Archivo de la etiqueta: subespacio estable

Álgebra Lineal II: Existencia de la forma canónica de Jordan para nilpotentes

Por Elizabeth Chalnique Ríos Alvarado

Introducción

En la entrada anterior estudiamos de manera un poco más sistemática las matrices y transformaciones lineales nilpotentes. Lo que haremos ahora es enunciar el teorema de la forma canónica de Jordan para matrices nilpotentes. Este es un teorema de existencia y unicidad. En esta entrada demostraremos la parte de la existencia. En la siguiente entrada hablaremos de la unicidad y de cómo encontrar la forma canónica de Jordan de matrices nilpotentes de manera práctica.

El teorema de Jordan para nilpotentes

El teorema que queremos demostrar tiene dos versiones: la de transformaciones y la matricial. La versión en transformaciones dice lo siguiente.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $T:V\to V$ una transformación lineal nilpotente. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales existe una base de $V$ en la cual $T$ tiene como forma matricial a la siguiente matriz de bloques:

$$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

La versión en forma matricial dice lo siguiente.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

A esta matriz de bloques (ya sea para una transformación, o para una matriz) le llamamos la forma canónica de Jordan de $A$.

En vista de que dos matrices son similares si y sólo si representan a la misma transformación lineal en distintas bases, entonces ambos teoremas son totalmente equivalentes. Así, basta enfocarnos en demostrar una de las versiones. Haremos esto con la versión para transformaciones lineales.

Trasnformaciones nilpotentes y unos vectores linealmente independientes

En esta sección enunciaremos un primer resultado auxiliar para demostrar la existencia de la forma canónica de Jordan. Veremos que a partir de una transformación lineal nilpotente podemos obtener algunos vectores linealmente independientes.

Proposición. Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal de índice $k$. Sea $v$ un vector tal que $T^{k-1}(v)\neq 0$, el cual existe ya que $T^{k-1}$ no es la transformación lineal cero. Entonces:

  1. Los vectores $v$, $T(v)$, $\ldots$, $T^{k-1}(v)$ son linealmente independientes.
  2. El subespacio $W$ que generan es de dimensión $k$ y es estable bajo $T$.
  3. La transformación $T$ restringida a $W$ en la base $T^{k-1}(v)$, $T^{k-2}(v)$, $\ldots$, $T(v)$, $v$ tiene como matriz al bloque de Jordan $J_{0,k}$. Ojo. Aquí los vectores los escribimos en orden contrario, empezando con la mayor potencia de $T$ aplicada.

Demostración. Probemos las afirmaciones una por una. Para empezar, supongamos que para ciertos escalares $\alpha_0,\ldots,\alpha_{k-1}$ tenemos que $$\alpha_0v+\alpha_1T(v)+\ldots+\alpha_{k-1}T^{k-1}(v)=0.$$

Vamos a probar inductivamente de $0$ a $k-1$ que $\alpha_k=0$. Para mostrar que $\alpha_0=0$, aplicamos $T^{k-1}$ a la combinación lineal anterior para obtener:

\begin{align*}
0&=\alpha_0T^{k-1}(v)+\alpha_1T^k(v)+\ldots+\alpha_{k-1}T^{2k-2}(v)\\
&=\alpha_0T^{k-1}(v).
\end{align*}

Aquí estamos usando en todos los sumandos, excepto el primero, que $T^k=0$. Como $T^{k-1}(v)\neq 0$, concluimos que $\alpha_0=0$. Suponiendo que ya hemos mostrado $\alpha_0=\ldots=\alpha_l=0$, la combinación lineal con la que empezamos queda como $$\alpha_{l+1}T^{l+1}(v)+\alpha_{l+2}T^{l+2}(v)+\ldots+\alpha_{k-1}T^{k-1}(v)=0.$$ Aplicando $T^{k-l-2}$ y usando un argumento similar al anterior se llega a que $\alpha_{l+1}=0$. Esto muestra que la única combinación lineal de los vectores que da cero es la combinación lineal trivial, así que son linealmente independientes.

De manera inmediata obtenemos entonces que esos $k$ vectores generan un subespacio $W$ de dimensión $k$. Para ver que $W$ es $T$ estable, tomemos un elemento $w$ en $W$, es decir $$w=\alpha_0v+\alpha_1T(v)+\ldots+\alpha_{k-1}T^{k-1}(v)$$ para algunos escalares $\alpha_0,\ldots,\alpha_{k-1}$. Debemos ver que $T(w)$ está nuevamente en $W$. Haciendo las cuentas y usando nuevamente que $T^k=0$ obtenemos:

\begin{align*}
T(w)&=T(\alpha_0v+\alpha_1T(v)+\ldots+\alpha_{k-1}T^{k-1}(v))\\
&= \alpha_0T(v)+\alpha_1T^2(v)+\ldots+\alpha_{k-2}T^{k-1}(v)+\alpha_{k-1}T(v)\\
&= \alpha_0T(v)+\alpha_1T^2(v)+\ldots+\alpha_{k-2}T^{k-1}(v)\\
\end{align*}

Este vector de nuevo es combinación lineal de los vectores que nos interesan, así que $T(w)$ está en $W$, como queríamos.

La afirmación de la forma matricial es inmediata pues precisamente

$$T(T^{j}(v))=0\cdot T^{n-1}(V)+\ldots+1\cdot T^{j+1}(v)+\ldots+0\cdot T(v) + 0\cdot v,$$ de donde se lee que las columnas de dicha forma matricial justo son las del bloque de Jordan $J_{0,k}$.

$\square$

El teorema anterior da otra demostración de algo que ya habíamos mostrado en la entada anterior: el índice de una matriz en $M_n(F)$ (o de una transformación nilpotente en un espacio vectorial de dimensión $n$) no puede exceder $n$.

Encontrar un subespacio complementario y estable

Ahora veremos otro resultado auxiliar que necesitaremos para demostrar la existencia de la forma canónica de Jordan. A partir de él podemos conseguirnos un «subespacio complementario y estable» que en la prueba de la existencia nos ayudará a proceder inductivamente. Este truco ya lo hemos visto antes en la clasificación de matrices ortogonales y el la demostración del teorema espectral.

Proposición. Sea $V$ un espacio vectorial de dimensión finita $n$ y $T:V\to V$ una transformación lineal nilpotente de índice $k$. Tomemos $v$ un vector tal que $T^{k-1}(v)\neq 0$. Sea $W$ el subespacio generado por $v,T(v),\ldots,T^{k-1}(v)$. Entonces, existe un subespacio $W’$ estable bajo $T$ y tal que $T=W\oplus W’$.

La principal dificultad para probar esta proposición es una cuestión creativa: debemos saber de dónde sacar el espacio $W’$. Para ello, haremos uso de la transformación transpuesta y de un espacio ortogonal por dualidad. Como recordatorio, si $T:V\to V$ es una transformación lineal, entonces su transformación transpuesta es una transformación lineal $^tT:V^\ast \to V^\ast$ para la cual $^tT(\ell)(u)=\ell(T(u))$ para cualquier forma lineal $\ell$ y cualquier vector $u$ en $V$.

Demostración. Primero, nos enfocamos en construir $W’$. Para ello procedemos como sigue. Como $T^{k-1}(v)\neq 0$, entonces existe una forma lineal $\ell$ tal que $\ell(T^{k-1}(v))\neq 0$. Se puede mostrar que $S:=\text{ }^t T$ también es nilpotente de índice $k$. Por la proposición de la sección anterior, tenemos entonces que $\ell, S(\ell),\ldots,S^{k-1}(\ell)$ son $k$ vectores linealmente independientes en $V^\ast$ y por lo tanto que generan un subespacio $Z$ de dimensión $k$. El espacio $W’$ que propondremos será $Z^\bot$.

Debemos mostrar que:

  1. En efecto $V=W\oplus W’$.
  2. En efecto $W’$ es $T$ estable.

Para la primer parte, usando teoría de espacios ortogonales tenemos que $$\dim(W’)=\dim(Z^\bot)=n-\dim(Z)=n-k,$$ así que los subespacios tienen la dimensión correcta para ser complementarios. Además, si $u\in W\cap W’$, entonces $u$ es combinación lineal de $v, T(v),\ldots, T^{k-1}(v),$ digamos $$u=\alpha_0v+\ldots+\alpha_{k-1}T^{k-1}(v)$$ y se anula por $\ell, S(\ell),\ldots,S^{k-1}(\ell)$, lo que quiere decir que se anula por $\ell, \ell\circ T, \ldots, \ell \circ T^{k-1}$. Esto permite probar iterativamente que $\alpha_0=\ldots=\alpha_{k-1}=0$, de modo que $u=0$. Con esto, $W$ y $W’$ son de intersección trivial y dimensiones complementarias, lo cual basta para que $V=W\oplus W’$.

Para terminar, debemos ver que $W’$ es $T$ estable. Tomemos un $u$ en $W’$, es decir, tal que se anula por $\ell, \ell\circ T, \ldots, \ell \circ T^{k-1}$. Al aplicar $T$, tenemos que $T(u)$ también se anula por todas estas transformaciones. Esto se debe a que para $\ell \circ T^j$ con $j\leq k-2$ se anula ya que $\ell\circ T^j(T(u))=\ell\circ T^{j+1}(u)=0$ por cómo tomamos $u$ y para $\ell \circ T^{k-1}$ se anula pues $T$ es nilpotente de índice $k$.

$\square$

Existencia de forma canónica de Jordan para nilpotentes

La idea para encontrar la forma canónica de Jordan debe ser clara a estas alturas: se procederá por inducción, el caso base será sencillo, asumiremos la hipótesis inductiva y para hacer el paso inductivo descomponeremos al espacio $V$ mediante la proposición de la sección anterior. Veamos los detalles.

Demostración (existencia de forma canónica de Jordan para nilpotentes). Estamos listos para probar la existencia de la forma canónica de Jordan para una transformación lineal nilpotente $T:V\to V$ con $V$ un espacio vectorial de dimensión finita $n$. Procederemos por inducción en la dimensión. Si $n=1$, entonces $V$ es generado por un vector $v$ y la transformación lineal $T$ debe mandarlo al vector $0$ para ser nilpotente. En esta base, $T(v)=0$ y la matriz que representa a $T$ es entonces $(0)=J_{0,1}$.

Supongamos que existe la forma canónica de Jordan para cuando $V$ es de cualquier dimensión menor a un entero positivo dado $n$. Tomemos $V$ un espacio vectorial de dimensión $n$ y $T:V\to V$ una transformación lineal nilpontente. Si $T$ es de índice $n$, entonces $T^{n-1}(v),\ldots,T(v),v$ son linealmente independientes y por lo tanto son una base de $V$. La forma matricial de $T$ en esta base es el bloque de Jordan $J_{0,n}$, en cuyo caso terminamos.

De otra forma, el índice es un número $k<n$. Entonces, $T^{k-1}(v),\ldots,T(v),v$ generan un subespacio estable $W$ de dimensión $k$. Por la proposición de la sección anterior, podemos encontrar un subespacio complementario $W’$ de dimensión $n-k<n$ y estable bajo $T$. Como la restricción de $T$ a $W’$ tiene codominio $W’$, es nilpotente y $\dim(W)<\dim(V)$, entonces por hipótesis inductiva $W’$ tiene una base $\beta$ bajo la cual la restricción de $T$ a $W’$ tiene como forma matricial una matriz diagonal por bloques con puros bloques de Jordan del estilo $J_{0,k_j}$. Al completar $\beta$ con $T^{k-1}(v),\ldots,T(v),v$ , obtenemos una base de $V$ en la cual $T$ tiene como forma matricial una matriz diagonal por bloques con puros bloques de Jordan del estilo $J_{0,k_j}$ (que vienen de la hipótesis inductiva) y un bloque de Jordan $J_{0,k}$. Salvo quizás un reordenamiento de la base para ordenar los $k_j$ y $k$, obtenemos exactamente lo buscado.

$\square$

Más adelante…

Ya demostramos una parte fundamental del teorema que nos interesa: la existencia de la forma canónica de Jordan para transformaciones (y matrices) nilpotentes. Nos falta otra parte muy importante: la de la unicidad. Las demostraciones de unicidad típicamente son sencillas, pero en este caso no es así. Para decir de manera explícita cuál es la forma canónica de Jordan de una transformación (o matriz) nilpotente, deberemos hacer un análisis cuidadoso del rango de las potencias de la transformación (o matriz). Veremos esto en las siguientes entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que la siguiente matriz es nilpotente: $$\begin{pmatrix}13 & 6 & -14 & -5\\ 2 & 0 & -4 & -2 \\ 29 & 12 & -34 & -13 \\ -45 & -18 & 54 & 21\end{pmatrix}.$$
    Siguiendo las ideas de la demostración de existencia de esta entrada, ¿cómo podrías dar la forma canónica de Jordan de esta matriz? Intenta hacerlo.
  2. Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal nilpotente de índice $k$. Demuestra que $^tT$ también es una transformación lineal nilpotente de índice $k$. ¿Cuál sería el resultado análogo para matrices?
  3. Sea $V$ un espacio vectorial de dimensión finita y $T:V \to V$ una transformación lineal tal que para cualquier $v$ en $V$ existe algún entero $n$ tal que $T^n(v)=0$. Estos $n$ pueden ser distintos para distintos $v$. Muestra que $T$ es nilpotente.
  4. Considera el subespacio $V$ de polinomios reales con grado a lo más $4$ y $D:V\to V$ la transformación lineal derivar. Da, de manera explícita, espacios $W$ y $W’$ como en las proposición de encontrar el subespacio complementario estable.
  5. Hay varios detalles que quedaron pendientes en las demostraciones de esta entrada. Revisa la entrada para encontrarlos y da las demostraciones correspondientes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: El teorema espectral real

Por Ayax Calderón

Introducción

Por lo que estudiamos en la primera parte de este curso, ya sabemos cuándo una matriz arbitraria es diagonalizable. Lo que haremos ahora es enunciar y demostrar el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. Pero nos dice todavía más. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Esto combina mucho de la teoría que hemos cubierto. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.

El lema de eigenvalores de matrices simétricas

Comencemos enunciando algunas propiedades que tienen las matrices y transformaciones simétricas. El primero habla de cómo son los eigenvalores de las matrices simétricas.

Lema. Sea $A\in M_n({\mathbb{R}})$ una matriz simétrica. Entonces todas las raíces del polinomio característico de $A$ son números reales.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ y sea $\lambda$. Su polinomio característico está en $\mathbb{R}[x]$, así que por el teorema fundamental del álgebra todas sus raíces están en $\mathbb{C}$. Sea $t$ una raíz del polinomio característico de $A$.

Pensemos a $A$ como un elemento de $M_n(\mathbb{C})$. Como $\det (tI_n-A)=0$, entonces $t$ es eigenvalor y por lo tanto hay un eigenvector $X\in\mathbb{C}^n$ no nulo tal que $AX=tX$. Como el vector tiene entradas complejas, lo podemos escribir como $X=Y+iZ$ para dos vectores $Y,Z\in \mathbb{R}^n$. Así mismo, podemos escribir a $t$ como $t=a+ib$ con $a$ y $b$ números reales.

Con esta notación, de la igualdad $AX=tX$ se sigue que

\begin{align*}
AY+iAZ&=AX\\
&=(a+ib)(Y+iZ)\\
&=aY-bZ+i(aZ+bY).
\end{align*}

Igualando las partes imaginarias y las partes reales obtenemos que

\begin{equation}\label{1}
AY=aY-bZ, \hspace{4mm} AZ=aZ+bY.
\end{equation}

Usemos ahora que $A$ es simétrica. Tenemos que
\begin{equation}\label{2}
\langle AY,Z \rangle=\langle Y, AZ \rangle.
\end{equation}

Sustituyendo la primera igualdad de \eqref{1} en el lado izquierdo de \eqref{2}, y la segunda igualdad de \eqref{1} en el lado derecho de \eqref{2}, obtenemos que:

\begin{equation*}
\langle aY-bZ,Z \rangle=\langle Y, aZ+bY \rangle,
\end{equation*}

y usando la linealidad del producto interior, se obtiene que

\begin{equation*}
a\langle Y,Z \rangle – b\langle Z,Z\rangle =a\langle Y, Z \rangle + b \langle Y , Y \rangle.
\end{equation*}

Se sigue que
$$b(||Y||^2+||Z||^2)=0$$ y como $Y$ o $Z$ es distinto de cero (de lo contrario tendríamos que $X=0$), entonces concluimos que $b=0$ y con ello que $t$ es un número real.

$\square$

El lema de estabilidad de transformaciones simétricas

El segundo lema que veremos nos dice qué sucede cuando una transformación lineal es simétrica y tomamos un subespacio estable bajo ella. Recuerda que un subespacio $W$ de un espacio vectorial $V$ es estable bajo una transformación lineal $T:V\to V$ si $T(W)\subseteq W$.

Lema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica sobre $V$. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces

  1. $W^\bot$ también es estable bajo $T$.
  2. Las restricciones de $T$ a $W$ y $W^\bot$ son transformaciones lineales simétricas sobre estos espacios.

Demostración.

1. Tomemos $x\in W^\bot$. Nos gustaría ver que $T(x)\in W^\bot$. Para ello, tomemos $y\in W$. Como $W$ es estable bajo $T$, tenemos $T(y)\in W$. Como $x\in W^\bot$, tenemos que $\langle x,T(y) \rangle =0$. Usando esto y la simetría de $T$, obtenemos entonces
$$\langle T(x),y \rangle = \langle x,T(y) \rangle=0,$$
que es lo que queríamos probar.

2. Sea $T|_W$ la restricción de $T$ a$W$. Para $x,y\in W$ tenemos que
$$\langle T|_W(x),y \rangle=\langle T(x),y \rangle=\langle x,T(y) \rangle =\langle x,T|_W(y) \rangle ,$$ por lo tanto $T|_W$ es simétrica sobre $W$. Análogamente se ve que el resultado se cumple para $W^\bot$.

$\square$

El teorema espectral real

Con los dos lemas anteriores podemos ahora sí enfocarnos en demostrar el teorema principal de esta entrada.

Teorema (el teorema espectral real). Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica. Entonces existe una base ortonormal de $V$ conformada por eigenvectores de $T$.

Demostración. Procederemos por inducción fuerte sobre $n=\dim V$. Si $n=1$, entonces el polinomio característico de $T$ es de grado $1$ y tiene coeficientes reales, por lo que tiene una raíz real $t$. Si $v$ es un eigenvector de $T$ con eigenvalor $t$, entonces $\frac{v}{||v||}$ también es eigenvector de $T$ y forma una base ortonormal de $V$. Esto termina el caso $n=1$.

Ahora supongamos que el resultado se satisface hasta dimensión $n-1$ y tomemos $V$ de dimensión $n$. Sea $B=\{e_1,e_2,\dots e_n\}$ una base ortonormal de $V$. Sea $A$ la matriz asociada a $T$ con respecto a $B$. Como $T$ es simétrica, entonces $A$ también lo es. Su polinomio característico no es constante, de modo que por el teorema fundamental del álgebra tiene por lo menos una raíz $t$, y por el primer lema de la sección anterior, se tiene que $t$ es real y por lo tanto es un eigenvalor.

Sea $W=\ker (t\text{id} -T)$ el $t$-eigenespacio de $T$. Si $W=V$, entonces $T=t\text{id}$ y así $B$ es una base ortonormal de $V$ compuesta por eigenvectores de $T$. De otro modo, $W\neq V$ y por lo tanto $k:=\dim W<n$. Tenemos que $V=W\oplus W^\bot$ y sabemos que los eigenespacios son estables bajo la transformación correspondiente. Así, por el segundo lema de la sección anterior $W^\bot$ también es estable bajo $T$ y la restricción de $T$ a $W^\bot$ es simétrica.

Podemos entonces aplicar la hipótesis inductiva a $T_{|W^\bot}$ para encontrar una base ortonormal $C=\{f_1^\bot,f_2^\bot\dots,f_{n-k}^\bot\}$ de $W^\bot$ compuesta por eigenvectores de $T$. Escogiendo una base ortonormal $D=\{f_1,f_2,\dots,f_k\}$ de $W$ (que automaticamente está formada por eigenvectores de $T$). La base $C\cup D$ de $V$ es entonces la base de eigenvectores que buscábamos.

$\square$

El teorema espectral también puede enunciarse en términos de matrices. Hacemos esto a continuación.

Observación. Si $A\in M_n(\mathbb{R})$ es una matriz simétrica, entonces la transformación lineal $T:X\mapsto AX$ sobre $\mathbb{R}^n$ es simétrica. Aplicando el teorema anterior, podemos encontrar una base ortonormal de $V$ con respecto a la cual la matriz asociada a $T$ es diagonal. Como la base canónica de $V$ es ortonormal, y como la matriz de cambio de pase entre dos bases ortonormlaes es ortogonal, obtenemos el siguiente resultado fundamental.

Teorema (el teorema espectral para matrices reales). Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces $A$ es diagonalizable y, más específicamente, existen una matriz ortogonal $P\in M_n(\mathbb{R})$ y una matriz diagonal $D\in M_n(\mathbb{R})$ tales que $$A=P^{-1}DP.$$

Así, $A$ es simultáneamente, mediante una misma matriz $P$, tanto similar como congruente a una matriz diagonal.

Aplicación a caracterizar las matrices simétricas positivas

Ya hemos dado algunas caracterizaciones para las matrices simétricas positivas. Veamos algunas caracterizaciones adicionales.

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B\in M_n(\mathbb{R})$.
  4. $A=\hspace{.5mm}^tCC$ para alguna matriz $C\in M_n(\mathbb{R})$.

Demostración. 1) implica 2). Supongamos que $A$ es positiva y que $t$ es un eigenvalor de $A$ con eigenvector $v$. Como $Av=tv$, obtenemos que

\begin{align*}
t||v||^2&= t\langle v,v \rangle\\
&= \langle v, tv \rangle\\
&= \langle v, Av \rangle\\
&= \hspace{.5mm}^tvAv\\
&\geq 0,
\end{align*}
por lo tanto $t\geq 0$.

2) implica 3). Sean $t_1,\dots, t_n$ todas las raíces del polinomio característico de $A$, escritos con su multiplicidad correspondiente. Por el primer lema de la sección anterior, todos ellos son reales, y estamos suponiendo que son no negativos. Por el teorema espectral podemos encontrar una matriz $P$ y una diagonal $D$ tal que $A=P^{-1}DP$, y por lo que vimos de teoría de diagonalización, $D$ precisamente tiene como entradas en su diagonal a $t_1,t_2,\dots,t_n$. Sea $D’$ la matriz diagonal con entradas $c_i=\sqrt{t_i}$ y sea $B=P^{-1}D’P$. Como $P$ es ortogonal, $B$ es simétrica

Y además, por construcción, $B^2=P^{-1}{D’}^2P=P^{-1}DP=A$, como queríamos.

3) implica 4). Basta con tomar la matriz $B$ de (3) y tomar $C=B$. Como $B$ es simétrica, $A=B^2=\hspace{.5mm}^tBB$.

4) implica 1). Esto ya lo habíamos demostrado en un resultado anterior de caracterización de matrices simétricas.

$\square$

Más adelante…

Hemos enunciado y demostrado el teorema espectral. Lo que nos dice es muy interesante: una matriz simétrica básicamente consiste en cambiar de base a una base muy sencilla $e_1,\ldots,e_n$ (ortonormal) a traves de la matriz $P$. Luego, en esa base pasa algo muy simple: en la dirección de $e_i$, simplemente alargamos de acuerdo al eigenvalor $\lambda_i$.

Como consecuencia, veremos en la siguiente entrada que esto nos permite entender no sólo a las matrices simétricas, sino a todas, todas las matrices. Al teorema que veremos a continuación se le conoce como el teorema de descomposición polar.

Tarea moral

  1. La matriz $\begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin\theta \end{pmatrix}$ es real y simétrica, de modo que es diagonalizable. ¿Cuál es su diagonalización?
  2. Da un ejemplo de una matriz simétrica con coeficientes complejos que no sea diagonalizable.
  3. Sea $T$ una transformación lineal sobre un espacio euclidiano $V$, y supón que $V$ tiene una base ortonormal conformada por eigenvectores de $T$. Demuestra que $T$ es simétrica (por lo que el recíproco del teorema espectral se satisface).
  4. Considera la matriz $$A=\begin{pmatrix}
    1 & -2 & -2\\
    -2 & 1 & -2\\
    -2 & -2 &1\end{pmatrix}.$$
    Explica por qué $A$ es diagonalizable en $M_n(\mathbb{R})$ y encuentra una matriz $P$ tal que $P^{-1}AP$ es diagonal.
  5. Adapta el teorema de caracterización de matrices positivas visto en esta entrada a una versión para matrices positivas definidas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»