Archivo de la etiqueta: naturales

Álgebra Superior II: La relación de orden en los naturales

Por Roberto Manríquez Castillo

Introducción

Seguramente desde que construimos de forma intuitiva el conjunto de números naturales, te diste cuenta de que nuestra forma de generar nuevos números a través de la función sucesor, nos daba una jerarquía de qué número natural iba primero, y quien era el que inmediatamente le seguía. Así, el primer natural debería de ser el $0$, el cual debería ser menor a todos los demás. Después, seguiría $\sigma(0)=1$ el cual debería ser menor al sucesor de cualquier otro número. Este razonamiento podría seguir de forma inductiva para los demás números.

En esta entrada abordaremos el problema de cómo organizar el conjunto de naturales. Hay varias formas de definir esta relación. Pero el trabajo que realizamos en las dos entradas pasadas nos permitirá atacar dos problemas de manera sencilla: el de definir el orden en $\mathbb{N}$ y el de demostrar sus propiedades.

El orden parcial en $\mathbb{N}$

Recordemos que si $n$ es un número natural distinto de cero, entonces $n=\{0,1,…,n-1\}$. Entonces de forma intuitiva podemos afirmar que cada número natural tienen por elementos a todos los naturales «menores» a él. Usando esta idea, podemos dar las siguientes dos definiciones.

Definición. Si $n,m\in \mathbb{N}$, decimos que $n$ es menor que $m$, en símbolos, $n<m$ si $n\in m$.

Definición. Si $n,m\in \mathbb{N}$, decimos que $n$ es menor o igual que $m$, en símbolos $n\leq m$ si $n\in m$ o $n=m$.

Antes de lanzarnos a probar propiedades de estas relaciones, comenzaremos con verificar la segunda de ellas define un orden parcial.

Teorema. La relación $\leq$ es un orden parcial en $\mathbb{N}$.

Demostración. Recordemos que según la definición de orden parcial, debemos probar que $\leq$ es reflexiva, transitiva y antisimétrica, hagamos esto por pasos.

$\leq$ es reflexiva: Si $m$ es un natural, tenemos que $m=m$, por lo que por nuestra definición, podemos escribir que $m\leq m$.

$\leq$ es transitiva: Sean $n,m,l$ naturales tales que $n\leq m$ y $m\leq l$. Debemos demostrar que $n\leq l$. Si $n=m$ o $m=l$ la conclusión es inmediata de las hipótesis. En otro caso, tenemos que que $n\in m$ y $m\in l$. Como $l$ es un número natural, es un conjunto transitivo, entonces $n\in l$, por lo que $n\leq l$.

$\leq$ es antisimétrica: Si $n,m$ son naturales tales que $n\leq m$ y $m\leq n$, debemos demostrar que $n=m$. Para ver esto, procedamos por contradicción. Supongamos que no son iguales, entonces $n\in m$ y $m\in n$. Pero como ya hemos mencionado anteriormente, el hecho de que dos conjuntos pertenezcan mutuamente al otro es contradictorio con el axioma de regularidad. Entonces debe suceder que $n=m$ como queríamos.

$\square$

Propiedades del orden en los naturales

Ya mostramos que $\leq$ es un orden parcial en $\mathbb{N}$. Probemos otras propiedades que esperamos que satisfaga. Empezamos con la que mencionamos en la introducción de la entrada.

Teorema. $0\leq n$ para todo natural $n$

Demostración. Si $n=0$, el resultado se sigue de manera automática. Si $n\neq 0$, el resultado se sigue de que ya demostramos que $0$ está en cada natural distinto de $0$.

$\square$

La siguiente propiedad que probaremos es que la función sucesor sí preserva el orden que definimos.

Teorema. Si $n,m\in\mathbb{N}$ y $n<m$, entonces $\sigma(n)<\sigma(m)$

Demostración. Procedamos por inducción sobre $m$. Para el caso base debemos probar que la afirmación $n<0\Rightarrow\sigma(n)<0$, es verdadera. Sin embargo, el antecedente siempre es falso, ya que $n<0$ quiere decir que $n\in\emptyset$ lo cual es absurdo. Como el antecedente siempre es falso, entonces la base de inducción es verdadera.

Supongamos que para alguna $m$ se tiene que si $n<m$, entonces $\sigma(n)< \sigma(m)$. Debemos probar que el resultado es cierto para $\sigma(m)$. Supongamos entonces que $n<\sigma(m)$. Debemos probar que $\sigma(n)<\sigma( \sigma(m))$.

Como $n<\sigma(m)$, tenemos que $n\in \sigma(m)=m\cup \{m\}$, así que tenemos dos casos: $n\in m$ o $n\in\{m\}$.

Si $n\in m$, por hipótesis inductiva $\sigma(n)\in \sigma(m)$. Como $\sigma(m)\in \sigma(\sigma(m))$ y los naturales son transitivos, tenemos $\sigma(n)\in \sigma(\sigma(m))$, es decir, $\sigma(n)< \sigma(\sigma(m))$, como queríamos.

Finalmente, si $n\in \{m\}$, entonces $n=m$, pero así $\sigma(n)=\sigma(n)\in \sigma(\sigma(m))$, de modo que $\sigma(n)<\sigma(\sigma(m))$, como queríamos.

$\square$

El orden en los naturales es total

De entre los órdenes parciales hay un tipo de órdenes especiales: aquellos en los que cualesquiera dos elementos se pueden comparar. A estos se les conoce como órdenes totales. Los resultados de esta sección muestran que la relación $\leq$ en $\mathbb{N}$ es un orden total.

Un paso intermedio para demostrar esto es ver que si un número natural es menor que otro, entonces la función sucesor «no nos puede llevar muy lejos».

Teorema. Si $n,m$ son naturales tales que $m<n$, entonces se tiene que $\sigma(m)\leq n$.

Demostración. La hipótesis es imposible cuando $n=0$, pues no hay ningún natural menor a cero. Así, $n$ debe ser sucesor de algún otro natural, digamos $n=\sigma(k)$.

De $m<\sigma(k)$ tenemos que $m\in k\cup \{k\}$, así que $m\in k$, o $m=k$. Si $m\in k$, entonces $m<k$ y por el teorema anterior tenemos que $\sigma(m)<\sigma(k)=n$. Si $m=k$, entonces $\sigma(m)=\sigma(k)=n$. En cualquier caso tenemos $\sigma(m)\leq n$.

$\square$

El anterior teorema es equivalente a la afirmación siguiente.

Corolario. Si $n,m\in\mathbb{N}$, son tales que $m<n$ pero es falso que $\sigma(m)< n$, entonces $\sigma(m)=n$.

En estos momentos es conveniente regresar a leer las dos pruebas de los teoremas anteriores, y notar que en las demostraciones, cuando suponíamos que era falso que $n<m$ nunca supusimos que $n\geq m$. Sólo apelábamos directamente a la negación de la definición. Haber usado $n\geq m$ hubiera sido un error. En primer lugar, porque aún no hemos definido el símbolo $\geq$. Y en segundo lugar, porque aún no hemos descartado una cuarta posibilidad: que $n$ y $m$ no sean comparables. En realidad esto es imposible, pero hay que demostrarlo. En $\mathbb{N}$ el orden es total y de hecho satisface la propiedad de tricotomía que enunciamos a continuación.

Teorema. Para cualesquiera $n$ y $m$ naturales se cumple una y sólo una de las siguientes afirmaciones

  • $n=m$
  • $n< m$
  • $m< n$

Demostración. Ya hemos demostrado mediante el axioma de regularidad que estas proposiciones son mutuamente excluyentes. Sólo queda demostrar que siempre sucede por lo menos una de ellas. Demostraremos esto por inducción sobre $n$.

El caso base se reduce a probar que para cualquier $m$, se tiene que $0=m$, $0\in m$ o $m\in 0$. El primer teorema que probamos muestra que siempre se da la primera o la segunda opción.

Supongamos ahora que el resultado es cierto para alguna $n$. Debemos probarlo para $\sigma(n)$. Entonces sea $m\in\mathbb{N}$ arbitrario. Por hipótesis de inducción, $m$ es comparable con $n$, entonces podemos considerar tres casos:

$m=n$. Este caso es trivial porque entonces $m\in\sigma(n)$.

$m< n$. De nuevo tenemos que $m\in n\in \sigma(n)$, y por transitividad (del orden o de los conjuntos), tenemos que $m\in\sigma(n)$.

$n< m$. Por el teorema anterior, tenemos que en este caso, $\sigma(n)<m$ ó $\sigma(n)=m$.

De cualquier forma $\sigma(n)$ y $m$ son comparables. Esto termina la demostración.

$\square$

Para finalizar, hacemos la observación de que definir los símbolos $>$ y $\geq$ en $\mathbb{N}$ es sencillo. Simplemente, diremos que $n\geq m$ cuando $m\leq n$. Así mismo, diremos que $n>m$ cuando $m<n$.

Más adelante…

Ya empezamos a probar las propiedades del orden en $\mathbb{N}$. Sin embargo, falta ver una de las más importantes: el principio del buen orden. Esta lo veremos en la entrada siguiente. También veremos que, en cierto sentido, es equivalente al principio de inducción.

Otra cosa más que falta es ver que el orden que definimos «se comporta bien» con las operaciones de suma y producto en $\mathbb{N}$. Esto resultará de suma importancia para entradas posteriores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que si $n\leq m$, entonces $n<\sigma(m)$.
  2. Prueba que $n\leq m$ si y sólo si $n\subseteq m$.
  3. Generaliza el teorema de que $\in$ define un orden en $\mathbb{N}$, a que $\in$ define un orden en cualquier conjunto transitivo.
  4. Demuestra que $\leq$, restringido a $n \times n$ es un orden total en el conjunto $n$.
  5. Encuentra un conjunto $A$ con tantos elementos como números naturales y una forma de ordenarlo linealmente, tal que $A$ tiene elemento máximo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: El tamaño de los naturales y de cada natural

Por Roberto Manríquez Castillo

Introducción

En la entrada pasada, demostramos que todo número natural es el conjunto formado por los elementos $\{0,1,…,n-1\}$. Esto nos dice intuitivamente que cada número natural $n$, tiene exactamente $n$ elementos. Pero, de modo formal, ¿qué quiere decir que un conjunto tenga $n$ elementos? Esto lo precisaremos en esta entrada. Más aun, siguiendo esta idea, definiremos que quiere decir que un conjunto sea infinito. Después, veremos las propiedades que los conjuntos finitos e infinitos tienen.

El tamaño de los conjuntos

A la hora de pensar en determinar el tamaño de un conjunto, uno podría aventurarse y empezar a contar los elementos de este uno por uno. Esta forma de aproximar el problema no sólo parece muy laboriosa, sino que también presenta el problema de que no todos los conjuntos tienen la propiedad de que se pueda enlistar a sus elementos (aunque no lo definimos aún, seguramente has escuchado que el conjunto $\mathbb{R}$ de números reales no cumple esta propiedad).

De entrada, parecería que el problema de catalogar a los conjuntos por su tamaño es más complicado de lo que parece. Sin embargo, hay una idea famosa que viene a salvar la situación.

Imagina que eres el acomodador de una sala de cine con una cantidad desconocida de asientos (incluso posiblemente infinita) y que quieres sentar en ellos a un cierto conjunto de espectadores (cuya cantidad también se desconoce). Como dijimos anteriormente, la labor de contar todos los asientos de la sala podría ser demasiado complicada. ¿Cómo podríamos cerciorarnos de que cada espectador podrá tener un asiento?

La respuesta es inusualmente sencilla. La mejor forma de cerciorarse de que todos puedan sentarse, es pidiéndoles que se sienten. Si logran hacerlo de modo que a cada asistente le toque exactamente un asiento y no sobren asientos, podremos decir que hay el mismo número de personas que de lugares.

Notemos que de esta forma no necesitamos saber de forma explícita cuántas sillas hay, ni cuantas personas asistieron a la función, para saber que hay la misma cantidad de personas que de sillas. Formalmente hablando, hemos dado una relación entre el conjunto de personas y el de asientos.

Recordemos que a una relación entre conjuntos se le llama función si a cada elemento de nuestro dominio le corresponde uno y solo un elemento del codominio. Más aún, si a todo elemento del codominio, está relacionado con uno del dominio, la función se llamará suprayectiva. Si una función satisface que los elementos del codominio se relacionan con a lo más un elemento del dominio, se le llama función inyectiva. Cuando ambas condiciones se satisfacen, diremos que la función es biyectiva.

Nota que en el ejemplo de la sala de cine, si logramos hacer que todos los asistentes se sienten sin que sobre alguna silla, entonces la función que damos es una función biyectiva. Con estas observaciones, introducimos la siguiente definición.

Definición. Diremos que dos conjuntos $A$ y $B$ tienen la misma cantidad de elementos, o la misma cardinalidad, si existe una función biyectiva entre ellos. En este caso escribimos $\vert A\vert=\vert B \vert$.

El tamaño del conjunto $\mathbb{N}$

Aunque los conjuntos finitos parecen ser más cercanos a nuestra realidad, será más interesante definir primero qué son los conjuntos infinitos. Para ello usaremos una de las propiedades «raras» que estos tienen.

Definición. Diremos que un conjunto $X$ es infinito si existe un subconjunto propio $Y$ de $X$ y una función $f:X\to Y$ biyectiva entre ambos conjuntos.

Recuerda que un subconjunto propio es cualquier subconjunto que no sea el conjunto original. En otras palabras, un conjunto es infinito si tiene el mismo tamaño que alguno de sus subconjuntos propios.

Definición. Diremos que un conjunto es finito si no es infinito.

La propiedad que usamos para caracterizar a los conjuntos infinitos fue muy novedosa cuando se enunció por primera vez. Incluso con los años fue el origen de aparentes paradojas al sentido común. Si el tema te parece interesante, puedes leer o ver algún vídeo sobre el famoso Hotel de Hilbert.

Con nuestra definición lista, empezaremos a catalogar los conjuntos que ya conocemos en finitos e infinitos.

Teorema. El conjunto $\mathbb{N}$ de números naturales es infinito.

Demostración. Para demostrar esto, consideraremos el conjunto $\mathbb{N}\setminus\{0\}$. Este es un subconjunto propio de $\mathbb{N}$. Tomemos la función $\sigma:\mathbb{N}\to \mathbb{N}\setminus\{0\}$. De acuerdo con la definición de conjunto infinito hay que demostrar que $\sigma$ es biyectiva, es decir, que es inyectiva y suprayectiva.

El hecho de que el codominio esté bien definido y que $\sigma$ sea inyectiva, fue demostrado en la entrada La construcción de los naturales, a la hora de probar los axiomas de Peano. La prueba de la suprayectividad se dejó como un ejercicio moral en la entrada de Principio de inducción y teoremas de recursión, ya que se usó para la prueba del teorema de Recursión débil. De cualquier forma, a continuación damos esa prueba.

Demostraremos que $\{0\}\cup \sigma(\mathbb{N})$ es inductivo. Evidentemente $0\in\mathbb{N}$ , y si $n\in \{0\}\cup\sigma(\mathbb{N})$, entonces es trivial que $\sigma(n)\in\sigma(\mathbb{N})$. Entonces $\{0\}\cup \sigma(\mathbb{N})=\mathbb{N}$, por lo que $\sigma(n)$ sí es suprayectiva y por lo tanto biyectiva. Con esto se concluye la prueba.

$\square$

La idea de determinar si dos conjuntos tienen la misma cantidad de elementos usando funciones se puede extender un poco más. La usaremos a continuación para definir cuándo un conjunto tiene al menos tantos elementos como otro.

Definición. Decimos que un conjunto $A$ tiene a lo más tantos elementos como un conjunto $B$ si existe una función inyectiva $f:A\to B$. En este caso, escribimos $\vert A\vert\leq \vert B \vert$.

Todo número natural es finito

Como hemos visto, los conjuntos infinitos se comportan de forma inesperada. Sin embargo los conjuntos finitos sí se comportarán de una forma más intuitiva. El teorema siguiente ejemplifica esto.

Teorema. Si $A$ es un conjunto finito, y $f:A\to A$, entonces son equivalentes las siguientes tres afirmaciones:

  1. $f$ es biyectiva
  2. $f$ es inyectiva
  3. $f$ es suprayectiva

Demostración. Evidentemente, $1)\Rightarrow 2)$ y $1)\Rightarrow 3)$. Si logramos demostrar la equivalencia entre $2)$ y $3)$ terminaremos, pues al tener uno, tendríamos el otro y por lo tanto tendríamos ambas partes de la definición de biyectividad.

$2)\Rightarrow 3)$ Supongamos que $f$ es inyectiva y supongamos que $f$ no es suprayectiva. Entonces $f:A\to f(A)$ es una biyección de $A$ con un subconjunto propio, lo cual diría que $A$ es infinito. Esto es una contradicción, así que $f$ debe ser suprayectiva.

$3)\Rightarrow 2)$ Si $f$ es suprayectiva, entonces tiene inversa derecha, es decir, existe $g:A\to A$ tal que $f\circ g=Id_A$. A partir de esta igualdad se puede probar que $g$ es inyectiva. En efecto, si $g(a)=g(b)$, entonces $f(g(a))=f(g(b))$, pero entonces $a=b$. Por la implicación del párrafo anterior, $g$, también es suprayectiva. Pero con esto se puede mostrar que $f$ es inyectiva. Si tenemos $a$ y $b$ tales que $f(a)=f(b)$, tomemos $c$ y $d$ tales que $g(c)=a$ y $g(d)=b$. De aquí, $c=f(g(c))=f(g(d))=d$ y por lo tanto $a=g(c)=g(d)=b$.

$\square$

Sigamos estudiando propiedades de los conjuntos infinitos. El siguiente resultado es bastante intuitivo: si le quitamos un elemento a un conjunto infinito, sigue siendo infinito. La demostración es algo elaborada pues debemos hacerla a partir de nuestras definiciones.

Lema 1. Si $X$ es un conjunto infinito y $x\in X$, entonces $X\setminus \{x\}$ también es un conjunto infinito.

Demostración. Sea $f:X\to A $ una biyección de $X$ a un subconjunto propio $A$. Tenemos que considerar dos casos: que $x\notin A$ o que $x\in A$. Comencemos con el caso $x\notin A$.

Para mostrar que $X\setminus \{x\}$ es infinito, utilizaremos como subconjunto a $A\setminus\{f(x)\}$ y como función a la restricción de $f$ a $X\setminus\{x\}$. Debemos demostrar que $A\setminus\{f(x)\}$ es un subconjunto propio de $X\setminus \{x\}$ y que dicha restricción es una biyección.

Lo primero sucede ya que $$A\setminus\{f(x)\}\subsetneq A\subseteq X\setminus \{x\}.$$ El hecho de que $f:X\setminus \{x\}\to A\setminus\{f(x)\}$ sea una biyección es consecuencia directa de que originalmente $f:X\to A $ era una biyección. Los detalles quedan como tarea moral.

Si por el contrario $x\in A$, como $A\subsetneq X$ debe existir $x’\in X\setminus A$. Consideremos la función

\begin{align*}
&g: & &X & &\longrightarrow & (A\cup \{x’&\})\setminus \{x\}& \\
& & &y & &\mapsto & f(&y) &\text{ si } y\neq f^{-1}(x) \\
& & f^{-1}&(x) & &\mapsto & &x’ &
\end{align*}

Veamos que $g$ es una biyección entre $X$ y $(A\cup \{x’\})\setminus \{x\}$. Lo primero que notamos es que el codominio está bien definido ya que para todo $y\in X$ se tiene que $g(y)\neq x$ (¿por qué?).

Además es inyectiva, ya que si $g(y)=g(z)$, con $y\neq f^{-1}(x)\neq z$, entonces se tiene que $f(y)=g(y)=g(z)=f(z)$, y por la inyectividad de $f$ se tiene que $y=z$. Mientras que si $y=f^{-1}(x)$, tenemos que $g(y)=x’=g(z)$ si $z\neq f^{-1}(x)$, tendríamos que $x’=f(z)$, por lo que $x’\in A$ lo cual es absurdo, entonces $z=f^{-1}(x)=y$, así $g$ es efectivamente inyectiva.

Para probar que es suprayectiva, consideremos $z\in(A\cup \{x’\})\setminus \{x\}$. Si $z=x’$, entonces $g(f^{-1}(x))=x’$, mientras que si $z\in A\setminus \{x\}$, por la suprayectvidad de $f$, debe de existir $y$ tal que $f(y)=z$. Además $y\neq f^{-1}(x)$ ya que si lo fuera $f(f^{-1}(x))=x=z$, lo cual sería absurdo. Se tiene entonces que $g(y)=f(y)=z$.

Con esto probamos que $g$ es una biyección de $X$ a un subconjunto propio al que no pertenece $x$. Para concluir, aplicamos el primer caso.

$\square$

Usando el lema anterior es fácil dar un corolario importante sobre conjuntos finitos, cuya prueba queda como un ejercicio.

Corolario. Si $X$ es un conjunto finito, y $x$ es un conjunto arbitrario, entonces $X\cup \{x\}$ es también un conjunto finito.

Armados con este corolario, podemos dar uno de los teoremas importantes de esta entrada.

Teorema. Si $n$ es un natural, entonces $n$ es un conjunto finito.

Demostración. Procedamos por inducción. Si $n=0$, entonces $n=\emptyset$, entonces $n$ no tiene subconjuntos propios con los que pueda biyectarse, ya que no tiene subconjuntos propios. Entonces por vacuidad el vacío es finito.

Supongamos que $n$ es un natural finito. Debemos demostrar que $\sigma(n) $ es también finito. Pero como $\sigma(n)=n\cup\{n\}$, el paso inductivo es consecuencia del corolario anterior. Con esto concluimos la inducción.

$\square$

Caracterizando los conjuntos finito e infinitos

Ya probamos que cada número natural es finito y que el conjunto de todos los naturales es infinito. Lo siguiente que haremos es ver que estos conjuntos nos sirven para catalogar a todos los demás conjuntos en finitos o infinitos. Comenzamos con un lema bastante intuitivo: si con conjunto tiene un subconjunto infinito, entonces es infinito.

Lema 2. Si $X$ es infinito y $X\subset Y$ entonces $Y$ también es infinito.

Demostración. Como $X$ es infinito, existe una biyección $f$ entre $X$ y uno de sus subconjuntos propios $A$. Consideremos entonces $(Y\setminus X)\cup A\subsetneq Y$, y demos una biyección entre $Y$ y este conjunto dada por

\begin{align*}
&g: & &Y & &\longrightarrow &(Y\setminus &X)\cup A & \\
& & &y & &\mapsto & &y &\text{ si } y\notin Y\setminus X\\
& & &x & &\mapsto & f(&x) &\text{ si } x\in X
\end{align*}

Probaremos que esta función es una biyección. Primero, veamos que es inyectiva. Esto se debe a que si $g(x)=g(y)$ y $x\in X$, entonces $g(y)=g(x)=f(x)\in A\subset X$, entonces $g(y)$ está en $X$, y como $Y\setminus X$ es enviado en si mismo, debe pasar que $y$ también está en $X$, por lo que $f(y)=g(y)=f(x)$ y por la inyectividad de $f$, tenemos que $y=x$. Por el contrario, si $x\notin X$, se tiene que $g(x)=x=g(y)$ entonces $g(y)\notin X$, por lo que $y$ tampoco puede estar en $X$, así, $g(y)=y=x$.

Veamos ahora que la función es suprayectiva. Si $z\in(Y\setminus X)\cup A$, consideremos dos casos: $z\in Y\setminus X$ en cuyo caso $g(z)=z$, o $z\in A$, por lo que por la suprayectividad de $f$, debemos tener que existe $x\in X$ tal que $z=f(x)=g(x)$. Así, $g$ es suprayectiva y por lo tanto es una biyección..

$\square$

Ahora sí, pasamos a demostrar los teoremas con los que concluiremos la entrada.

Teorema. El conjunto de números naturales es el conjunto infinito más pequeño, es decir, que si $X$ es un conjunto infinito, entonces $\vert\mathbb{N}\vert\leq\vert X\vert$.

Demostración. Como $X$ es infinito, debe ser distinto del vacío. Así, existe $x_0\in X$. Consideremos el conjunto $X\setminus \{x_0\}$, por el lema 1 que demostramos, este es de nuevo infinito. Una vez más, no es vacío, entonces existe $x_1\in X\setminus \{x_0\}$, y el conjunto $X\setminus\{x_0,x_1\}=(X\setminus \{x_0\})\setminus\{x_1\}$ será de nuevo infinito. Procediendo de manera recursiva, podemos dar una función

\begin{align*}
h: &\mathbb{N} \to X \\
& n \mapsto x_n
\end{align*}

tal que todos los $x_n$ son distintos entre sí (esto se puede demostrar inductivamente). Pero entonces $h$ es una función inyectiva de $\mathbb{N}$ al conjunto $X$, que es precisamente nuestra definición de que $\vert\mathbb{N}\vert\leq \vert X\vert $.

$\square$

El regreso del teorema anterior es evidentemente cierto, es decir que si un conjunto $X$ cumple que $\vert\mathbb{N}\vert\leq \vert X\vert $, entonces $X$ es infinito. Queda como ejercicio demostrarlo.

Para finalizar la entrada, damos un resultado análogo al anterior, para conjuntos finitos.

Teorema. Si $X$ es un conjunto finito, entonces existe $n\in\mathbb{N}$ tal que $\vert X\vert =\vert n\vert$.

Demostración. Si $X=\emptyset$, entonces $\vert\emptyset\vert= \vert X\vert $. Si $X$ no es vacío, entonces existe $x_0\in X$. Consideremos entonces $X\setminus \{x_0\}$. Si este conjunto es vacío, significa que $X=\{x_0\}$ y claramente podríamos biyectarlo con el conjunto $\sigma(0)=\{0\}$. Si por el contrario, $X\setminus \{x_0\}\neq \emptyset$, podemos elegir $x_1\in X\setminus \{x_0\}$ y verificar la misma condición.

Necesariamente debemos de terminar en algún momento pues, de otro modo, podremos usar el teorema de recursión para construir una función inyectiva de $\mathbb{N}$ a $X$. Esto diría que $X$ sería infinito, lo cual sería absurdo.

Entonces debe ocurrir que existe una $n$ tal que $X\setminus\{x_0,x_1,…,x_n\}$ es vacío, por lo que $X=\{x_0,x_1,…,x_n\}$, y por lo tanto podemos biyectarlo con $\sigma(n)$.

$\square$

Más adelante…

Así como los conjuntos transitivos, la teoría que se desarrolla al estudiar las cardinalidades de los conjuntos es un área de estudio importante en la teoría de conjuntos. Aunque no lo veremos a profundidad, la teoría que acabamos de desarrollar es suficiente para comparar la cardinalidad de la mayoría de los conjuntos que veamos con total precisión. Esto será cierto para, conjuntos como $\mathbb{Z}$ (el de los números enteros) o $\mathbb{Q}$ (el de los números racionales). No será sino hasta que definamos el conjunto de números reales que tendremos un conjunto con una cardinalidad estrictamente mayor que la de $\mathbb{N}$.

En la siguiente entrada definiremos el orden de los naturales, para lo cual de nuevo pensaremos a los números naturales como conjuntos. Más aún, las propiedades que estudiamos en la entrada pasada, serán de suma importancia a la hora de definir el buen orden de un conjunto. Esta es una propiedad que usamos anteriormente sin prueba, cuando demostramos el teorema de Recursión.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Supón que diriges un hotel con tantas habitaciones como números naturales. Supón que todas tus habitaciones se encuentran ocupadas, y de repente llega una persona solicitando un cuarto. ¿Cómo puedes hospedarlo sin desalojar a ningún cliente? Supón ahora que después llega un camión con tantas personas como números naturales, todas buscando un cuarto. ¿De qué forma puedes acomodarlos a ellos y a todos los clientes ya hospedados?
  2. Completa los detalles de la prueba del lema 1.
  3. Demuestra el corolario de la entrada: Si $X$ es un conjunto finito, y $x$ es un conjunto arbitrario, entonces $X\cup \{x\}$ es también un conjunto finito.
  4. Demuestra que si $X$ es tal que $\vert\mathbb{N}\vert\leq \vert X\vert $, entonces $X$ es infinito.
  5. Demuestra por inducción que si $X$ es infinito y $A$ es un subconjunto con $k$ elementos, entonces $X\setminus A$ es infinito. Si $A$ tiene tantos elementos como naturales, ¿el resultado sigue siendo cierto?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Conjuntos transitivos

Por Roberto Manríquez Castillo

Introducción

En las últimas cuatro entradas hemos visto al conjunto de números naturales como elementos del conjunto $\mathbb{N}$. Sin embargo, no debemos olvidar que los números naturales son también conjuntos. Y al ser conjuntos, cada uno de los naturales tiene unos ciertos elementos que los caracterizan de forma unívoca.

Pensando en esto, recordemos el ejercicio 5 de la Tarea moral de las notas sobre la Construcción de los naturales:

Problema. Muestra que si $n\neq 0$, entonces $n=\{0,1,2,…,n-1\}$.

En otras palabras, como conjunto, cada natural consiste exactamente de los números naturales anteriores. Antes de empezar a leer esta entrada, y si aún no lo has hecho, te invitamos a intentar este problema. Aunque comenzaremos la siguiente sección dando una prueba, es bueno que intentes familiarizarte por tu cuenta con lo que será necesario hacer pues dicho resultado será importante para la teoría que veremos en esta entrada.

Dos propiedades de los números naturales

Para empezar, y por la importancia de la aseveración, probamos justo el ejercicio comentado en la introducción. Primero, notemos que como en la hipótesis se pide que $n\neq0$, entonces tiene sentido hablar del número $n-1$. Aunque no hemos definido a la resta en los números naturales, podemos definir a esta expresión como el único número $m$ tal que $\sigma(m)=n$

Teorema. Si $n\neq 0$, entonces $n=\{0,1,2,…,n-1\}$.

Demostración. Procedamos por inducción sobre $n$. Como el resultado es a partir de $1$, la base inductiva corresponde al caso $n=1$. Este caso es claro, ya que por definición,
\begin{align*}
1&=\sigma(0)\\&=\sigma(\emptyset)\\&=\emptyset\cup\{\emptyset\}\\&=\{0\}.
\end{align*}

Supongamos que para alguna $n$, se tiene que $n=\{0,1,…,n-1\}$, y probemos que el resultado también es cierto para $\sigma(n)$. Para ello, se usa la siguiente cadena de igualdades, en la cual te invitamos a pensar por qué se da cada igualdad: $$\sigma(n)=n\cup\{n\}=\{0,1,…,n-1\}\cup\{n\}=\{0,1,…,n-1,n\}.$$

Esto termina el paso inductivo y por lo tanto la demostración.

$\square$

Consideremos un número natural y ocupemos este resultado para examinarlo como conjunto. Para no hacer la notación muy larga, veamos como ejemplo al $4$. Por el teorema anterior, tenemos que
\begin{align*}
4&=\{0,1,2,3\}\\&=\{\emptyset,\{0\},\{0,1\},\{0,1,2\}\}.
\end{align*}

Analizando cada elemento del conjunto $4$, podemos ver que cada uno de los elementos (ya expandidos) de nuestro conjunto, es a su vez un subconjunto del $4$. Por ejemplo, uno de los elementos de $4$ es el conjunto $2=\{0,1\}$, que claramente es un subconjunto de $4$. Pensando de forma similar, no debe ser difícil convencerse, al menos de forma intuitiva, que esta propiedad será satisfecha de manera más general en los naturales.

Motivados por lo anterior, enunciamos el teorema siguiente, y damos una prueba formal usando el principio de Inducción.

Teorema. Si $n$ es un número natural y se tiene que $y\in n$, entonces $y\subseteq n$.

En este punto es muy importante recordar que $y\in n$ significa que $y$ es un elemento de $n$, mientras que $y\subseteq n$ significa que $y$ es un subconjunto de $n$, es decir, que todo elemento de $y$ también es elemento de $n$. Pasemos a la demostración.

Demostración. De nuevo procedamos por inducción. Si $n=0$, la proposición $y\in0$ es falsa, ya que $0=\emptyset$. Como el antecedente es falso, la proposición $y\in0\Rightarrow y\subseteq0$, es verdadera, y así probamos el caso base (como $y=\emptyset$, a esto también se le conoce como una prueba por vacuidad).

Supongamos que el resultado es cierto para alguna $n$, es decir que si $y\in n$, entonces $y\subseteq n$. Probemos que también es cierta la afirmación al substituir $n$ por $\sigma(n)$.

Sea $y\in \sigma(n)=n\cup\{n\}$. Por la definición de la unión hay dos casos: o bien $y\in n$, o bien $y\in \{n\}$.

Tratemos el primer caso. Si $y\in n$, entonces por la hipótesis de inducción, tenemos que $y\subseteq n$, pero por definición de $\sigma(n)$ tenemos que $n\subseteq \sigma(n)$. Como la contención de conjuntos es transitiva, concluimos que $y\subseteq \sigma(n)$.

El caso restante es $y\in\{n\}$. En este caso, el único elemento en el conjunto del lado derecho es $n$, así que debe suceder que $y=n$. De aquí es inmediata la contención buscada, pues $y=n\subseteq \sigma(n)$. En cualquier caso, obtenemos lo que que queremos. Así la inducción y la prueba concluyen.

$\square$

Conjuntos transitivos y un ejemplo

Nota que la propiedad de un conjunto $X$ si $y\in X$ entonces $y\subseteq X$, es equivalente a la propiedad de que si $z\in y\in X$ entonces $z\in X$. En general, esta propiedad no se satisface para cualquier conjunto. Es así que motivamos la siguiente definición.

Definición. Se dice que un conjunto $X$ es transitivo, si $Z\in Y\in X$ implica que $Z\in X$.

Los conjuntos transitivos son de suma importancia en la teoría de conjuntos, y probablemente conocerás más de ellos si llevas algún curso de esa materia. Un estudio profundo de estos conjuntos se sale de los fines de nuestro curso, pero podemos decir unas pocas cosas más. Con esta nueva definición podemos reformular el teorema de la sección anterior como sigue.

Teorema. Cada uno de los números naturales es un conjunto transitivo.

Como mencionamos, los conjuntos transitivos parecen ser una clase muy particular de conjuntos. Sin embargo, podemos mencionar otro conjunto transitivo de suma importancia: el conjunto $\mathbb{N}$. Esperamos que así como hicimos con los números naturales, puedas formarte una intuición de por qué esta afirmación es cierta, usando el teorema inicial.

Antes de dar la prueba, consideramos pertinente hacer mención de los límites del principio de inducción. En el teorema anterior, probamos que cada número natural es transitivo, nunca se probó que $\mathbb{N}$, fuese transitivo. De la misma forma, si en algún momento pruebas que una afirmación es cierta para cualquier número natural, esa misma afirmación podría dejar de ser cierta al considerar el caso de todo el conjunto $\mathbb{N}$. Encontraremos ejemplos de esto en entradas posteriores. Ahora sí, enunciamos el teorema.

Teorema: El conjunto $\mathbb{N}$ de números naturales es transitivo.

Demostración. Debemos probar que si $n\in \mathbb{N}$, entonces $n\subseteq \mathbb{N}$. Es decir, que todo número natural es un subconjunto de $\mathbb{N}$. Para esto, usaremos inducción sobre $n$.

Evidentemente la base es cierta ya que $0=\emptyset$ es un subconjunto de todo conjunto, en particular del de los naturales.

Supongamos que para un natural fijo $n$ sucede que $n\subseteq\mathbb{N}$ y a partir de ello probemos que $\sigma(n)$ también es un subconjunto de los naturales.

Para ver que esto es cierto, usamos que $\sigma(n)=n\cup \{n\}$. Esta es una unión de conjuntos, así que basta ver que cada uno está contenido en $\mathbb{N}$. Por un lado, $\{n\}$ está contenido en los naturales, ya que su único elemento es el número $n$, que está en $\mathbb{N}$. Por otro lado, por hipótesis de inducción, $n\subseteq\mathbb{N}$. Concluimos entonces, como queríamos, que $\sigma(n)\subseteq \mathbb{N}$.

$\square$

Nota que el teorema inicial de la sección es un refinamiento de este teorema. No sólo nos dice que los números naturales están contenidos en $\mathbb{N}$. Además, también especifica quiénes son los elementos de $n$.

Más adelante…

El teorema que demostramos al inicio de la entrada tendrá de nuevo mucha importancia en el siguiente tema. Aunque demostramos que cada número $n$ es el conjunto de los $n$ elementos menores que el, necesitamos definir qué significa que un conjunto tenga $n$ elementos. Motivados por esta idea, y por las características de los números naturales, definiremos también la idea de que un conjunto tenga una cantidad infinita de elementos. Veremos que, como podrás intuir, el conjunto $\mathbb{N}$ de todos los números naturales es en verdad un conjunto infinito y que en cierto sentido formal es el «más pequeño» de todos estos conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que $\{2,3\} $ no es un conjunto transitivo ¿Quién es el mínimo conjunto transitivo que lo contiene?
  2. Prueba que si $X$ y $Y$ son transitivos, entonces $X\cap Y$ es transitivo.
  3. Demuestra que si $X$ es transitivo, entonces $\bigcup X$ también es un conjunto transitivo.
  4. Prueba que en general que si $X$ es transitivo, entonces $\sigma (X)$ también es transitivo.
  5. Demuestra que un conjunto es transitivo si y solo si $\bigcup X\subset X$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Otras definiciones recursivas en los naturales (exponenciación y factorial)

Por Roberto Manríquez Castillo

Introducción

En las entradas pasadas hemos dado la definición recursiva de la suma y del producto usando el teorema de la recursión débil y probamos las propiedades elementales de estas operaciones usando el principio de inducción.

Continuando con esta línea de pensamiento, en esta entrada definiremos las funciones exponenciales usando las funciones producto; sin embargo, para definir estas funciones, también ocuparemos el teorema de recursión débil. Para ver que no enunciamos en vano la versión fuerte de este teorema, daremos como aplicación la definición de la función factorial, y de la misma forma a como lo hicimos antes, probaremos algunas de sus propiedades haciendo uso del principio de Inducción. Sin embargo, dejaremos algunas de las propiedades como ejercicio para que puedas practicar este tipo de pruebas una vez más.

Exponenciación en los naturales

Desde la educación elemental nos enseñan que «multiplicar es sumar repetidas veces» y que «exponenciar es multiplicar repetidas veces». Formalicemos esta intuición mediante el teorema de recursión.

Definición: Sea $m\in \mathbb{N}$. Definimos $\eta_{m}:\mathbb{N}\longrightarrow\mathbb(N),$ como la función que satisface las siguientes propiedades:

  1. $\eta_{m}(0)=1$
  2. $\eta_m(\sigma(n))=p_{m}(\eta_{m}(n)) $

Así como lo hemos hecho con la definición de producto y de suma, introduciremos la «notación usual» para hablar de esta función. En este caso, definimos $m^n:=\eta_m(n)$.

De este modo, en términos de las notaciones usuales, podemos suplir la propiedad (2) de la definición anterior como $m^{n+1}=m\cdot m^n$.

Las potencias de $0$ y de $1$

Así como lo hicimos con la suma y el producto, analizaremos de forma especial a las funciones $\eta_{0}$ y $\eta_{1}$.

Teorema: Tenemos que $\eta_{0}(0)=1$ y si $n\neq 0$, entonces $\eta_{0}(n)=0$.

La demostración queda como un ejercicio moral. La buena noticia es que hemos trabajado lo suficiente como para no tener que realizar una prueba por inducción. Cuando intentes demostrar esto por tu cuenta, recuerda qué sucede cuando multiplicamos por $0$.

Notemos que así como lo definimos, $0^0$ es $1$ en los números naturales. Sin embargo, como veremos más adelante y como posiblemente lo sabrás ya, la expresión $0^0$ no estará definida en otros sistemas numéricos como los números reales. Al igual que «$0$ es un natural», la definición de $0^0$ frecuentemente varía dependiendo del contexto.

Teorema: Tenemos que $\eta_{1}(n) =1$ para todo $n$ en los naturales.

Demostración. Para este resultado sí procederemos por inducción sobre $n$. Por la parte (1) de la definición de $\eta_{1}$, tenemos que $\eta_{1}(0)=1$. Esta es nuestra base de inducción.

Supongamos que $\eta_{1}(n)=1$. Queda demostrar que $\eta_{1}(\sigma(n))=1.$ Sin embargo esto se sigue ya que por definición, $\eta_{1}(\sigma(n))=1\cdot\eta_{1}(n)=1\cdot 1=1$. Te invitamos a identificar los argumentos que se ocuparon en cada paso.

$\square$

La exponencial no conmuta ni asocia

Como la notación que ocupamos para las funciones $\eta_{m}$ no es tan simétrica como la que ocupamos para el producto o para la suma, uno puede esperar que esta operación no sea en general conmutativa. En efecto esto es cierto, solo basta notar que

$0^1\neq1^0$

Así mismo la exponenciación no es en general asociativa, es decir que existen casos en que

$(n^m)^l\neq n^{(m^l)}$

Encontrar un contraejemplo queda como un ejercicio moral.

Le exponenciación y otras operaciones

Cuando estudiamos el producto de números naturales, vimos que esta operación se distribuye sobre la suma, entonces una buena pregunta es preguntarnos qué pasa cuando mezclamos la exponenciación con el producto y la suma. Quedará como ejercicio dar contraejemplos a todas las siguientes proposiciones:

  1. $n^{(l\cdot m)}=n^l\cdot n^l$
  2. $(l+m)^n=l^n+m^n$
  3. $n^{l+m}=n^l+n^m$

Sin embargo, probaremos dos teoremas conocidos usualmente como las leyes de los exponentes. El primero de ellos dice que por la izquierda, la exponenciación sí se distribuye sobre el producto.

Teorema: Si $a,b,n\in\mathbb{N}$, entonces $(a\cdot b)^n=a^n\cdot b^n$.

Demostración. Procedamos por inducción sobre $n$. De la definición de exponencial, tenemos que $(a\cdot b)^0=1=1\cdot 1= a^0\cdot b^0$, por lo que la base de inducción es cierta.

Supongamos que para algún $n$ se tiene que $(a\cdot b)^n=a^n\cdot b^n$ y probemos que $(a\cdot b)^{\sigma(n)}=a^{\sigma(n)}\cdot b^{\sigma(n)}$. Esto es cierto ya que

\begin{align*}
(a\cdot b)^{\sigma(n)}&=(a\cdot b)\cdot (a\cdot b)^n\\
&=(a\cdot b)\cdot (a^n\cdot b^n)\\
&=(a\cdot a^n)\cdot (b\cdot b^n)\\
&=a^{\sigma(n)}\cdot b^{\sigma(n)}
\end{align*}

A diferencia de las entradas anteriores ya ocupamos sin mención las propiedades ya demostradas o la hipótesis de inducción; sin embargo, sería bueno que detallaras las pruebas.

$\square$

Aunque vimos que en general no podemos hablar de que la exponencial se distribuya, sí hay importantes relaciones que notaremos en los siguientes dos teoremas.

Teorema: Si $a,b,n\in\mathbb{N}$, entonces $a^{b+n}=a^b\cdot a^n$.

Demostración. De nuevo procederemos por inducción sobre $n$. Si $n=0$, entonces $a^{b+0}=a^b =a ^b \cdot 1=a^b \cdot a^0$, con lo que probamos la base de inducción.

Supongamos entonces que para algún $n$ se tiene que $a^{b+n}=a^b\cdot a^n$, y demostremos el caso para $\sigma(n)$. Sabemos que

\begin{align*}
a^{b+ \sigma(n)}=&a^{\sigma(b+n)}\\
=&a\cdot a^{b+n}\\
=&a\cdot (a^b\cdot a^n)\\
=&a^b\cdot (a \cdot a^n)\\
=&a^b\cdot a^{\sigma(n)}
\end{align*}

Con esto termina la prueba.

$\square$

El siguiente teorema queda como ejercicio de la tarea moral, para que puedas practicar.

Teorema: Si $a,b,n\in\mathbb{N}$, entoces $(a^b)^n=a^{b\cdot n}$.

El factorial

Hasta ahora, sólo hemos ocupado el teorema de recursión débil a la hora de definir las operaciones. A pesar de que antes demostramos que ambas versiones del teorema son equivalentes, la siguiente definición mostrará la naturalidad que tiene el ocupar el teorema de Recursión Fuerte para algunas cosas.

Definición: Se define la función factorial, $f:\mathbb{N}\to \mathbb{N}$, como la única función dada por el teorema de recursión fuerte que cumple que

  • $f(0)=1$
  • $f(\sigma(n))=p_{\sigma(n)}(f(n))$

Usaremos la notación $n!:=f(n)$. Así, la primer parte de la definición dice que $0!=1$ y la segunda dice que $(n+1)!=(n+1)\cdot n!$.

Notemos que en la definición anterior es necesario ocupar el teorema de Recursión Fuerte ya que en cada paso damos una función distinta. En concreto, para dar la definición en $\sigma(n)$ usamos a la función $p_{\sigma(n)}$.

El factorial es una función que jugará un papel importante en varios temas que verás en la facultad. Tiene una fuerte relación con contar cosas, el cual es un tema que posiblemente hayas estudiado en Álgebra Superior II. Aparece al contar las permutaciones de objetos, pero también como parte de la fórmula para los coeficientes binomiales $\binom{n}{k}$. También, lo encontraremos en este curso a la hora de enunciar el teorema de Wilson de teoría de números, pero necesitamos definir más cosas antes de llegar ahí.

Sin embargo, algo que sí podemos hacer ahora es demostrar una propiedad interesante que satisface el factorial.

Proposición: Para todo $n\in \mathbb{N}$, se tiene que $0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+1=(n+1)!$

Demostración. Procederemos por inducción, el caso base es claro ya que $0\cdot 0!+1= 0+1=1!.$

Supongamos que el resultado es cierto para alguna $n$ y con esta suposición probemos que

$0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+(n+1)\cdot(n+1)!+1=(n+2)!$.

Sabemos por nuestra hipótesis de inducción que

\begin{align*}
&0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+(n+1)\cdot(n+1)!+1\\
=&(0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+1)+(n+1)\cdot(n+1)! \\
=&(n+1)!+ (n+1)\cdot(n+1)!\\
=&(n+1)!(1+n+1)\\
=&(n+1)!(n+2)\\
=&(n+2)!
\end{align*}

En la primer igualdad estamos usando la conmutatividad y asociatividad de la suma. En la segunda igualdad, la hipótesis de inducción. Para la tercer igualdad estamos factorizando el término $(n+1)!$. El resto de igualdades se siguen de las definiciones.

$\square$

Resumen de las propiedades de los exponentes

Para finalizar con la entrada, hacemos un repaso de las propiedades que demostramos, posiblemente las conozcas como las leyes de los exponentes

  • Para todo $n$ número natural, se tiene que $n^0=1$
  • Si $n\neq 0$,entonces $0^n=0$
  • Para todo $n$ número natural, se tiene que $n^1=n$
  • Para todo $n$ número natural, se tiene que $1^n=1$
  • Para $l,m,n$ naturales, se tiene que $(l\cdot m)^n=l\n\cdot m^n$
  • Para $l,m,n$ naturales, se tiene que $n^{l+m}=n^l\cdot n^m$
  • Para $l,m,n$ naturales, se tiene que $n^{l\cdot m}=(n^l)^m$

Más adelante…

Con esta entrada, acabamos con las definiciones de operaciones a través de los teoremas de Recursión; sin embargo, no podemos decir que no ocuparemos este teorema en futuras ocasiones, al menos de forma implícita, mucho menos nos olvidaremos del principio de Inducción, el cuál irá siempre adherido al concepto de número natural.

En las siguientes entradas, estudiaremos otro tipo de propiedades de los naturales, relacionadas con el orden y el tamaño que estos tienen. Sin embargo, aún ocuparemos las operaciones que definimos y las relacionaremos; por ejemplo, con el orden que les daremos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra los contraejemplos que faltaron en la entrada
  2. Da la demostración de que $0^n=0$, para toda $n$
  3. Prueba que para todos los naturales $a,b,n$, se tiene que $(a^b)^n=a^{b\cdot n}$
  4. El factorial consiste en «multiplicar los primeros enteros». ¿Qué pasa si queremos hacer algo análogo para sumar los primeros enteros? Da una definición recursiva de una función $S(n)=0+1+2+…+n$, ¿por qué en realidad no es necesario dar una definición recursiva de esta función?
  5. Demuestra que si $n,m$ son naturales tales que existe $k\in\mathbb{N}$ tal que $n\cdot k=n^k=m$, entonces $n^m=m^n$. El regreso de esta afirmación es también verdadero, pero para verlo formalmente, necesitamos desarrollar más teoría.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Definición del producto y sus propiedades básicas

Por Roberto Manríquez Castillo

Introducción

En la entrada anterior, nos dedicamos a buscar una definición apropiada para la suma de números naturales, y después nos dedicamos a probar las propiedades más elementales que esta operación satisface.

Ahora es el turno de la multiplicación o producto, que se definirá de forma similar a la suma, ya que ocuparemos el teorema de Recursión Débil, y para probar sus propiedades ocuparemos el principio de Inducción.

Te motivamos a releer la entrada anterior y pensar unos momentos en el ejercicio 5 de la entrada anterior.

Definición del producto

Así como con la suma, recurriremos a una definición recursiva, la cual existe en virtud del teorema de Recursión.

Definición. Sea $m\in\mathbb{N}$, defnimos la función $p_{m}:\mathbb{N}\longrightarrow\mathbb{N}$, como la función que satisface las propiedades siguientes:

  1. $p_{m}(0)=0$.
  2. $p_{m}(\sigma(n))=s_{m}((p_{m}(n))$.

Denotaremos a $p_{m}(n)$ como $m\cdot n$, o simplemente como $mn$

Ejemplo. Para aclarar la definición anterior, consideremos $p_{7}$ y realicemos el diagrama conmutativo correspondiente a su definición recursiva.

Recordemos que las flechas indican a donde es mandado cada elemento bajo cada función, entonces las flechas verticales, justamente son las que nos indican los valores de $p_{7}$ en cada número natural, observemos que estos valores coinciden con la conocida tabla del $7$.

$\triangle$

Aprendiendo a multiplicar por uno

En este momento, demostraremos las propiedades más importantes del producto. Tenemos la fortuna de que contamos con una buena cantidad de propiedades de las funciones $s_{n}$, las cuales ya podremos usar sin ningún problema, más aún, para simplificar la notación haremos uso de la notación $m+n$, en vez de la notación $s_{m}(n)$, cada vez que se pueda.

Siguiendo la idea anterior, mencionamos la siguiente identidad, que es solo una reformulación del punto (2) de la definición del producto, pero que nos servirá para esclarecer la mayor parte de las pruebas.

Observación. $a\cdot\sigma(n)=a+(a\cdot n)$.

Para referir a esta observación en una demostración ocuparemos el símbolo $\overset{*}{=}$.

Proposición. Para toda $n\in\mathbb{N}$, se tiene que $p_{1}(n)=n$, es decir, $1\cdot n=n$

Demostración. Como se esperaba, la prueba es por inducción sobre $n$.

Base inductiva: Por la definición de $p_{1}$, tenemos que $p_{1}(0)=0$.

Hipótesis de inducción: Supongamos que para algún $n$, se tiene que $p_{1}(n)=n$

Paso inductivo: Debemos demostrar que $p_{1}(\sigma(n))=\sigma(n)$, esto se sigue por las siguientes igualdades

\begin{align*}
p_{1}(\sigma(n))&\overset{*}{=}1+(p_{1}(n))\\ &\overset{\text{H.I.}}{=}1+n=\sigma(n).
\end{align*}

Donde la última igualdad se da recordando que en la entrada anterior probamos que $s_{1}(n)=\sigma(n)$.

$\square$

Con esto hemos aprendido a multiplicar por $1$.

Aprendiendo a multiplicar por cero

Proposición. Para toda $n\in\mathbb{N}$, se tiene que $p_{0}(n)=0$.

Demostración. Procedamos por inducción sobre $n$, la base inductiva es directa de la definición, ya que $p_{0}(0)=0$.

Nuestra hipótesis de inducción consiste en suponer que para alguna $n$ se tiene que $p_{0}(n)=0$. Entonces queda demostrar que $p_{0}(\sigma(n))=0$. Esto se sigue de las siguientes igualdades.

\begin{align*}
p_{0}(\sigma(n))&\overset{*}{=}0+p_{0}(n)\\ &\overset{\text{H.I.}}{=}0+0=0
\end{align*}

$\square$

La propiedad distributiva izquierda

La siguiente propiedad es una de las más famosas, ya que nos permitirá relacionar la suma y el producto, además jugará un papel importante en la demostración de las siguientes propiedades.

Proposición (propiedad distributiva izquierda). Si $a,b,n$ son números naturales, entonces $p_{s_{a}(b)}(n)=s_{p_{a}(n)}(p_{b}(n))$, u ocupando la notación familiar $(a+b)\cdot n=(a\cdot n)+(b\cdot n)$.

Demostración. Procedamos por inducción, como podrás notar con todas estas demostraciones, la inducción será sobre la variable que aparezca más a la derecha de nuestras expresiones, es decir, la inducción será sobre $n$.

Base inductiva: Por la definición del producto tenemos que, $(a+b)\cdot 0=0$, y por las propiedades que demostramos para la suma, concluimos que $0=0+0$, sin embargo; de nuevo por la definición del producto, $0=(a\cdot n)$ y $0=(b\cdot n)$, uniendo todas estas igualdades concluimos que $(a+b)\cdot 0=(a\cdot n)+(b\cdot n)$, justo como queremos.

Hipótesis de inducción: Supongamos que para algún $n$ se tiene que $(a+b)\cdot n=(a\cdot n)+(b\cdot n)$.

Paso inductivo: Debemos probar que $(a+b)\cdot\sigma(n)=(a\cdot\sigma(n))+(b\cdot\sigma(n))$. Por la observación que hicimos, tenemos

\begin{align*}
(a+b)\cdot\sigma(n)&\overset{*}{=}(a+b)+((a+b)\cdot n)\\ &\overset{\text{H.I.}}{=}(a+b)+((a\cdot n)+(b\cdot n))
\end{align*}

A partir de aquí, el resultado se seguirá usando la asociatividad y la conmutatividad de la suma, en la siguiente cadena de igualades detallamos la demostración paso a paso ¿Puedes identificar cómo ocupamos las propiedades de la suma?.

\begin{align*}
(a+b)+((a\cdot n)+(b\cdot n))&=a+(b+((a\cdot n)+(b\cdot n)))\\
&=a+((b+(a\cdot n))+(b\cdot n))\\
&=a+(((a\cdot n)+b)+(b\cdot n))\\
&=a+((a\cdot n)+(b+(b\cdot n)))\\
&=(a+(a\cdot n))+(b+(b\cdot n))\\
&\overset{*}{=}(a\cdot \sigma (n))+(b\cdot \sigma (n))
\end{align*}

$\square$

Aunque la prueba anterior fue un poco más confusa que las anteriores, las consecuencias que tendrá esta proposición serán sumamente importantes.

El producto es conmutativo

Como mencionamos, la asociatividad y la conmutatividad, serán una consecuencia de las propiedades distributivas, por el momento veamos que en efecto el producto conmuta.

Proposición (conmutatividad). Si $m,n\in \mathbb{N}$, entonces $m\cdot n=n\cdot m$.

Demostración. Una vez más hagamos la prueba por inducción sobre $n$

Base inductiva: Por definición tenemos que $m\cdot 0 =0$, además $p_{0}(m)=0$ por lo demostrado antes, es decir que $m\cdot 0=0=0\cdot m$

Hipótesis de inducción: Supongamos que para alguna $n$, se tiene que $m\cdot n=n\cdot m$.

Paso inductivo: Debemos probar que $m\cdot\sigma(n)=\sigma(n)\cdot m$. Esto se sigue ya que

\begin{align*}
m\cdot\sigma(n)&\overset{*}{=}m+(m\cdot n)\\
&\overset{\text{H.I.}}{=}m+(n\cdot m)
\end{align*}

Pero ya demostramos que $m=1\cdot m$, usando esto y la propiedad ditributiva, podemos concluir que

\begin{align*}
m+(n\cdot m)&=(1\cdot m )+(n\cdot m)\\
&=(1+n)\cdot m=\sigma(n)\cdot m
\end{align*}

$\square$

Con la conmutatividad, podemos probar de manera inmediata el siguiente resultado

Corolario (propiedad distributiva derecha). Si $a,b,n$ son números naturales, entonces $a\cdot(b+ n)=(a\cdot b)+(a\cdot n)$.

La prueba queda como un ejercicio moral, en parte porque su prueba no requiere Inducción. Con este resultado, podemos probar la propiedad asociativa del producto.

El producto es asociativo

Con la propiedad distributiva derecha , podemos dar la demostración de la propiedad asociativa del producto.

Proposición (asociatividad). Si $a,b,n$ son números naturales, se tiene que $a\cdot(b\cdot n)=(a\cdot b)\cdot n$.

Demostración. De nuevo procedamos por inducción sobre $n$

Base inductiva: Notemos que por definición, para cualquier número natural $m$ se tiene que $0=p_{m}(0)=m\cdot 0$. Con esto en mente tenemos que, $(a\cdot b)\cdot(0)=0=a\cdot 0=a\cdot(b\cdot 0)$ que es justo la base de inducción.

Hipótesis de Inducción: Supongamos que para alguna $n\in \mathbb{N}$, tenemos que $(a\cdot b)\cdot n=a\cdot(b\cdot n)$

Paso Inductivo: Demostremos que $(a\cdot b)\cdot\sigma(n)=a\cdot(b\cdot \sigma(n))$. Como

\begin{align*}
(a\cdot b)\cdot\sigma(n)&\overset{*}{=}(a\cdot b)+(a\cdot b)\cdot n\\
&\overset{\text{H.I.}}{=}(a\cdot{b})+a\cdot(b\cdot n)\\
&=a\cdot (b+b\cdot n)\\
&\overset{*}{=}a\cdot(b\cdot \sigma (n))
\end{align*}

la igualdad que no está justificada es la aplicación de la propiedad distributiva.

$\square$

Ley de la cancelación

Para concluir con las propiedades del producto, enunciamos la propiedad de la cancelación del producto, recordemos que esta propiedad también es válida para la suma. Para hacer esta prueba necesitamos trabajar un poco.

Recordemos el ejercicio 2 de la Tarea moral de la entrada Principio de inducción y teoremas de recursión, el cual ya hemos ocupado anteriormente:

Si $n\neq0$, entonces existe $a\in \mathbb{N}$ tal que $n=\sigma(a)$

De la misma forma, el ejercicio 1 de la Tarea moral de la entrada pasada dice que:

Si $a,b\in\mathbb{N}$ son tales que $a+b=0$, entonces $a=b=0$

Con estos resultados en mente probamos el siguiente lema.

Lema. Si $n\neq 0$ y $m\in \mathbb{N}$ es tal que $m\cdot n=0$, entonces $m=0$.

Demostración. Como $n\neq0$, entonces existe $a\in \mathbb{N}$, tal que $n=\sigma(a)$, entonces tenemos que

\begin{align*}
0&=m\cdot n\\
&=m\cdot\sigma(a)\\
\overset{*}{=}m+(m\cdot a).
\end{align*}

Entonces tenemos que $m\cdot a=0$ y que $m=0$ que es lo que debíamos probar.

$\square$

Es común usar una equivalencia lógica del enunciado anterior, la cual dice:

Si $n,m\in \mathbb{N}\setminus\{0\}$, entonces $n\cdot m\in \mathbb{N}\setminus\{0\}$

Proposición (ley de cancelación). Si $m,n$ son números naturales y $a\neq0$ y cumplen que $a\cdot n=a\cdot m$, entonces, $n=m$

Demostración. De nuevo, procedamos por inducción sobre $n$

Base inductiva: Supongamos que $n=0$ y $a\neq0$, entonces $a\cdot m=a\cdot n=a\cdot0 =0,$ por el Lema tenemos que $m=0=n$.

Hipótesis de inducción: Supongamos que para algún $n$, tenemos que si $a\neq0$ y $a\cdot n=a\cdot m$, entonces $n=m$.

Paso inductivo: Probemos para $\sigma(n)$, sea $a\neq 0$ y supongamos que $a\cdot\sigma(n)=a\cdot m$.

Como $\sigma(n)\neq 0$, y por hipótesis, $a\neq0$, entonces por la equivalencia del lema, concluimos que $a\cdot\sigma(n)\neq 0$, de donde $a\cdot m\neq 0$, esto implica que $m\neq 0$, por lo que existe $b$ tal que $m=\sigma(b)$, entonces podemos escribir

\begin{align*}
a+a\cdot n& \overset{*}{=}a\cdot\sigma(n)\\
&=a\cdot m\\
&=a\cdot\sigma(b)\\
&\overset{*}{=}a+a\cdot b
\end{align*}

Ocupando la ley de cancelación de la suma, tenemos que $a\cdot n=a\cdot b$.

Pero por hipótesis de inducción debemos de tener que $n=b$, esto quiere decir que $\sigma(n)=\sigma(b)=m$, justo como debíamos probar.

$\square$

Con esta prueba concluimos las propiedades más fundamentales del producto.

Resumen de las propiedades del producto

Para finalizar con la entrada, haremos un compendio de las propiedades que demostramos

  • Para todo $n$ natural, se tiene que $1\cdot n=n=n \cdot 1$
  • Para todo $n$ natural, se tiene que $0\cdot n=0=n \cdot 0$
  • Para $l,m,n$ naturales cualesquiera se tiene que $(l+m)\cdot n=(l\cdot n)+(m\cdot n)$
  • Para $m,n$ naturales se tiene que $m\cdot n=n\cdot m$
  • Para $l,m,n$ naturales cualesquiera se tiene que $l\cdot(m+n)=(l\cdot m)+(l\cdot n)$
  • Para $l,m,n$ naturales cualesquiera se tiene que $(l\cdot m)\cdot n=l\cdot(m\cdot n)$
  • Para $m,n$ naturales con $m\neq 0$, si $m\cdot n=0$, entonces $n=0$
  • Para $l,m,n$ naturales con $l\neq 0$, si $l\cdot n=l\cdot m$, entonces $n=m$

Más adelante…

Con las propiedades de la suma y del producto en nuestra bolsa de herramientas, tenemos ya una rica teoría que desarrollar; nos falta aún definir una relación muy familiar en el conjunto $\mathbb{N}$, el orden, al cual ya hemos apelado en la demostración del teorema de la Recursión Débil.

Por el momento estudiaremos con mayor detalle los conjuntos infinitos, donde veremos la importancia de los naturales dentro de esta clase de conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba la Propiedad distributiva derecha.
  2. Usando únicamente la ley de cancelación el producto, demuestra el Lema previo a la demostración de la ley de cancelación.
  3. ¿Qué pasa si en el enunciado de la ley de la cancelación, no asumimos que $a\neq 0$?
  4. Demuestra usando el Lema previo a la demostración de la ley de cancelación que si $n,m\in \mathbb{N}\setminus\{0\}$, entonces $n\cdot m\in \mathbb{N}\setminus\{0\}$.
  5. Da una definición recursiva de las funciones $\eta_{m} (n)=m^n$ y prueba las leyes de los exponentes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»