x)| = |L|$$
  2. Demuestra que si $f(x) = 0$ para todo $x$ irracional y $f(x) = 1$ para todo irracional, entonces $\lim_{x \to x_0} f(x)$ no existe para ningún $x \in \mathbb{R}$
  3. Calcula el límite $$\lim_{x \to 0} \frac{(x+1)^2-1}{x}$$
  4. Calcula el límite $$\lim_{x \to 0} \frac{\sqrt{x}-1}{x-1}$$
  5. Calcula el límite $$\lim_{x \to 0} x^2 cos \left( \frac{1}{x^2} \right) $$

Más adelante…

Extenderemos la noción de límite de una función definiendo una nueva clase de límites: los límites laterales. Veremos la definición de límite por la derecha y límite por la izquierda que son definiciones menos exigentes y las cuales nos permiten tener un análisis más detallado para aquellas funciones donde el límite no existe.

Entradas relacionadas