Archivo de la etiqueta: gravicentro

Geometría Moderna I: Medianas y centroide

Por Rubén Alexander Ocampo Arellano

Introducción

En la entrada puntos nobles del triangulo, vimos que las medianas de un triangulo concurren en un punto, al que llamamos centroide, y que este punto tiene la propiedad de trisecar a las medianas. En esta entrada estudiaremos algunas propiedades más de las medinas y el centroide.

Medianas como los lados de un triángulo

Teorema 1. Si con las medianas de un triángulo dado construimos otro triangulo, entonces cada mediana del triángulo construido es igual a tres cuartos uno de los lados del triángulo dado.

Demostración. Sean ABC y AA´, BB y CC las medianas del triángulo.

Construimos DCB tal que CB=BD, como C´B´ es un segmento medio de ABC entonces CBBC y 2CB=BC.

Lo anterior implica que ◻BBAD es un paralelogramo y por lo tanto BB=AD.

Figura 1

Como las diagonales de ◻ACCD se cortan en su punto medio entonces ◻ACCD es un paralelogramo, por lo tanto, CC=AD, entonces los lados de AAD son las medianas de ABC, por criterio LLL, cualquier otro triangulo con los mismos lados será congruente con AAD.

Sea E=AACB, como AC es un segmento medio de ABC entonces ◻ACAB es un paralelogramo, por lo tanto, E es el punto medio de AA y de CB.

Por lo anterior tenemos que DE es mediana de ADA y que DE=34, pues por construcción CB=BD.

Dado que CD=BC DE=34BC.

Con una construcción similar podemos ver que las otras medianas de ADA son iguales a 34AC y 34AB.

Observación. Notemos que si seguimos este proceso de construir triángulos con las medianas del triángulo anterior obtenemos dos grupos de triángulos semejantes, un grupo conformado por el primer, el tercer, el quinto triángulo etc. En el otro grupo estarían el segundo, el cuarto triángulo … ambos con razón de semejanza 34.

◼

Corolario 1. El área de un triángulo construido con las medianas de un triángulo dado, es igual a tres cuartos el área del triángulo dado.

Demostración. El área de ADA (figura 1) es igual a la suma de las áreas de EDA y EDA que tienen la misma base ED y la suma de sus alturas es igual a la altura de ABC y por el teorema 1, DE=34BC.

Por lo tanto,
(ADA)=(EDA)+(EDA)=ED×h12+ED×h22
=34BC(h1+h2)2=34(ABC).

◼

Construcciones

Problema 1. Construir un triángulo dadas las longitudes de sus medianas ma, mb y mc.

Por el teorema 1, sabemos que las medianas del triángulo cuyos lados son ma, mb y mc, están en proporción 34 a los lados del triángulo buscado.

Para encontrar las medianas del triángulo con lados ma, mb y mc, podemos construir este triangulo y luego sus medianas o podemos calcular sus longitudes con el teorema de Apolonio.

Después, multiplicamos cada valor obtenido por 43 y así obtendremos los lados del triangulo requerido.

◼

Problema 2. Dados una circunferencia y un punto dentro de esta, es posible inscribir en la circunferencia una infinidad de triángulos que tienen como centroide el punto dado.

Demostración. Sean Γ(O) y G la circunferencia y el punto dado, tomamos AΓ(O), sobre la recta AG construimos A tal que GA=AG2.

Si A cae dentro de Γ(O) por A trazamos una perpendicular a OA que interseca a Γ(O) en B en C, como BOC es isósceles y OA es la altura por O, entonces A es el punto medio de BC.

Figura 2

En ABC se cumple que AA es mediana y G triseca a AA, como el centroide de un triángulo es el único que tienen esa propiedad, entonces G es el centroide de ABC.

Notemos que A y A están en homotecia con centro en G y razón 12, como A describe una circunferencia, A describe una circunferencia.

Entonces hay dos posibilidades, que la homotecia de Γ(O) este totalmente contenida dentro de ella, con lo que con cualquier punto A de Γ(O) será posible hacer la construcción previa, o la homotecia de Γ(O) este parcialmente contenida dentro de Γ(O) y solo con un arco de Γ(O) será posible hacer la construcción.

Finalmente, notemos que no es posible que la homotecia de Γ se encuentre completamente fuera de esta pues G es un punto interior de Γ.

◼

Una propiedad del centroide

Lema. Sea P un punto dentro de un triángulo ABC, entonces las áreas (APB)=(APC) si y solo si P se encuentra en la mediana AA.

Demostración. Supongamos que (APB)=(APC). Como APB y APC tienen la misma base AP entonces sus alturas son iguales es decir la distancia de B a AP es igual a la distancia de C a AP.

Figura 3

Ahora consideremos A=APBC, los triángulos APB y ACP tienen la misma base PA, por lo anterior sus alturas por B y C respectivamente también son iguales y así sus áreas son iguales (APB)=(ACP).

Por otro lado, para ambos triángulos, APB y ACP, la altura trazada por P es la misma, esto implica que las respectivas bases son iguales, es decir BA=AC.

Por lo tanto, P está en la mediana trazada por A.

Recíprocamente supongamos que P es un punto en la mediana AA, como los pares de triángulos BAA, ACA y BAP, ACP tienen la misma altura desde A y P respectivamente, entonces
(BAA)=(ACA) y (BAP)=(ACP),

Por lo tanto,
(BAA)(BAP)=(ACA)(ACP)
(APB)=(APC).

◼

Teorema 2. Sea G un punto dentro de un triángulo ABC, entonces (AGB)=(AGC)=(BGC) si y solo si G es el centroide de ABC.

Demostración. Supongamos que (AGB)=(AGC)=(BGC), por el teorema anterior esto ocurre si y solo si G está en la intersección de las medianas, si y solo si G es el centroide de ABC.

◼

Proposición 1. Sean ABC con BC=a, AC=b y AB=c. Sean G el centroide y P, Q, R los pies de las perpendiculares desde G a los lados AB, BC y AC respectivamente, entonces
(PQR)=49(ABC)3(a2+b2+c2a2b2c2).

Figura 4

Demostración. Por el teorema 3, AGB, AGC y BGC tienen la misma área, entonces
(BGC)=BC×GQ2
GQ=2(BGC)a=2(ABC)3a.

De manera análoga tenemos que
GP=2(ABC)3c y GR=2(ABC)3b.

Notemos que en ◻PBQG, P+Q=π, en consecuencia tenemos que
G+B=π
sinPGQ=sinB

Recordemos que podemos calcular el área de ABC con la formula acsinB2.

Ahora calculamos
(PGQ)=GP×GQsinB2

=4(ABC)29ac(ABC)ac

=4(ABC)39a2c2.

De lo anterior se sigue que
(PQR)=(PGQ)+(QGR)+(RGP)

=4(ABC)39a2c2+4(ABC)39a2b2+4(ABC)39b2c2

=49(ABC)3(a2+b2+c2a2b2c2).

◼

Distancia entre el centroide y el circuncentro

Teorema 3. Sean ABC, G su centroide y P un punto en el plano, entonces tenemos la siguiente igualdad
PA2+PB2+PC2=GA2+GB2+GC2+3PG2.

Demostración. Consideremos A y M puntos medios de BC y AG respectivamente, con el teorema de Apolonio podemos calcular las medianas de los triángulos BPC, APM y GPA y tomemos en cuenta que GA=MA.

Figura 5

Por lo tanto,
PB2+PC2=2PA2+BC22,
PG2+PA2=2PM2+GA22,
PA2+PM2=2PG2+MA22=2PG2+GA22.

Sumando las tres expresiones y recordando que GA=2GA, obtenemos
PA2+PB2+PC2=(PA2+PM2)+PG2+GA2+BC22
=2PG2+GA22+PG2+GA2+BC22
=3PG2+GA2+2GA2+BC22.

Ahora aplicamos el teorema de Apolonio a BGC y obtenemos
GB2+GC2=2GA2+BC22.

Por lo tanto,
PA2+PB2+PC2=3PG2+GA2+GB2+GC2.

◼

Proposición 2. La suma de los cuadrados de las distancias del centroide de un triángulo a sus vértices es igual a un tercio la suma de los cuadrados de los lados del triángulo.

Demostración. Sea ABC con a=BC, b=AC y c=AB, con la formula para las medianas obtenemos:
GA2=49AA2=49(b2+c22a24),
GB2=49BB2=49(a2+c22b24),
GC2=49CC2=49(a2+b22c24).

Por lo tanto,
GA2+GB2+GC2=a2+b2+c23.

◼

Corolario 2. La distancia entre el centroide G y el circuncentro O de un triángulo ABC con circunradio R se puede expresar de la siguiente forma:

OG2=R2(a2+b2+c29).

Demostración. Por el teorema 3 y la proposición 2 tenemos lo siguiente
3R2=OA2+OB2+OC2=3OG2+GA2+GB2+GC2
=3OG2+a2+b2+c23.

Despejando OG2 obtenemos el resultado
OG2=R2(a2+b2+c29).

◼

Más adelante…

En la siguiente entrada estudiaremos algunas propiedades de un triangulo especial asociado a un triangulo dado, aquel que tiene como vértices los puntos medios del triangulo dado. Esto nos permitirá mostrar que el ortocentro, el centroide y el circuncentro de un triángulo siempre son colineales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Construye un triángulo dados dos vértices y el centroide.
  2. Prueba que en un triángulo la recta que une el punto medio de una de sus medianas con uno de los vértices del triángulo triseca el lado opuesto al vértice considerado.
  3. Muestra que las medianas de un triángulo dividen al triangulo en seis triángulos que tienen la misma área.
  4. Demuestra que en un triangulo,
    i) entre cualesquiera dos de sus medianas la menor de ellas biseca al lado mas grande,
    ii) si dos de sus medianas son iguales entonces el triangulo es isósceles.
  5. Sean ABC y AA, BB, CC sus medianas, muestra que 34(AB2+BC2+AC2)=AA2+BB2+CC2.
  6. Sea ABC con medianas AA, BB y CC, sean m=AA+BB+CC y s=AB+BC+CA, muestra que 32s>m>34s.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 65-71.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 80-84.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 14.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Puntos notables del triángulo

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiamos la concurrencia de rectas importantes en el triangulo, a saber, las medianas, mediatrices, bisectrices y alturas. Mencionamos también consecuencias inmediatas de los puntos de concurrencia.

Centroide

Teorema 1. Las medianas de todo triángulo concurren en un punto que las triseca.

Demostración. Sean ABC, B y C los puntos medios de AC y AB respectivamente, por el teorema del segmento medio sabemos que CB=BC2 y CBBC.

Figura 1

Sea G la intersección de las medianas BB y CC, en GBC consideremos M y N los puntos medios de los lados GB y GC respectivamente, entonces
MN=BC2 y MNBC.

Por transitividad CB=MN y CBMN, esto implica que ◻CMNB es un paralelogramo y por lo tanto sus diagonales se bisecan, es decir,
CG=GN y MG=GB.

Por construcción, MG=BM y GN=NC
GB=BB3 y CG=CC3,
esto es, la medianas BB y CC se trisecan

Si repetimos el mismo procedimiento pero ahora con las medianas AA y BB encontraremos un punto G en donde las medianas se trisecaran, GB=BB3 y GA=AA3.

Como GB=BB3=GB, concluimos que G=G.

Por lo tanto, las medianas de un triángulo concurren en un punto que las triseca.

◼

Definición 1. Decimos que el punto en que concurren las medianas de un triángulo es el gravicentro, baricentro o centroide del triángulo y lo denotamos con la letra G mayúscula.

Figura 2

Circuncentro

Teorema 2. Las mediatrices de los lados de todo triángulo son concurrentes.

Demostración. Sea ABC, consideremos las mediatrices lc y lb de AB y AC respectivamente y O=lblc.

Figura 3

En la entrada desigualdad del triángulo y lugar geométrico mostramos que un punto está en la mediatriz de un segmento si y solo si equidista a los puntos extremos del segmento.

Ya que Olc y Olb, entonces OA=OB y OA=OC
OB=OC.

Por el resultado mencionado anteriormente OB=OC implica que Ola, la mediatriz de BC.

Por lo tanto, las mediatrices de un triángulo son concurrentes.

◼

Corolario. Tres puntos distintos y no colineales se encuentran en una única circunferencia.

Demostración. Sea ABC, por el teorema anterior las mediatrices de los segmentos determinados por los vértices del triángulo concurren en un punto O cuya distancia a cada uno de los vértices es la misma R=OA=OB=OC.

Por definición de circunferencia, A, B y C pertenecen a la circunferencia con centro en O y radio R, A, B, C(O,R)=Γ.

Ahora supongamos que existe Γ=(O,R) tal que A, B, CΓ, entonces, por definición, OA=OB=OC=R.

Esto implica que Ola, Olb y Olc, las mediatices de BC, AC y AB respectivamente,
Olalblc.

Como ya probamos que las mediatrices son concurrentes entonces O=O y R=R, así que Γ es única.

◼

Definición 2. Al punto de concurrencia de las mediatrices de los lados de un triángulo le llamamos circuncentro y lo denotamos como O.

A la distancia constante de O a los vértices del triángulo le llamamos circunradio denotado con la letra R mayúscula.

A la circunferencia única (O,R) determinada por los vértices del triángulo se le conoce como circuncírculo.

Figura 4

Incentro

Teorema 3. Las bisectrices interiores de todo triángulo son concurrentes.

Demostración. Sean lB y lC las bisectrices de los ángulos interiores en B y C respectivamente e I=lBlC.

Figura 5

En la entrada desigualdad del triángulo y lugar geométrico mostramos que un punto está en la bisectriz de un ángulo si y solo si equidista a los lados que forman el ángulo. Recordemos que la distancia de un punto a una recta es la longitud del punto al pie de la perpendicular a la recta trazada desde el punto.

Denotamos la distancia de un punto P a una recta l como (P,l).

Como Ilb e Ilc, entonces (I,AB)=(I,BC) y (I,BC)=(I,AC),
(I,AB)=(I,AC).

Por el resultado citado anteriormente, (I,AB)=(I,AC) implica que IlA, la bisectriz interior de A.

Por tanto, las bisectrices interiores de un triángulo son concurrentes.

◼

Si consideramos los pies de las perpendiculares a los lados del triángulo trazados desde el punto en que concurren las bisectrices, encontramos tres puntos distintos que equidistan a un punto fijo y por el corolario anterior estos determinan una única circunferencia, esto motiva la siguiente definición.

Definición 3. Al punto de concurrencia de las bisectrices interiores de un triángulo se le conoce como incentro del triángulo y lo denotamos con la letra I mayúscula.

A la distancia de I a los lados del triángulo le llamamos inradio y lo denotamos como r=(I,AB)=(I,BC)=(I,AC).

La circunferencia con centro en I y radio r, (I,r), se llama incírculo.

Figura 6

Excentros

Teorema 4. En todo triángulo las bisectrices exteriores de dos ángulos y la bisectriz interior del tercer ángulo son concurrentes.

Demostración. Sea ABC, lA y lC las bisectrices exteriores de A y C respectivamente e Ib=lAlC.

Figura 7

De manera análoga al caso de las bisectrices internas tenemos que
como IblA e IblC, entonces (Ib,AB)=(Ib,AC) y (Ib,AC)=(Ib,BC),
(Ib,AB)=(Ib,BC).

Como Ib está en la región acotada por el ángulo CBA entonces IlB, la bisectriz interior de B.

Por lo tanto, la bisectriz interna de B y las bisectrices externas de A y C son concurrentes.

De manera análoga probamos que las bisectrices externas de A y B concurren con la bisectriz interna de C, y las bisectrices externas de B y C concurren con la bisectriz interna de A.

◼

Similarmente a como lo hicimos con el incentro, notamos que, para cada uno de estos tres puntos de concurrencia, existen tres puntos distintos, uno en cada lado del triángulo que equidistan a un punto fijo y por lo tanto determinan una única circunferencia.

Definición 4. A los puntos en que concurren dos bisectrices externas y una bisectriz interna de un triángulo les llamamos excentros del triángulo y los denotamos como Ia, Ib e Ic de acuerdo a si se encuentran en la bisectriz interna de A, B o C respectivamente y decimos que son opuestos a dichos vértices.

Las distancias de Ia, Ib e Ic a los lados del triángulo son los exradios y se les denota como ra, rb y rc respectivamente.

A las circunferencias (Ia,ra), (Ib,rb) y (Ic,rc) se les conoce como excírculos del triángulo.

Figura 8

Ortocentro

Teorema 5. Las alturas de todo triángulo son concurrentes.

Demostración. Sea ABC, tracemos en cada vértice la paralela al lado opuesto.

Sean A la intersección de la paralela a AB trazada en C con la paralela a AC trazada en B, de manera análoga definimos B y C.

Figura 9

Por construcción, ◻ABCB es un paralelogramo por lo que AB=BC, también ◻CBCA es paralelogramo así que CA=BC,
AB=BC=CAA es el punto medio de CB.

De manera similar podemos ver que B es el punto medio de CA y C es el punto medio de AB.

En consecuencia, las alturas del triángulo ABC son las mediatrices del triángulo CAB y ya probamos que las mediatrices de los lados de todo triangulo son concurrentes, por lo tanto, las alturas de ABC son concurrentes.

◼

Definición 5. Al punto en común en que las tres alturas de un triángulo se intersecan le llamamos ortocentro y lo denotamos con la letra H mayúscula.

Figura 10

Más adelante…

En la siguiente entrada demostraremos algunos teoremas que nos permitirán calcular la magnitud de ángulos relativos a una circunferencia.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Qué puntos notables vistos en esta entrada, caen siempre dentro del triangulo y cuales siempre fuera?
  2. Muestra que una recta paralela a un lado de un triangulo a través del centroide divide el área del triangulo en dos partes tal que la razón de esta áreas es 45.
  3. Considera un triangulo rectángulo ABC con B=π2, sean CC la mediana por C y D el pie de la perpendicular a CC trazada desde B (figura 11), calcula la distancia de D al centroide G del triangulo en términos de los catetos.
Figura 11
  1. Un triángulo rectángulo tiene un ángulo interior de π3, calcula la distancia del vértice donde se intersecan los catetos al incentro I del triángulo en términos de la hipotenusa.
  2. Sea ABC un triángulo tal que la mediana AD es perpendicular a la mediana BE, encuentra AB si BC=a y AC=b.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 29-34.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 65-94.
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Vectores en geometría

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, comenzamos esta serie de entradas de geometría platicando de algunas técnicas euclideanas o sintéticas que se pueden usar para resolver problemas en el plano. Después, tomamos herramientas de la geometría analítica, las cuales nos permiten poner problemas en términos de coordenadas y ecuaciones. Lo que haremos ahora es ver varios ejemplos del uso de vectores en geometría.

A diferencia de la geometría analítica, cuando hablamos de soluciones por vectores estamos hablando de aquellas que aprovechan la estructura de espacio vectorial en R2. En otras palabras, usamos argumentos en los cuales pensamos a los puntos del plano como vectores, los cuales tienen una dirección y una magnitud. Los vectores tienen operaciones de suma y de producto por un escalar. Además, tienen producto punto, norma y transformaciones dadas por matrices. Apenas tocaremos la superficie del tipo de teoría que se puede usar. Un buen curso de álgebra lineal te puede dar más herramientas para resolver problemas geométricos.

Interpretar puntos como vectores

Pongamos un origen O en el plano. A cada punto P le corresponden ciertas coordenadas dadas por parejas de reales (x,y), que identificaremos con P. Al origen le corresponden las coordenadas (0,0). Si tenemos otro punto Q=(w,z), entonces su suma es el vector P+Q=(x+w,y+z). Si tomamos un real r, el vector rP es el vector de coordenadas (rx,ry).

Suma de vectores
Suma de vectores

La suma P+Q se puede encontrar mediante la ley del paralelogramo: los puntos O,P,P+Q,Q hacen un paralelogramo en ese orden cíclico. La resta QP está definida por Q+(1)P, y la llamamos el vector PQ. Geométricamente coincide con el vector que va «de P a Q». Observa que el orden es importante y que OP=P.

Resta de vectores
Resta de vectores

Proposición (de la razón). Si tenemos dos puntos P y Q distintos y m,n son reales, entonces podemos encontrar al único punto R en la recta por P y Q tal que PRRQ=mn así: R=nm+nP+mm+nQ.

Punto en una recta con cierta razón
Punto en una recta con cierta razón

Veamos dos problemas en los que se usan estas ideas de vectores en geometría, en particular, la proposición de la razón.

Problema. En el triángulo ABC se toman puntos D,E,F sobre los segmentos BC,CA,AB tales que BDDC=CEEA=AFFB=14. Muestra que ABC y DEF tienen el mismo gravicentro.

Sugerencia pre-solución. Encuentra una fórmula en términos vectoriales para el gravicentro de un triángulo ABC.

Solución. Tomemos un triángulo PQR y pensemos a sus vértices como vectores. Afirmamos que su gravicentro X es el punto correspondiente a P+Q+R3 Demostraremos esto.

El gravicentro está a un tercio del punto medio hacia el vértice correspondiente
Razón del gravicentro en la mediana

Primero haremos un argumento de geometría sintética. El gravicentro es por definición el punto de intersección de las medianas de un triángulo. Si L es el punto medio de QR y M es el punto medio de RP, entonces X es el punto de intersección de PL y QM. Tenemos que RLLQ=1=RMMP, así que por el teorema de Tales se tiene que la recta por L y M es paralela al lado PQ, y LMPQ=12. Esto muestra que los triángulos XLM y XPQ son semejantes en razón 1 a 2. Por lo tanto, LXXP=12.

Ahora hagamos el argumento vectorial, pensando a los puntos como vectores. El punto L está a la mitad de QR, así que por la proposición de la razón, L=Q+R2. El punto X cumple LXXP=12, así que de nuevo por la proposición de la razón.
X=2L+P2+1=Q+R+P3=P+Q+R3.

Esto es el resultado auxiliar que queríamos mostrar. Regresemos al problema.

De acuerdo al resultado auxiliar, el gravicentro de ABC es G:=A+B+C3. Usando una vez más la proposición de la razón, los puntos D, E y F los podemos calcular como sigue:
D=4B+C4+1=4B+C5E=4C+A4+1=4C+A5F=4A+B4+1=4A+B5.

De esta forma, el gravicentro G de DEF lo podemos encontrar como sigue:
G=D+E+F3=4B+C5+4C+A5+4A+B53=A+B+C3=G.

Esto termina la solución del problema.

◻

Problema. En el paralelogramo ABCD el punto F es el punto medio de CD. Muestra que el segmento AF corta a la diagonal BD en un punto E tal que DEDB=13.

Sugerencia pre-solución. Hay varias formas de hacer las cuentas en este problema, pero el uso de una notación adecuada te hará simplificar muchas operaciones.

Solución. Pensemos a los puntos de la figura como vectores. Coloquemos al punto A en el origen. El punto C está dado por B+D, de modo que F:=C+D2=B+2D2.

Vectores en geometría: problema de paralelogramo
Figura auxiliar para problema de paralelogramo

Para encontrar al punto E, notemos que está en las rectas AF y BD. De esta forma, deben existir reales r y s tales que E=rF y E=sB+(1s)D. Expresando F en términos de B y D en la primer ecuación, tenemos que E=rB+2rD2=rB2+rD. De ambas expresiones para E, concluimos que
s=r21s=r.

Este sistema de ecuaciones tiene solución r=23, s=13, y por lo tanto E=B+2D3. De aquí se obtiene DEEB=12, o bien DEDB=DEDE+EB=13, como queríamos mostrar.

◻

Producto punto, norma y ángulos

Para dos vectores P=(x,y) y Q=(w,z) definimos su producto punto como la cantidad PQ=xw+yz. El productos puntos es:

  • Conmutativo: PQ=QP
  • Abre sumas: P(Q+R)=PQ+PR
  • Saca escalares: (rP)Q=r(PQ).

La norma de P se define como P=PP, y coincide con la distancia de P al origen. La norma de PQ es entonces PQ=(QP)(QP) y coincide con la distancia de P a Q.

El ángulo entre dos vectores PQ y RS se define como el ángulo cuyo coseno es PQRSPQRS, y coincide precisamente con el ángulo (orientado) geométrico entre las rectas PQ y RS. De esta forma, las rectas PQ y RS son perpendiculares si y sólo si el producto punto PQRS es cero.

Problema. Sea ABC un triángulo con sus vértices pensados como vectores. Sean H y O su ortocentro y circuncentro respectivamente. Supongamos que el circuncentro O está en el origen. Muestra que H=A+B+C.

Sugerencia pre-solución. Trabaja hacia atrás. Define al punto A+B+C y ve que las rectas que unen a los vértices con este punto en efecto son alturas. Para calcular los ángulos, usa el producto punto y sus propiedades.

Solución. Como el circuncentro equidista de A. B y C, tenemos que A=B=C. Tomemos el punto H=A+B+C.

Vectores en geometría para encontrar el ortocentro
Ortocentro con vectores

Calculemos el ángulo entre las rectas BC y AH, haciendo su producto punto:
BCAH=(CB)(HA)=(CB)(C+B)=CC+CBBCBB=C2B2=0.

Observa que estamos usando la linealidad y conmutatividad del producto punto. Al final usamos que A y C tienen la misma norma.

Esto muestra que la recta AH es la altura al lado BC. De manera análoga, BH y CH son las alturas a los lados CA y AB respectivamente. Por lo tanto, H es el ortocentro, así que H=A+B+C.

◻

Cualquier triángulo ABC en el plano se puede trasladar para que su circuncentro O quede en el origen. El ortocentro estará en H=A+B+C y el gravicentro, como vimos antes, en G=A+B+C3, que es un múltiplo escalar de H. Por lo tanto, O, H y G están alineados. Acabamos de demostrar con vectores en geometría un clásico resultado euclideano.

Teorema (recta de Euler). En cualquier triángulo ABC, el circuncentro O, el gravicentro G y el ortocentro H están alineados. Además, OGGH=12.

Teorema de la recta de Euler
Teorema de la recta de Euler

Si el circuncentro no está en el origen, ahora podemos usar el teorema de la recta de Euler y la proposición de la razón para concluir que G=2O+H3. Usando que G=A+B+C3, obtenemos el siguiente corolario

Corolario. Sea ABC un triángulo en el plano, H su ortocentro y O su circuncentro. Entonces al pensar a los puntos como vectores tenemos que A+B+C=2O+H.

Más problemas

Puedes encontrar más problemas del uso de vectores en geometría en la sección 8.3 del libro Problem Solving through Problems de Loren Larson.

Modificar el problema

Por Leonardo Ignacio Martínez Sandoval

HeuristicasOtra técnica de resolucion de problemas es proponer un problema que ayude, pero que no necesariamente sea equivalente. Esto puede ser a través de problemas más particulares o de problemas más difíciles.

En esta serie de videos veremos esta técnica en acción en cuatro problemas.

Ir a los videos…