Cálculo Diferencial e Integral: Resultados derivados de los teoremas del valor intermedio y del máximo-mínimo

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente revisamos el teorema del valor intermedio y el teorema del máximo-mínimo. Esta entrada será un complemento a las anteriores, pues estudiaremos resultados derivados de tales teoremas.

La raíz $k$-ésima

Iniciaremos esta entrada probando que todo número real positivo tiene raíz cuadrada y, posteriormente probaremos que todo número real positivo tiene raíz $k$-ésima.

Proposición. Para todo $a \in \mathbb{R}$, $a >0$, existe $b >0$ tal que $b^2 = a$. Es decir, todo real positivo tiene raíz cuadrada.

Demostración.

Sea $a > 0$.

Consideremos la función $f(x) = x^2$, $f$ es continua en $\mathbb{R}$. Notemos que $f(0) = 0^2 = 0$. Además, como $\mathbb{N}$ no está acotado superiormente, existe $n \in \mathbb{N}$ tal que $a<n$. Entonces

$$f(n) = n^2 \quad \text{y} \quad a<n \leq n^2 = f(n).$$

Por lo anterior, se tiene que $f$ es continua en $[0, n]$ y $f(0)<a<f(n)$. Por el teorema del valor intermedio, existe $c \in \mathbb{R}$, $0<c<n$ tal que $f(c)=a$, es decir, $c^2 = a.$
Consideremos $b = c$, entonces $b^2 = a.$

$\square$

Definición. Sean $a > 0$, $b > 0$, $k \in \mathbb{N}$, decimos que $b$ es la raíz $k$-ésima de $a$ si $b^k = a$ y lo denotamos como $b = \sqrt[k]{a}.$

Proposición. Para todo $a >0$, todo $k \in \mathbb{N}$, existe la raíz $k$-ésima de $a.$

Demostración.

Sean $a>0$ y $k \in \mathbb{N}.$

Consideremos la función $f(x) = x^k$, continua en $\mathbb{R}$. Entonces, para algún $n \in \mathbb{N}$ se tiene que

$$f(0) = 0^k = 0 < a < n \leq n^k = f(n).$$

Por el teorema del valor intermedio, existe $b$ tal que $0<b<n$ y $f(b) = a.$

$$\therefore b^k = a.$$

$\square$

Notemos que en la definición dada consideramos únicamente los valores positivos que cumplen $b^k = a,$ de esta forma, $b$ es único.

Proposición. La raíz $k$-ésima es única.

Demostración.

Si existen $b > 0$, $c > 0$ tal que $b^k = a$ y $c^k = a$.
Si $b \neq c$ entonces $b > c$ ó $b<c$.
\begin{gather*}
\text{Si } b < c \Rightarrow b^k < c^k \Rightarrow a < a \text{ (contradicción).} \\
\text{Si } b > c \Rightarrow b^k > c^k \Rightarrow a > a \text{ (contradicción).}
\end{gather*}

$$\therefore b = c.$$

$\square$

Polinomios

Otro de los resultados derivados del teorema del valor intermedio es la existencia de las raíces para cierto tipo de polinomios.

Teorema. Si $n$ es impar, entonces cualquier ecuación de la forma

$$x^n+a_{n-1}x^{n-1}+ \ldots + a_0 = 0$$

tiene una raíz.

Demostración.

La demostración se basa en probar que existen $x_1$ y $x_2$ tales que la función $f(x) = x^n+a_{n-1}x^{n-1}+ \ldots + a_0$ cumple $f(x_1) < 0$ y $f(x_2) >0$. Además, dado que $f$ es continua, podremos usar el teorema del valor intermedio y concluir que existe $x_0$ tal que $f(x_0) = 0$, es decir, que la ecuación $x^n+a_{n-1}x^{n-1}+ \ldots + a_0 = 0$ tiene una raíz.

A continuación haremos una manipulación algebraica que permitirá mostrar de forma más sencilla que mientras $|x| \to \infty$, entonces $f$ tendrá un comportamiento similar a la función $g(x) = x^n$ y considerando que $n$ es impar, entonces para valores positivos lo suficientemente grandes $f$ será positivo, mientras que para valores negativos lo suficientemente grandes, $f$ será negativo.

$$ f(x) = x^n+a_{n-1}x^{n-1}+ \ldots + a_0 = x^n \left( 1+\frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \ldots + \frac{a_0}{x^n} \right), \quad \text{para } x \neq 0.$$

Daremos inicio a la demostración viendo que

$$\left\lvert \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \ldots + \frac{a_0}{x^n} \right\rvert \leq \frac{|a_{n-1}|}{|x|} + \ldots + \frac{|a_{0}|}{|x^n|}.$$

Ahora trataremos de acotar la expresión anterior, para ello estamos buscando $|x|$ lo suficientemente grande para acotar la suma de $n$ términos de la forma $\frac{|a_{n-k}|}{|x^k|} $. Primero vayamos con el denominador y notemos que si $|x|>1$, entonces se tiene que $|x|^k \geq|x|$ para todo $k \in \mathbb{N}$. Esto implica que $\frac{1}{|x|^k } \leq \frac{1}{|x|}.$ Para el numerador es suficiente considerar el máximo de los términos $|a_{n-k}|$ y sumarlo $n$-veces, es decir, el máximo de los $n|a_{n-k}|.$ Sin embargo, por fines algebraicos (visibles en $(2)$), utilizaremos $2n|a_{n-k}|.$

De esta forma, si $$|x| > max\{1, 2n|a_{n-1}|, \dots, 2n|a_0|\}, \tag{1}$$
entonces $|x^k|>|x|$ y

$$\frac{|a_{n-k}|}{|x^k|} < \frac{|a_{n-k}|}{|x|} < \frac{|a_{n-k}|}{2n|a_{n-k}|} = \frac{1}{2n}$$

es decir,

$$\left\lvert \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \ldots + \frac{a_0}{x^n} \right\rvert \leq \frac{1}{2n} + \frac{1}{2n} + \ldots + \frac{1}{2n}= \frac{n}{2n} =\frac{1}{2}.$$

$$\Rightarrow -\frac{1}{2} \leq \frac{a_{n-1}}{x} + \ldots + \frac{a_0}{x^n} \leq \frac{1}{2}.$$

Sumando $1$ a la expresión anterior, se sigue que

$$\frac{1}{2} \leq 1 + \frac{a_{n-1}}{x} + \ldots + \frac{a_0}{x^n}. \tag{2}$$

Si consideramos $x_1 < 0$ que satisface $(1)$, entonces $x_1^n < 0$ puesto que $n$ es impar, y de la expresión anterior se obtiene

$$0 > \frac{x_1^n}{2} \geq x_1^n \left( 1 + \frac{a_{n-1}}{x_1} + \ldots + \frac{a_0}{x_1^n} \right) = f(x_1).$$

Por otro lado, si consideramos $x_2 > 0$ tal que satisface $(1)$, entonces $x_2^n >0$ y así tenemos

$$0 < \frac{x_2^n}{2} \leq x_2^n \left( 1 + \frac{a_{n-1}}{x_2} + \ldots + \frac{a_0}{x_2^n} \right) = f(x_2).$$

Por lo cual $f(x_1) < 0$ y $f(x_2) > 0$. Por el teorema del valor intermedio, concluimos que existe $x_0 \in [x_1,x_2]$ tal que $f(x_0) = 0$.

$\square$

Después de haber probado el teorema anterior, podemos notar que fue fundamental en la demostración usar que $n$ es impar. El caso cuando $n$ es par se convierte en un problema más complejo derivado del hecho de que hay algunos polinomios que no tienen solución en los reales, tal es el caso de $x^2+1 = 0$; sin embargo, para este tipo de polinomios podemos probar que existe un mínimo.

Teorema. Si $n$ es par y $f(x) = x^n+a_{n-1}x^{n-1} + \ldots + a_0$, entonces existe un $x_0$ tal que $f(x_0) \leq f(x)$ para todo $x \in \mathbb{R}$.

Demostración.

Por el teorema del máximo-mínimo, sabemos que toda función continua en un intervalo cerrado $[a,b]$ tiene un mínimo en dicho intervalo. Así que nos enfocaremos en encontrar un mínimo para cuando nuestra función esté fuera de tal intervalo.

De forma similar a la demostración anterior, consideremos $M = max\{1, 2n|a_{n-1}|, \dots, 2n|a_0| \}$, entonces para todo $x$ que satisfaga $|x| \geq M$, se tiene que

$$\frac{1}{2} \leq 1 + \frac{a_{n-1}}{x} + \ldots+ \frac{a_0}{x^n}.$$

Como $n$ es par, $x^n>0$ para todo $x$, por tanto

$$\frac{x^n}{2} \leq x^n \left( 1 + \frac{a_{n-1}}{x} + \ldots + \frac{a_0}{x^n} \right) = f(x), \text{si } |x|\geq M.$$

Consideremos ahora el número $f(0)$. Sea $b > 0$ un número tal que $b^n \geq 2f(0)$ y $b>M$. Entonces si $x \geq b$, obtenemos

$$f(x) \geq \frac{x^n}{2} \geq \frac{b^n}{2} \geq f(0). \tag{1}$$

Análogamente, si $x \leq -b$, entonces

$$f(x) \geq \frac{x^n}{2} \geq \frac{(-b)^n}{2}= \frac{b^n}{2} \geq f(0). \tag{2}$$

Por lo que si $x \geq b$ ó $x \leq -b$, entonces $f(x) \geq f(0)$.

Dado que $f$ es continua, podemos aplicar el teorema del máximo-mínimo en el intervalo $[-b,b],$. Por tanto, existe un número $x_0$ tal que si $-b \leq x \leq b$, entonces $f(x_0) \leq f(x)$. En particular, $f(x_0) \leq f(0)$.

Además, por $(1)$ y $(2)$ sabemos que si $x \geq b$ ó $x \leq -b$, entonces $f(x) \geq f(0) \geq f(x_0)$.

Por lo anterior, podemos concluir que $f(x_0) \leq f(x)$ para todo $x$.

$\square$

Más adelante…

En la siguiente entrada daremos la definición de continuidad uniforme y veremos su relación con el concepto que conocemos de continuidad. También revisaremos el concepto de funciones de Lipschitz y el papel que juegan dentro de la continuidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Supongamos que $f$ es una función continua en $[0,1]$ y que $f(x)$ pertenece al intervalo $[0,1]$ para cada $x$. Demuestra que $f(x) = x$ para algún $x$.
  • Demuestra que existe algún número $x$ tal que $sen(x) = x-1$.
  • Encuentra la solución al polinomio $x^5+5x^4+2x+1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

2 comentarios en “Cálculo Diferencial e Integral: Resultados derivados de los teoremas del valor intermedio y del máximo-mínimo

  1. BryanQ

    Increíble trabajo pero tengo dos dudas sobre la demostración del Teorema: «Si n es impar, entonces cualquier ecuación de la forma x^n+a_(n-1)x^(n-1)+…+a_0 tiene una raíz.».
    -> ¿De dónde se obtiene la relación |x| > max{1, 2n|a_n-1|, … , 2n|a_0|}?
    -> Dice que Σ^n_i=1 1/(2n) = 1/2 pero sé que esto es falso ¿de dónde obtuvo el resultado?
    Gracias.

    Responder
    1. Juan Manuel Naranjo Jurado Autor

      ¡Hola, Bryan!
      Muchas gracias por tu comentario.
      -> Hemos actualizado la entrada profundizando en la justificación de la elección de |x| > max{1, 2n|a_n-1|, … , 2n|a_0|}
      -> En este caso hay que considerar que como el índice (i) no está jugando un rol dentro de los términos a sumar, éstos se quedan constantes.
      Es decir Σ_{i = 1}^n 1/(2n) = 1/(2n) + 1/(2n) + … + 1/(2n) = n/(2n) = 1/2
      Pero entendemos que esta expresión en particular puede resultar algo confusa, por lo que también la hemos modificado para que sea más claro.

      Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.