Archivo de la etiqueta: polinomio mínimo

Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En la entrada anterior platicamos acerca de eigenvectores, eigenvalores y eigenespacios de matrices y transformaciones lineales. Vimos algunos ejemplos básicos. En esta entrada profundizaremos en el estudio de estos objetos y exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

Primeras observaciones

A partir de la proposición de la entrada anterior que nos dice cómo calcular eigenvalores se desprenden algunas consecuencias sencillas pero útiles.

Por ejemplo, recuerda que el determinante de una matriz y su transpuesta es igual. En particular, si $A\in M_n(F)$ entonces

\begin{align*}
\det(\lambda I_n -\ ^{t}A)= \det(\ ^{t}(\lambda I_n- A))= \det(\lambda I_n-A).
\end{align*}

Luego $\det (\lambda I_n-A)=0$ si y sólo si $\det(\lambda I_n-\ ^{t}A)=0$. Recordando que las raíces de estos polinomios son precisamente los eigenvalores, se sigue que los eigenvalores de $A$ y $^{t}A$ son iguales.

Por otro lado, como los eigenvalores son las raíces de un polinomio de grado $n$, sabemos que hay a lo más $n$ soluciones. Entonces toda matriz tiene a lo más $n$ eigenvalores.

Esto también ocurre para transformaciones lineales en espacios de dimensión finita y lo podemos enunciar como sigue:

Corolario. Sea $V$ un espacio de dimensión finita sobre $F$ y $T:V\to V$ lineal. Entonces $T$ tiene a lo más $\dim V$ eigenvalores distintos.

Sin embargo, si el espacio no es de dimensión finita no podemos hacer tal afirmación. Si $V$ es el espacio de todas las funciones suaves (es decir con derivadas de todos los órdenes) de $\mathbb{R}$ en $\mathbb{R}$ y $T:V\to V$ es la función lineal que a cada función la manda en su derivada, entonces tenemos «muchos» eigenvalores. Haciendo esto más preciso, para cada real $r$ la función $e^{rx}$ es un eigenvector con eigenvalor $r$ puesto que

\begin{align*}
T(e^{rx})= \left(e^{rx}\right)’= re^{rx}.
\end{align*}

Así, tenemos al menos tantos eigenvalores como números reales. De hecho, estos son exactamente los eigenvalores de $T$, lo cual puede demostrarse mediante el teorema de existencia y unicidad de soluciones de ecuaciones diferenciales, que estudiarás en otro momento de tu formación matemática.

Matrices triangulares superiores

Parte del interés de «triangular» matrices (es decir, encontrar una matriz similar que sea triangular superior) está dada por la facilidad de calcular sus eigenvalores. Exploramos esto mediante los siguientes dos problemas.

Problema 1. Sea $A=[a_{ij}]$ una matriz triangular superior en $M_n(F)$. Demuestra que los eigenvalores de $A$ son precisamente los elementos en la diagonal.

Solución. Ya establecimos que encontrar los valores propios se reduce a encontrar las raíces del polinomio $\det(\lambda I_n-A)$. Notamos que si $A$ es triangular superior, entonces $\lambda I_n-A$ también es triangular superior. Más aún, las entradas de la diagonal son simplemente $\lambda-a_{ii}$. Pero sabemos que el determinante de una matriz triangular superior es el producto de sus entradas diagonales. Así

\begin{align*}
\det(\lambda I_n -A)= (\lambda-a_{11})(\lambda-a_{22})\cdots (\lambda -a_{nn})
\end{align*}

cuyas raíces son exactamente los elementos $a_{ii}$.

$\square$

Podemos combinar el resultado anterior con otras propiedades de matrices triangulares superiores para resolver a mano algunos problemas que de entrada parecen complicados.

Problema 2. Encuentra los eigenvalores de $A^{3}$ donde

\begin{align*}
A=\begin{pmatrix} 1 & 2 &3 &4 \\ 0 & 5 & 6 & 7\\ 0 & 0 & 8 & 9\\ 0 &0 &0 & 10\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. En realidad no hace falta hacer el producto de matrices para encontrar la matriz $A^3$. Sabemos que el producto de dos matrices triangulares superiores es triangular superior y que de hecho las entradas de la diagonal son solo el producto de las entradas correspondientes. Es decir, si $[a_{ij}]$ y $[b_{ij}]$ son dos matrices triangulares superiores, las entradas de la diagonal son $a_{ii}b_{ii}$. En nuestro caso, las entradas de la diagonal son $1^3, 5^3, 8^3$ y $10^3$, y por el problema anterior, estos son precisamente los eigenvalores de $A^3$.

$\triangle$

Relaciones con independencia lineal y combinaciones polinomiales

El resultado principal de esta entrada es el siguiente teorema, que en particular afirma que si dos eigenvalores son distintos, sus eigenvectores son linealmente independientes. En realidad, el resultado es un poco más general y lo enunciamos a continuación

Teorema. Sean $\lambda_1,\dots, \lambda_k$ eigenvalores distintos dos a dos de una transformación lineal $T:V\to V$. Entonces los $\lambda_i$-eigenespacios están en posición de suma directa.

Demostración. Por definición, tenemos que demostrar que si tenemos una colección $\{v_i\}$ de vectores con $T(v_i)=\lambda_i v_i$ y $v_1+\dots+v_k=0$ entonces $v_1=\dots=v_k=0$. Procedemos por inducción sobre $k$.

Nuestro caso base es una tautología, pues si $k=1$ entonces tenemos que mostrar que si $v_1=0$ entonces $v_1=0$.

Asumamos que el resultado se cumple para $k-1$ y verifiquemos que se cumple para $k$. Supongamos que $v_1+\dots+v_k=0$. Aplicando $T$ de ambos lados de esta igualdad llegamos a

\begin{align*}
T(v_1+\dots+v_k)&= T(v_1)+\dots+T(v_k)\\
&=\lambda_1 v_1+\dots +\lambda _k v_k=0.
\end{align*}

Por otro lado, si multiplicamos a la igualdad $v_1+\dots+v_k=0$ por $\lambda_k$ de ambos lados llegamos a

\begin{align*}
\lambda_k v_1+\dots +\lambda _k v_k=0.
\end{align*}

Sustrayendo y factorizando estas dos igualdades se sigue que

\begin{align*}
(\lambda_k -\lambda_1)v_1+\dots +(\lambda_k-\lambda_{k-1})v_{k-1}=0.
\end{align*}

Esto es una combinación lineal de los primeros $k-1$ vectores $v_i$ igualada a cero. Luego, la hipótesis inductiva nos dice que $(\lambda_k-\lambda_i)v_i=0$ para todo $i=1,\dots, k-1$. Como $\lambda_k\neq \lambda_i$ entonces $\lambda_k-\lambda_i\neq 0$ y entonces $v_i=0$. Sustituyendo en la igualdad original, esto implica que $v_k=0$ inmediatamente.

$\square$

Enseguida veremos que si formamos un polinomio $P(T)$, entonces $P(\lambda)$ es un eigenvalor de $P(T)$ para cualquier eigenvalor $\lambda$ de $T$. Esto lo veremos en el siguiente problema.

Problema. Sea $\lambda$ un eigenvalor de $T:V\to V$ y sea $P$ un polinomio en una variable con coeficientes en $F$. Demuestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

Solución. Como $\lambda$ es un eigenvalor de $T$, existe $v$ un vector no cero tal que $T(v)=\lambda v$. Inductivamente, se cumple que $T^{k}(v)=\lambda^{k} v$. En efecto

\begin{align*}
T^{k+1}(v)&=T(T^{k}(v))\\
&= T(\lambda^{k} v)\\
&= \lambda^{k}T(v)\\
&=\lambda^{k+1}v.
\end{align*}

Usando esto, si $P(X)=a_n X^{n}+\dots+a_1 X+a_0$ se tiene que

\begin{align*}
P(T)(v)&= a_nT^{n}(v)+\dots +a_1 T(v)+ a_0 v\\
&= a_n\lambda^{n}v+\dots +a_1\lambda v+a_0v\\
&= (a_n\lambda^{n}+\dots +a_1\lambda +a_0)v\\
&= P(\lambda) v.
\end{align*}

Esto muestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

$\square$

Relación con el polinomio mínimo

Una consecuencia del problema previo es la siguiente proposición.

Proposición. Sea $A\in M_n(\mathbb{C})$ una matriz y $P\in \mathbb{C}[X]$ un polinomio tal que $P(A)=O_n$. Entonces cualquier eigenvalor $\lambda$ de $A$ satisface $P(\lambda)=0$.

Solución. Por el problema anterior, $P(\lambda)$ es un eigenvalor de $P(A)$, pero $P(A)=O_n$ y el único eigenvalor de la matriz cero es $0$. Luego $P(\lambda)=0$.

$\square$

De esto, podemos por fin establecer una conexión con el polinomio mínimo, que enunciamos en forma de teorema.

Teorema. Sea $T:V\to V$ una transformación lineal sobre un espacio de dimensión finita sobre un campo $F$. Los eigenvalores de $T$ son precisamente las raíces en $F$ del polinomio mínimo $\mu_T$.

Demostración. Dado que $\mu_T(T)=0$, el problema que acabamos de resolver nos dice que todos los eigenvalores de $T$ son raíces de $\mu_T$.

Conversamente, supongamos que existe $\lambda$ una raíz de $\mu_T$ que no es eigenvalor. Entonces la transformación $T-\lambda \operatorname{Id}$ es invertible. Como $\mu_T(\lambda)=0$, podemos factorizar la raíz y escribir $\mu_T(X)=(X-\lambda)Q(X)$ para algún $Q\in F[X]$. Dado que $\mu_T(T)=0$ deducimos que

\begin{align*}
(T-\lambda \operatorname{Id})\circ Q(T)=0.
\end{align*}

Recordando una vez más que $T-\lambda \operatorname{Id}$ es invertible, esta ecuación implica que $Q(T)=0$. Ya que $\mu_T$ es el polinomio mínimo, por una propiedad que mostramos anteriormente obtendríamos que $\mu_T$ divide a $Q$. Pero esto se contradice con la igualdad $\mu_T(X)=(X-\lambda)Q(X)$, que nos dice que $\mu_T$ tiene grado mayor. Esto concluye la demostración.

$\square$

Ejercicios

Terminamos con un par de ejercicios para repasar el material de estas secciones. El primero de entre ellos toma prestados nombres de la probabilidad (lo lo cuál puede sugerirte en qué tipo de texto te podrías encontrar con estas matrices).

Problema 1. Una matriz $A\in M_n(\mathbb{R})$ se dice estocástica si $a_{ij}\geq 0$ para todo $i,j\in \{1,\dots, n\}$ y $\sum_{j=1}^{n} a_{ij}=1$ para todo $i\in \{1,\dots, n\}$.

Demuestra que $1$ es un eigenvalor de cualquier matriz estocástica.

Solución. Consideremos el vector $v=(1,\dots, 1)$. Nota que

\begin{align*}
A\cdot v&= \begin{pmatrix}
a_{11} & a_{12} &\dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots & \dots\\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{pmatrix} \cdot \begin{pmatrix}
1\\
1\\
\vdots\\
1
\end{pmatrix}\\
&= \begin{pmatrix}
a_{11}+a_{12}+\dots+a_{1n}\\
a_{21}+a_{22}+\dots+a_{2n}\\
\vdots\\
a_{n1}+a_{n2}+\dots+a_{nn}
\end{pmatrix}\\
&=\begin{pmatrix}
1\\
1\\
\vdots\\
1\end{pmatrix}.
\end{align*}

Es decir $A\cdot v=v$, por lo que $v$ es un eigenvector de $A$ con eigenvalor asociado $1$.

$\square$

Problema 2. Sea $V$ el espacio de todos los polinomios con coeficientes reales. Sea $T:V\to V$ la transformación lineal dada por $P(X)\mapsto P(1-X)$. ¿Cuáles son los eigenvalores de $T$?

Solución. Observa que
\begin{align*}T^2(P)&=T\circ T(P)\\&= T(P(1-X))\\&= P(1-(1-X))\\&= P(X).\end{align*} Así $T^2=\operatorname{Id}$, o bien $T^2-\text{Id}=0$. Luego, el polinomio mínimo $\mu_T$ tiene que dividir al polinomio $X^2-1$. Sin embargo, los únicos factores de este polinomio son $X-1$ y $X+1$. Dado que $T\neq \pm \operatorname{Id}$ se tiene que $\mu_T(X)=X^2-1$. Por el último teorema que vimos, los eigenvalores de $T$ son precisamente las raíces de $\mu_T$ en $\mathbb{R}$, es decir $\pm 1$.

$\triangle$

Más adelante…

En las entradas subsecuentes iremos más a fondo en el concepto de polinomio característico, para eventualmente llegar al teorema de Cayley-Hamilton. Para eso tendremos que equiparnos de bastante teoría y repasar varias propiedades de dicho polinomio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $V$ el espacio de polinomios con coeficientes reales de grado a lo más $n$. Encuentra los eigenvalores de la transformación $T:P(X)\mapsto P(X)-(1+X)P'(X)$.
  • Si $V$ es el espacio de polinomios con coeficientes reales, encuentra los eigenvalores de $T:P(X)\mapsto P(3X)$.
  • Sean $A,B$ matrices en $M_n(\mathbb{C})$ tales que $AB-BA=B$. Demuestra que para todo $k\geq 1$ se cumple que $AB^{k}-B^{k}A=kB^{k}$ y de esto deduce que $B$ es nilpotente: existe $m$ tal que $B^{m}=0$. Sugerencia: ¿Cuántos eigenvalores puede tener $T:X\mapsto AX-XA$?
  • ¿Puedes generalizar el último problema de la sección de matrices triangulares superiores?
  • Sea $A$ una matriz cuadrada con entradas reales. Supón que $\lambda$ es un real positivo que es eigenvalor de $A^2$. Demuestra que $\sqrt{\lambda}$ o $-\sqrt{\lambda}$ es un eigenvalor de $A$. ¿Sucederá a veces que sólo una de estas es eigenvalor?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Seminario de Resolución de Problemas: Polinomios asociados a matrices y el teorema de Cayley-Hamilton

Por Leonardo Ignacio Martínez Sandoval

Introducción

Para terminar esta serie de entradas de álgebra lineal, y con ello el curso de resolución de problemas, hablaremos de polinomios especiales asociados a una matriz: el polinomio mínimo y el polinomio característico. Después, hablaremos del teorema de Cayley-Hamilton, que a grandes rasgos dice que una matriz se anula en su polinomio característico.

Estos resultados forman parte fundamental de la teoría que se aprende en un curso de álgebra lineal. En resolución de problemas, ayudan mucho para entender a los eigenvalores de una matriz, y expresiones polinomiales de matrices.

Polinomio mínimo de una matriz

Podemos evaluar un polinomio en una matriz cuadrada de acuerdo a la siguiente definición.

Definición. Si $A$ es una matriz de $n\times n$ con entradas reales y $p(x)$ es un polinomio en $\mathbb{R}[x]$ de la forma $$p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

De manera análoga se puede dar una definición cuando las entradas de la matriz, o los coeficientes del polinomio, son números complejos.

Cuando una matriz está diagonalizada, digamos $A=P^{-1}DP$ con $P$ invertible y $D$ diagonal, entonces evaluar polinomios en $A$ es sencillo. Se tiene que $p(A)=P^{-1} p(D) P$, y si las entradas en la diagonal principal de $D$ son $d_1,\ldots,d_n$, entonces $p(D)$ es diagonal con entradas en la diagonal principal iguales a $p(d_1),\ldots,p(d_n)$.

Dada una matriz $A$, habrá algunos polinomios $p(x)$ en $\mathbb{R}[x]$ para los cuales $p(A)=0$. Si $p(x)$ es uno de estos, entonces cualquier eigenvalor de $A$ debe ser raíz de $p(x)$. Veamos un problema de la International Mathematics Competition de 2011 que usa esto. Es el Problema 2 del día 1.

Problema. Determina si existe una matriz $A$ de $3\times 3$ con entradas reales tal que su traza es cero y $A^2+ {^tA} = I_3$.

Sugerencia pre-solución. Busca un polinomio $p(x)$ tal que $p(A)=0$.

Solución. La respuesta es que no existe dicha matriz. Procedamos por contradicción. Si existiera, podríamos transponer la identidad dada para obtener que
\begin{align*}
A&=I _3- {^t(A^2)}\\
&=I_3-({^tA})^2\\
&=I_3-(I_3 – A^2)^2\\
&=2A^2 – A^4.
\end{align*}

De aquí, tendríamos que $A^4-2A^2+A = 0$, de modo que cualquier eigenvalor de $A$ debe ser una raíz del polinomio $$p(x)=x^4-2x^2+x=x(x-1)(x^2+x-1),$$

es decir, debe ser alguno de los números $$0,1,\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}.$$

Los eigenvalores de $A^2$ son los cuadrados de los eigenvalores de $A$, así que son algunos de los números $$0,1,\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}.$$

Como la traza de $A$ es $0$, la suma de sus tres eigenvalores (con multiplicidades), debe ser $0$. Como la traza de $A^2$ es la de $I_3-{ ^tA}$, que es $3$, entonces la suma de los eigenvalores de $A$ al cuadrado (con multiplicidades), debe ser $0$. Un sencillo análisis de casos muestra que esto no es posible.

$\square$

De entre los polinomios que se anulan en $A$, hay uno especial. El polinomio mínimo de una matriz $A$ con entradas reales es el polinomio mónico $\mu_A(x)$ de menor grado tal que $\mu_A(A)=O_n$, donde $O_n$ es la matriz de $n\times n$ con puros ceros. Este polinomio siempre es de grado menor o igual a $n$.

Una propiedad fundamental del polinomio mínimo de una matriz es que es mínimo no sólo en un sentido de grado, sino también de divisibilidad.

Teorema. Sea $A$ una matriz de $n\times n$ con entradas reales. Entonces para cualquier polinomio $p(x)$ en $\mathbb{R}[x]$ tal que $p(A)=O_n$, se tiene que $\mu_A(x)$ divide a $p(x)$ en $\mathbb{R}[x]$.

Veamos cómo se puede usar este resultado.

Problema. La matriz $A$ de $2\times 2$ con entradas reales cumple que $$A^3-A^2+A=O_2.$$ Determina los posibles valores que puede tener $A^2-A$.

Sugerencia pre-solución. Encuentra las posibles opciones que puede tener el polinomio mínimo de $A$ y haz un análisis de casos con respecto a esto.

Solución. La matriz $A$ se anula en el polinomio $$p(x)=x^3-x^2+x=x(x^2-x+1),$$ en donde $x^2-x+1$ tiene discriminante negativo y por lo tanto es irreducible.

El polinomio mínimo $\mu_A(x)$ debe ser un divisor de $p(x)$. Además, es de grado a lo más $2$. Esto nos deja con las siguientes opciones:

  • $\mu_A(x)=x$, de donde $A=O_2$, y por lo tanto $A^2=O_2$. De aquí, $A^2-A=O_2$.
  • $\mu_A(x)=x^2-x+1$. En este caso, tenemos que $A^2-A+I_2=0$. Así, $A^2-A=-I_2$.

Para mostrar que ambas opciones son posibles, en el primer caso usamos $A=O_2$ y en el segundo caso usamos $$A=\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

$\square$

Polinomio característico de una matriz

El polinomio característico de una matriz $A$ de $n\times n$ se define como $$\chi_A(x)=\det(xI_n – A).$$

Teorema. El polinomio característico de una matriz $A$ cumple que:

  • Es un polinomio mónico en $x$ de grado $n$.
  • El coeficiente del término de grado $n-1$ es la traza de $A$.
  • El coeficiente libre es $\chi_A(0)=(-1)^n\det(A)$.
  • Es igual al polinomio característico de cualquier matriz similar a $A$.

Para ver ejemplos de cómo obtener el polinomio característico y cómo usar sus propiedades, hacemos referencia a la siguiente entrada:

Propiedades del polinomio característico

En particular, para fines de este curso, es importante leer los ejemplos y problemas resueltos de esa entrada.

El teorema de Cayley-Hamilton y una demostración con densidad

Finalmente, hablaremos de uno de los resultados fundamentales en álgebra lineal.

Teorema (Cayley-Hamilton). Si $A$ es una matriz de $n\times n$ con entradas en $\mathbb{C}$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

En realidad el teorema de Cayley-Hamilton es válido para matrices más generales. Daremos un esbozo de demostración sólo para matrices con entradas complejas pues eso nos permite introducir una técnica de perturbaciones.

Esbozo de demostración. Vamos a hacer la técnica de la bola de nieve, construyendo familias poco a poco más grandes de matrices que satisfacen el teorema.

Si $A$ es una matriz diagonal, las entradas en su diagonal son sus eigenvalores $\lambda_1,\ldots, \lambda_n$. Por la discusión al inicio de esta entrada, $\chi_A(A)$ es diagonal con entradas $\chi_A(\lambda_1),\ldots,\chi_A(\lambda_n)$, y como los eigenvalores son raíces del polinomio característico, entonces todos estos valores son $0$, y por lo tanto $\chi_A(A)=0$.

Si $A$ es diagonalizable, digamos, de la forma $A=P^{-1} D P$, entonces $A$ y $D$ tienen el mismo polinomio característico. Por la discusión al inicio de la entrada, y por el caso anterior:
\begin{align*}
\chi_A(A) &= \chi_D(A)\\
&= \chi_D(P^{-1} D P)\\
&=P^{-1}\chi_D(D) P\\
&=P^{-1}O_n P \\
&=O_n.
\end{align*}

Si $A$ tiene todos sus eigenvalores distintos, se puede mostrar que $A$ es diagonalizable. Ahora viene la idea clave del argumento de continuidad.

Pensemos al espacio métrico de matrices de $n\times n$. Afirmamos que las matrices con eigenvalores todos distintos son densas en este espacio métrico. Para ello, tomemos una matriz $A$. En efecto, como estamos trabajando en $\mathbb{C}$, existe una matriz invertible $P$ tal que $P^{-1}A P$ es triangular. Como $P$ es invertible, define una transformación continua. Los eigenvalores de $P^{-1} A P$ son sus entradas en la diagonal, y podemos perturbarlos tan poquito como queramos para hacer que todos sean distintos.

De esta forma, existe una sucesión de matrices $A_k$, todas ellas diagonalizables, tales que $A_k \to A$ conforme $k\to \infty$. El resultado se sigue entonces de las siguientes observaciones:

  • Los coeficientes del polinomio característico de una matriz dependen continuamente de sus entradas.
  • Las entradas de potencias de una matriz dependen continuamente de sus entradas.
  • Así, la función $\chi_{M}(M)$ es continua en la matriz variable $M$.

Concluimos como sigue $\chi_{A_k}(A_k)=0$, por ser cada una de las matrices $A_k$ diagonalizables. Por la continuidad de $\chi_{M}(M)$, tenemos que
\begin{align*}
\chi_A(A)&=\lim_{k\to \infty} \chi_{A_k}(A_k)\\
&= \lim_{k\to \infty} O_n \\
&= O_n.
\end{align*}

$\square$

Terminamos esta entrada con un problema que usa el teorema de Cayley-Hamilton.

Problema. Muestra que para cualesquiera matrices $X,Y,Z$ de $2\times 2$ con entradas reales se cumple que
\begin{align*}
&ZXYXY + ZYXYX + XYYXZ + YXXYZ\\
= &XYXYZ + YXYXZ + ZXYYX + ZYXXY.
\end{align*}

Sugerencia pre-solución. Muestra que las matrices reales de $2\times 2$ de traza cero conmutan con cualquier matriz de $2\times 2$.

Solución. Si $A$ es una matriz de $2\times 2$ de traza cero, su polinomio característico es
\begin{align*}
\chi_A(x)&=x^2 – \text{tr}(A) x + \det(A)\\
&=x^2 + \det(A).
\end{align*}

Por el teorema de Cayley-Hamilton, se satisface entonces que $A^2=-\det(A) I_2$, así que $A^2$ es un múltiplo de la identidad, y por lo tanto conmuta con cualquier matriz de $2\times 2$.

La identidad que queremos mostrar se puede reescribir como $$Z(XY-YX)^2 = (XY-YX)^2Z.$$

La traza de $XY$ es igual a la traza de $YX$, y como la traza es una transformación lineal, tenemos que $$\text{tr}(XY-YX)= \text{tr}(XY)-\text{tr}(YX)=0.$$ El problema se termina aplicando la discusión de arriba a la matriz $$A=XY-YX.$$

$\square$

Más problemas

Puedes encontrar más problemas relacionados con el polinomio mínimo, el polinomio característico y el teorema de Cayley-Hamilton en la Sección 8.2, 8.4 y 8.5 del libro Essential Linear Algebra de Titu Andreescu. También hay más problemas relacionados con el teorema de Cayley-Hamilton en el Capítulo 4 del libro Mathematical Bridges de Andreescu, Mortici y Tetiva.