Archivo de la etiqueta: ejemplos

Cálculo Diferencial e Integral III: Ejemplos e intuición del teorema de la función implícita

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior revisamos el teorema de la función implícita formalmente enunciado y demostrado. En ésta lo que haremos será reflexionar sobre él y observar con más detalle su propósito y usos.

Dicho de forma simplista pero resaltando su objetivo principal el teorema de la función implícita busca establecer las condiciones bajo las cuales podemos despejar unas variables en término de otras. Da una condición en términos de cierta diferenciabilidad. Como esbozamos en la entrada anterior, lo que el teorema nos dice es cuándo es posible despejar las variables de un sistema de ecuaciones (o funciones coordenadas de un campo vectorial) en función de ciertas las variables libres, y alrededor de una vecindad. Para hacer esto, básicamente hay que resolver un sistema de ecuaciones en donde ciertos coeficientes vienen de ciertas derivadas parciales. El teorema de la función implícita también habla de cómo derivar una función definida implícitamente respecto de cualquiera de sus derivables.

¿Por qué teorema de la función implícita?

¿Por qué este nombre? En numerosos problemas matemáticos derivados de aplicaciones diversas se utilizan modelos geométricos. Estos modelos geométricos usualmente se construyen a partir de restringir ciertas variables con ciertas ecuaciones. Pensemos en objetos geométricos en tres dimensiones. Tenemos variables $x,y,z$. Definamos $G(x,y,z):=x^{2}+y^{2}+z^{2}-1$. Podemos preguntarnos por el objeto geométrico descrito por la ecuación $G(x,y,z)=0.$ Sabemos que las ternas $(x,y,z)$ que satisfacen esto justo conforman una esfera de radio 1 centrada en el origen. Decimos que esta ecuación proporciona una representación implícita de la superficie.

Pero quizás nuestra aplicación nos lleva a preguntarnos si alguna coordenada está en términos de las otras para los puntos que están en dicha esfera. En afortunadas ocasiones es posible despejar en la ecuación $G(x,y,z)$ algunas de las variables en términos de las otras. Esto nos lleva a una o varias ecuaciones de la forma $z=g(x,y)$, en nuestro caso particular tenemos:

\begin{align*}z=\sqrt{1-x^{2}-y^{2}} && \textup{y} && z=-\sqrt{1-x^{2}-y^{2}}.\end{align*}

El teorema de la función inversa nos dice que si ciertas derivadas existen y son invertibles como transformaciones lineales, entonces podemos hacer estos despejes. De hecho, nos dice algo mejor: que podemos hacerlos alrededor de toda una vecindad donde no se anule dicha derivada. De aquí sale la idea de «función implícita». Algunas ecuaciones, aunque no permitan despejar variables, sí lo permiten «localmente» y entonces ahí hay una «función oculta».

En la gran mayoría de los casos es difícil lograr estos despejes mediante expresiones algebraicas sencillas por ejemplo en una superficie representada por la ecuación $y^{3}+z^{2}-xz+e^{zx}-4=0$ suena muy difícil que podamos despejar $z$. Sin embargo el teorema de la función implícita nos garantiza que, aunque no sepamos cómo, la variable $z$ sí se puede poner en función de las variables $x$ y $y$.

La derivada de la función implícita

Otra buena notica es que aunque no conozcamos explícitamente el despeje que nos interesa, con el teorema de la función implícita sí podemos encontrar las derivadas parciales de la función implícita que aparece. Si pensaste los problemas de la tarea moral de la entrada anterior, quizás ya hayas llegado al siguiente resultado.

Corolario. Sea $F:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ un campo escalar diferenciable con $S$ abierto. Supongamos que la ecuación $F(x_{1},\dots ,x_{n})=0$ define implícitamente a $x_{n}$ como función diferenciable de $x_{1},\dots ,x_{n-1}$ como $x_{n}=f(x_{1},\dots ,x_{n-1})$, para todos los puntos $(x_{1},\dots ,x_{n-1})\in S’\subseteq \mathbb{R}^{n-1}$, entonces para cada $k=1,2,\dots ,n-1$ la derivada parcial $\frac{\partial f}{\partial x_{k}}$ está dada por la fórmula:

\[ \begin{equation}\frac{\partial f}{\partial x_{k}}=-\frac{\frac{\partial F}{\partial x_{k}}}{\frac{\partial F}{\partial x_{n}}}\end{equation} \]

en los puntos en los que $\frac{\partial F}{\partial x_{n}}\neq 0$. Las derivadas parciales de $F$ están calculadas en el punto $(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n}))$.

Demostración. Pensemos $F:\mathbb{R}^{n-1}\times \mathbb{R} \to \mathbb{R}$. Si $(x_{1},\dots x_{n})$ es tal que $F(x_{1},\dots ,x_{n})=0$, por el teorema de la función implícita tenemos a una única función $f:\mathbb{R}^{n-1}\rightarrow \mathbb{R}$ tal que $F(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))=0$.

(Nota. En la entrada anterior teníamos entradas de la forma $(y,x)$ y $y$ quedaba en función de $x$. De manera totalmente análoga podemos intercambiar los papeles de $x$ y $y$, pidiendo las hipótesis correctas. De hecho, usualmente se piensa en parejas $(x,y)$ y las variables de $y$ son las que quedan en términos de las variables $x$)

Ahora, pensemos en el campo vectorial $G:S’\subseteq \mathbb{R}^{n-1}\rightarrow \mathbb{R}^{n}$ dado por $G(x_{1},\dots ,x_{n-1})=(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))$. Así $(F\circ G)(x_{1},\dots ,x_{n-1})=0$. Por regla de la cadena, $DFDG=0$. Tenemos así $0=\triangledown F\cdot DG$, lo cual explícitamente es:

\[ 0=\begin{bmatrix} \frac{\partial F}{\partial x_{1}} & \dots & \frac{\partial F}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \\ \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial f}{\partial x_{n-1}} \end{bmatrix}= \]

\[ \begin{bmatrix} \frac{\partial F}{\partial x_{1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{1}} & \frac{\partial F}{\partial x_{2}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial F}{\partial x_{n-1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{n-1}} \end{bmatrix}.\]

Por ello, para cada $i$ tenemos:

\[ \frac{\partial F}{\partial x_{i}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{i}}=0.\]

De esta ecuación se deduce la $(1)$.

$\square$

Un primer ejemplo del teorema de la función inversa

Pasemos ahora a hacer algunas cuentas concretas para entender mejor lo que uno tiene que hacer para aplicar el teorema de la función implícita en funciones particulares.

Ejemplo. Consideremos la ecuación $y^{2}+xz+z^{2}-e^{z}-c=0$. Expresaremos a $z$ en función de $x$ e $y$, es decir, $z=f(x,y)$. Nos gustaría encontrar un valor de la constante $c$ tal que $f(0,e)=2$. Para dicha $c$, queremos calcular las derivadas parciales con respecto a $x$ y $y$ en el punto $(x,y)=(0,e)$.

Para la primera parte sustituimos $x=0$, $y=e$ y $z=2$. Tenemos $$e^{2}+0\cdot 2+2^{2}-e^{2}-c=0,$$ que es lo mismo que $4-c=0$, y esto implica $c=4$. De esta manera, estudiaremos la función $$F(x,y,z)=y^{2}+xz+z^{2}-e^{z}-4.$$

Notemos que

\begin{align*}\frac{\partial F}{\partial z}=x+2z-e^{z},&&\frac{\partial F}{\partial x}=z,&&\frac{\partial F}{\partial y}=2y,\end{align*}

por lo cual

\begin{align*} \frac{\partial f}{\partial x}=-\frac{z}{x+2z-e^{z}},&&\frac{\partial f}{\partial y}=-\frac{2y}{x+2z-e^{z}}.\end{align*}

Así para $x=0$, $y=e$ y $z=2$ al sustituir resulta

\begin{align*} \frac{\partial f}{\partial x}(0,e)=\frac{2}{e^{2}-4}&&\textup{y}&&\frac{\partial f}{\partial y}(0,e)=\frac{2e}{e^{2}-4}. \end{align*}

$\triangle$

En este ejemplo vemos cómo hemos podido calcular las derivadas parciales de $z=f(x,y)$ usando el valor de $f$ en el punto $(0,e)$, sin conocer quién es la función $f(x,y)$.

Un repaso chiquito de la demostación del teorema de la función implícita

Ahora repasaremos la demostración del teorema de la función implícita pero para un caso muy particular: Dos superficies $S_{1}$ y $S_{2}$ en el espacio con las siguientes representaciones implícitas:

$$ \textup{para}\hspace{0.3cm}S_{1}:\Psi (x,y,z)=0\hspace{1cm}\textup{y}\hspace{1cm}\textup{para}\hspace{0.3cm}S_{2}:\Gamma (x,y,z)=0.$$

Supongamos que las superficies se cortan en la curva $\mathfrak{C}$. En otras palabras, $\mathfrak{C}$ es el conjunto solución para el siguiente sistema de ecuaciones:

\[ \left \{\begin{matrix} \Psi (x,y,z)=0 \\ \Gamma (x,y,z)=0. \end{matrix} \right.\]

Supongamos que podemos despejar $x$ y $y$ en estas ecuaciones en términos de $z$ de la siguiente manera:

\[ \begin{equation}x=X(z),\hspace{1cm}y=Y(z)\hspace{0.3cm}\textup{para todo}\hspace{0.1cm}z\in (a,b).\end{equation} \]

Aquí, al reemplazar $x$ y $y$ por $X(z)$ y $Y(z)$ (respectivamente), el sistema $(2)$ se satisface. Por tanto tenemos $\Psi (X(z),Y(z),z)=0$ y $\Gamma (X(z),Y(z),z)=0$ para todo $z\in (a,b)$. Podemos calcular las derivadas $X^{\prime}(z)$, $Y^{\prime}(z)$, sin un conocimiento explícito de $X(z)$ y $Y(z)$.

¿Cómo hacemos esto? Consideramos las siguientes funciones auxiliares:

\begin{align*}
\psi (z)&=\Psi (X(z),Y(z),z),\\
\gamma (z)&=\Gamma (X(z),Y(z),z).
\end{align*}

Tenemos $\psi (z)=\gamma (z)=0$ y en consecuencia $\psi^{\prime}(z)=\gamma^{\prime}(z)=0$.

Derivando con la regla de la cadena tenemos:

\begin{align*}
\psi^{\prime}(z)&=\frac{\partial \Psi}{\partial x}X'(z)+\frac{\partial \Psi}{\partial y}Y'(z)+\frac{\partial \Psi}{\partial z},\\
\gamma^{\prime}(z)&=\frac{\partial \Gamma}{\partial x}X'(z)+\frac{\partial \Gamma}{\partial y}Y'(z)+\frac{\partial \Gamma}{\partial z}
\end{align*}

Dado que $\psi^{\prime} (z)=\gamma^{\prime}(z)=0$ tenemos el siguiente sistema de dos ecuaciones con dos incógnitas $X^{\prime}(z)$, $Y^{\prime}(z)$:

\[ \left \{\begin{matrix}\frac{\partial \Psi}{\partial x}X^{\prime}(z)+\frac{\partial \Psi}{\partial y}Y^{\prime}(z)=-\frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x}X^{\prime}(z)+\frac{\partial \Gamma}{\partial y}Y^{\prime}(z)=-\frac{\partial \Gamma}{\partial z} \end{matrix} \right.\]

En los puntos en los cuales el determinante del sistema no es cero, usamos la regla de Cramer para obtener las soluciones como sigue:

\[ X^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial z} & \frac{\partial \Psi}{\partial y}\\ \frac{\partial \Gamma}{\partial z} & \frac{\partial \Gamma }{\partial y}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} },\hspace{0.5cm}Y^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma }{\partial z}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} }.\]

Otro ejemplo para encontrar derivadas de funciones implícitas

Veamos un último ejemplo en donde pondemos usar las ideas anteriores.

Ejemplo. Consideremos las ecuaciones $y=uv^{2}$, y $x=u+v$. Queremos ver que podemos determinar una función $h$ tal que $v=h(x,y)$ y para la cual:

\[ \frac{\partial h}{\partial x}(x,y)= \frac{h(x,y)}{3h(x,y)-2x}.\]

Además, queremos encontrar una fórmula análoga para $\frac{\partial h}{\partial y}$.

Primero, en la ecuación $x=u+v$ despejamos $u$ y sustituimos en $y=uv^{2}$, tenemos $y=(x-v)v^{2}$. De aquí $$xv^{2}-v^{3}-y=0.$$ Esto nos sugiere pensar en la función $$F(x,y,v):=xv^{2}-v^{3}-y,$$ pues nos permite representar nuestra ecuación como $F(x,y,v)=0$. Por el teorema de la función implícita (¡verifica las hipótesis!), esta ecuación define implícitamente a $v$ como función de $x$ e $y$, digamos, como $v=h(x,y)$. Aplicando las fórmulas que conocemos para las derivadas de la función implicita, tenemos lo siguiente:

\[ \frac{\partial h}{\partial x}= -\frac{\partial F /\partial x}{\partial F /\partial v}\hspace{0.5cm}\textup{y}\hspace{0.5cm}\frac{\partial h}{\partial y}=-\frac{\partial F /\partial y}{\partial F /\partial v} \]

Donde $\frac{\partial F}{\partial x}=v^{2}$, $\frac{\partial F}{\partial v}=2xv-3v^{2}$ y $\frac{\partial F}{\partial y}=-1$. Luego tenemos:

\begin{align*} \frac{\partial h}{\partial x}(x,y)&=-\frac{v^{2}}{2xv-3v^{2}}\\ &=-\frac{v}{2x-3v}\\ &=\frac{h(x,y)}{3h(x,y)-2x}.\end{align*}

Esto muestra la primera parte. Para encontra la fórmula análoga, volvemos a usar las fórmulas para derivadas de la función implícita:

\begin{align*}\frac{\partial h}{\partial y}(x,y)&=-\frac{-1}{2xv-3v^{2}}\\ &=\frac{1}{2xh(x,y)-3h^{2}(x,y)}.\end{align*}

$\triangle$

Más adelante…

Hemos cubierto el teorema de la función inversa y el teorema de la función implícita. Estos son temas teóricos profundos e importantes que tienen muchas consecuencias. Tienen también otras versiones en contextos más amplios como variedades, geometría diferencial, etc. Por el momento, dejaremos hasta aquí nuestro estudio de estos temas, pero te recomendamos de vez en cuando repasarlos, pues cada vez entenderás más de sus demostraciones y lo que significan.

Nuestra atención se enfocará ahora en otros conceptos que se pueden definir en términos de funciones de varias variables: la divergencia, el laplaciano y el rotacional. Después, hablaremos un poco de cómo la teoría que hemos desarrollado nos ayudará a encontrar puntos críticos para funciones de varias variables.

Tarea moral

  1. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $y$ como funciones implícitas de $u$ y $v$, sean éstas $x=X(u,v)$ y $y=Y(u,v)$. Demuestra que $\partial X/\partial u=(xv-1)/(x-y)$ si $x\neq y$, y halla las fórmulas para $\partial X/\partial v$, $\partial Y/\partial v$, $\partial Y/\partial u$.
  2. Las tres ecuaciones \[ \left\{\begin{matrix} x^{2}-y\hspace{0.1cm}cos\hspace{0.1cm}(uv)+z^{2}=0, \\ x^{2}+y^{2}-\hspace{0.1cm}sen\hspace{0.1cm}(uv)+2z^{2}=2, \\ xy-\hspace{0.1cm}sen\hspace{0.1cm}u\hspace{0.1cm}cos\hspace{0.1cm}v+z=0 \end{matrix}\right.\] definen $x$, $y$, y $z$ como funciones de $u$ y $v$. Calcula las derivadas parciales $\partial x/\partial u$ y $\partial x/\partial v$ en el punto $x=y=1$, $u=\pi /2$, $v=0$, $z=0$.
  3. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $v$ como funciones de $u$ y $y$, sean éstas $x=X(u,v)$ y $v=V(u,y)$. Demuestra que $\partial X/\partial u=(u+v)/(1+yu)$ si $1+yu\neq 0$ y halla las fórmulas de $\partial X/\partial y$, $\partial V /\partial u$, $\partial V /\partial y$.
  4. Sigue las ideas de los resultados de la entrada anterior para escribir una calca de ella pero ahora para $f:S\subseteq \mathbb{R}^{m} \times \mathbb{R}^{l}$, en donde la función que se busca tiene ahora dominio en $\mathbb{R}^{m}$ que pone a las variables del dominio $\mathbb{R}^l$ en términos de las de $\mathbb{R}^m$.
  5. Haz un esfuerzo extra, y medita nuevamente en el teorema de la función implícita tratando de escribir una demostración de como sería el asunto para $f$ con dominio en $\mathbb{R}^{m}\times \mathbb{R}^{l}\times \mathbb{R}^{k}$. ¿Se podrá hallar la función $h$, pero ahora con dominio en $\mathbb{R}^{l}$?

Entradas relacionadas

Álgebra Lineal I: Subespacios vectoriales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior dimos la definición de espacio vectorial y vimos varios ejemplos de espacios vectoriales. Ahora hablaremos de subespacios vectoriales o simplemente, subespacios. A grandes rasgos, podemos pensar a un subespacio como un subconjunto de un espacio vectorial $V$ que también es un espacio vectorial con las mismas operaciones de $V$.

Definición de subespacios vectoriales y primeras consecuencias

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Un subespacio vectorial de $V$, o simplemente un subespacio de $V$, es un subconjunto no vacío $W$ de $V$ cerrado bajo las operaciones de suma vectorial y multiplicación escalar de $V$. En otras palabras, $W$ es un subespacio de $V$ si se cumplen las siguientes dos propiedades:

  1. (Cerradura de la suma vectorial) Para cualesquiera $u$ y $v$ elementos de $W$, se cumple que $u+v$ está en $W$.
  2. (Cerradura de la multiplicación por escalar) Para cualquier escalar $c$ en $F$ y vector $v$ en $W$ se cumple que $cv$ está en $W$.

En la entrada anterior ya vimos un ejemplo. Si tenemos un campo $F$ y nos fijamos el espacio vectorial $F[x]$ de polinomios, entonces para cualquier entero $n$ el subconjunto $F_n[x]$ de $F[x]$ de polinomios de grado a lo más $n$ es cerrado bajo la suma de polinomios y bajo el producto escalar. De esta forma, $F_n[x]$ es un subespacio de $F[x]$. Más abajo veremos muchos ejemplos de subespacios, pero primero nos enfocaremos en algunas consecuencias de la definición.

Observación. Se cumple todo lo siguiente:

  1. Si $W$ es un subespacio de un espacio vectorial $V$, entonces $W$ debe tener al vector $0$ de $V$ (es decir, la identidad aditiva de la suma vectorial). Esto se debe a que $W$ es no vacío, así que tiene por lo menos un elemento $v$. Si tomamos al $0$ de $F$ y usamos la propiedad (2) de subespacio con $0$ y $v$ obtenemos que $0v=0$ está en $W$.
  2. Si $W$ es un subespacio de un espacio vectorial $V$ y $v$ está en $W$, entonces $-v$ también. Esto se debe a que por la propiedad (2) de subespacio tenemos que $(-1)v=-v$ está en $W$.
  3. Si $V$ es un espacio vectorial sobre $F$ y $W$ es un subespacio de $V$, entonces $W$ también es un espacio vectorial sobre $F$ con las mismas operaciones que $V$. Por un lado, el neutro e inversos aditivos existen por los dos incisos anteriores. Para el resto de las propiedades, se usa que se cumplen para elementos de $V$ y por lo tanto también para los de $W$ (pues es un subconjunto).
  4. Si $W_1$ y $W_2$ son dos subespacios de un espacio vectorial $V$, entonces la intersección $W_1\cap W_2$ también lo es.

$\square$

La primera propiedad nos puede ayudar en algunas ocasiones (no siempre) a darnos cuenta rápidamente si un subconjunto no es subespacio vectorial: si no tiene al vector $0$, entonces no es subespacio.

La tercera propiedad tiene una consecuencia práctica muy importante: para mostrar que algo es un espacio vectorial, basta con mostrar que es un subespacio de algo que ya sabemos que es un espacio vectorial.

Problema. Muestra que $\mathcal{C}[0,1]$, el conjunto de funciones continuas de $[0,1]$ a $\mathbb{R}$, es un espacio vectorial sobre $\mathbb{R}$ con las operaciones de suma de funciones y multiplicación por escalar.

Solución. En la entrada anterior vimos que el conjunto $V$ de funciones de $[0,1]$ a los reales es un espacio vectorial sobre $\mathbb{R}$ con las operaciones de suma de funciones y multiplicación escalar. El conjunto $\mathcal{C}[0,1]$ es un subconjunto de $V$.

Por argumentos de cálculo, la suma de dos funciones continuas es una función continua. Así mismo, al multiplicar una función continua por un real obtenemos de nuevo una función continua. De esta forma, $\mathcal{C}[0,1]$ es un subespacio de $V$.

Por la observación (3) de la discusión previa, obtenemos que $\mathcal{C}[0,1]$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones de suma de funciones y multiplicación por escalar.

$\square$

Definiciones alternativas de subespacios vectoriales

Algunos textos manejan definiciones ligeramente distintas a la que nosotros dimos. Sin embargo, todas ellas son equivalentes.

Proposición. Sea $V$ un espacio vectorial sobre el campo $F$ y $W$ un subconjunto de $V$. Los siguientes enunciados son equivalentes.

  1. $W$ es un subespacio de $V$ de acuerdo a nuestra definición.
  2. Para cualesquiera vectores $u$ y $v$ en $W$ y escalares $a$ y $b$ en $F$, se tiene que $au+bv$ está en $W$.
  3. Para cualesquiera vectores $u$ y $v$ en $W$ y cualquier escalar $c$ en $F$ se tiene que $cu+v$ está en $W$.

Demostración. (1) implica (2). Supongamos que $W$ es un subespacio de $V$. Tomemos vectores $u,v$ en $W$ y escalares $a,b$ en $F$. Como $W$ es cerrado bajo producto escalar, se tiene que $au$ está en $W$. De manera similar, $bv$ está en $W$. Como $W$ es cerrado bajo sumas, se tiene que $au+bv$ está en $W$.

(2) implica (3). Supongamos que $W$ satisface (2) y tomemos $u,v$ en $W$ y cualquier escalar $c$ en $F$. Tomando $a=c$ y $b=1$ en (2), tenemos que $cu+1v=cu+v$ está en $W$.

(3) implica (1). Supongamos que $W$ satisface (3). Hay que ver que $W$ es cerrado bajo sumas y producto escalar. Si tomamos $u$ y $v$ en $W$ y al escalar $c=1$ de $F$, por (3) obtenemos que $cu+v=1u+v=u+v$ está en $W$, lo cual muestra la cerradura de la suma. Si tomamos cualquier escalar $c$ y al vector $w=0$, entonces por (3) se tiene que $cu+w=cu+0=cu$ está en $W$. Esto muestra la cerradura bajo producto escalar.

$\square$

La consecuencia práctica de la proposición anterior es que basta verificar (2) o (3) para garantizar que $W$ es un subespacio.

Problema. Considera $V$ el espacio vectorial de matrices en $M_n(F)$. Muestra que el subconjunto $W$ de matrices simétricas forman un subespacio de $V$.

Solución. Lo demostraremos probando el punto (3) de la proposición. Sea $c$ un escalar en $F$ y sean $A$ y $B$ matrices en $W$, es decir, tales que $^tA=A$ y $^tB = B$. Debemos mostrar que $cA+B$ está en $W$, es decir, que $^t(cA+B)=cA+B$. Usando propiedades de la transpuesta y la hipótesis sobre $A$ y $B$ tenemos que: $$^t(cA+B) = c \ ^tA+ \ ^tB = cA + B.$$ Con esto termina la demostración.

$\square$

Más ejemplos de subespacios vectoriales

A continuación presentamos más ejemplos de subespacios vectoriales. En cada ejemplo damos un espacio vectorial y un subconjunto $W$. Para cada uno de los casos, piensa por qué la suma de dos elementos de $W$ es de nuevo un elemento de $W$ y por qué el producto de un escalar por un elemento de $W$ es un elemento de $W$. También puedes usar la última proposición para probar ambas cosas simultáneamente.

  • Si tomamos $M_2(\mathbb{R})$, el subconjunto $W$ de matrices que cumplen que la suma de entradas en su diagonal principal es igual a $0$ es un subespacio.
  • En el espacio vectorial $F^4$, el subconjunto $W$ de vectores cuya primera y tercer entrada son iguales a $0$ forman un subespacio.
  • Las funciones acotadas del intervalo $[-3, 3]$ a $\mathbb{R}$ forman un subconjunto $W$ que es un subespacio de las funciones del intervalo $[-3,3]$ a $\mathbb{R}$.
  • El subconjunto $W$ de vectores $(x,y,z)$ de $\mathbb{R}^3$ tales que $$\begin{cases}x+y+z &= 0\\ x+ 2y + 3z &= 0 \end{cases}$$ es un subespacio de $\mathbb{R}^3$.
  • Si tomamos $W=\mathbb{R}_3[x]$, entonces este es un subespacio de $\mathbb{R}_4[x]$.
  • Si tomamos $W=\mathbb{R}_4[x]$, entonces este es un subespacio de $\mathbb{R}_5[x]$.
  • El subconjunto $W$ de funciones diferenciables de $[0,10]$ a $\mathbb{R}$ tales que su derivada evaluada en $7$ es igual a $0$ es un subespacio del espacio de funciones continuas de $[0,10]$ a $\mathbb{R}$.
  • Las matrices triangulares superiores de $M_n(F)$ forman un subespacio $W$ del espacio $M_n(F)$. Las matrices triangulares inferiores también. Como la intersección de estos subespacios es el conjunto de matrices diagonales, obtenemos que las matrices diagonales también son un subespacio (aunque claro, esto también se puede probar directamente de la definición).

Ejemplos de subconjuntos que no son subespacios vectoriales

Aunque ya vimos muchos ejemplos de subespacios, resulta que en realidad es un poco raro que un subconjunto de un espacio vectorial sea un subespacio. Los ejemplos de subconjuntos que no son subespacios vectoriales abundan. Veamos algunos y qué tipo de cosas pueden salir mal.

  • El subconjunto $W=\{(x,y,z): x^2+y^2+z^2=1\}$ no es un subespacio de $\mathbb{R}^3$. Podemos dar el siguiente argumento: ya demostramos que un subespacio debe tener al vector cero. En este caso, $W$ debería tener a $(0,0,0)$ para ser subespacio. Pero $0^2+0^2+0^2=0\neq 1$. Así, $(0,0,0)$ no está en $W$ y por lo tanto $W$ no es subespacio.
  • Alternativamente, en el ejemplo anterior podemos ver que $(1,0,0)$ está en $W$, pero $2(1,0,0)=(2,0,0)$ no.
  • El subconjunto $W=\{(0,0), (1,2), (-1,2)\}$ de $\mathbb{R}^2$ no es un subespacio, pues $(1,2)$ está en $W$. Tomando $u=(1,2)$ y $v=(1,2)$, vemos que $W$ no es cerrado bajo sumas pues $(1,2)+(1,2)=(2,4)$ no está en $W$.
  • Las matrices del subconjunto $GL_n(F)$ de $M_n(F)$, es decir, las matrices invertibles, no conforman un subespacio. Por un lado, ya vimos que el neutro aditivo de la suma debe estar en un subespacio, pero la matriz $O_n$ no es invertible, así que no está en $GL_n(F)$.
  • El subconjunto $W$ de funciones $f:[-3,3]\to \mathbb{R}$ diferenciables tales que su derivada en $0$ es igual a $2$ no es un subespacio de las funciones continuas de $[-3,3]$ a $\mathbb{R}$. Hay muchas formas de verlo. Podemos darnos cuenta que $f(x)=x^2+2x$ es una de las funciones en $W$ pues $f'(x)=2x+2$ y $f'(0)=2$. Sin embargo, $3f$ no está en $W$.
  • El subconjunto $W$ de polinomios de $\mathbb{R}[x]$ con coeficientes no negativos no es un subespacio de $\mathbb{R}[x]$. El polinomio $0$ sí está en $W$ y la suma de cualesquiera dos elementos de $W$ está en $W$. Sin embargo, falla la multiplicación escalar pues $x$ está en $W$, pero $(-1)x=-x$ no.
  • La unión del eje $X$, el eje $Y$ y el eje $Z$ de $\mathbb{R}^3$ es un subconjunto $W$ de $\mathbb{R}^3$ que no es un subespacio. Cualquier producto escalar queda dentro de $W$, pero la suma no es cerrada.

Más adelante…

En esta entrada definimos el concepto de subespacio de un espacio vectorial. En la siguiente hablaremos de algunas operaciones que se les puede hacer a los subespacios vectoriales para «combinarlos» y obtener más subespacios. Una operación muy importante es la de suma de subespacios, que puede tener dos o más sumandos. La operación de suma de subespacios es particularmente especial cuando los subespacios están en posición de suma directa. Para irte dando una idea de qué quiere decir esto, dos subespacios están en posición de suma directa si su único elemento en común es el vector $0$. El caso general de más subespacios se enuncia de forma distinta y también lo veremos en la siguiente entrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que los siguientes conjuntos $W$ son subespacios del espacio vectorial indicado.
    • El subconjunto $W$ de vectores $(w,x,y,z)$ de $\mathbb{C}^4$ tales que $w+x+y+z=0$.
    • La colección $W$ de funciones continuas $f:[0,1]\to \mathbb{R}$ tales que $\int_0^1 f(x) \, dx = 0$ es un subespacio del espacio de funciones de $[0,1]$ a $\mathbb{R}$.
    • $W=\left\{\begin{pmatrix} a+b & b\\ -b & c+b \end{pmatrix}: a,b,c \in \mathbb{R} \right\}$ es un subespacio de las matrices en $M_2(\mathbb{R})$.
  • Demuestra que los siguientes conjuntos $W$ no son subespacios del espacio vectorial indicado.
    • El subconjunto $W$ de vectores $(x,y)$ de $\mathbb{R}^2$ tales que $xy\geq 0$ no es un subespacio de $\mathbb{R}^2$.
    • El subconjunto $W$ de matrices en $M_{3,2}(F)$ cuyo producto de todas las entradas es igual a $0$ no es un subespacio de $M_{3,2}$
    • Cuando $W$ es un subconjunto finito y con al menos dos polinomios con coeficientes complejos y de grado a lo más $3$, es imposible que sea un subespacio de $\mathbb{C}_3[x]$.
  • Sea $V$ un espacio vectorial y $n$ un entero positivo. Demuestra que si $W_1, W_2, \ldots, W_n$ son subespacios de $V$, entonces la intersección $$W_1 \cap W_2 \cap \ldots \cap W_n$$ también lo es.
  • Escribe por completo la demostración de que cualquier subespacio de un espacio vectorial es también un espacio vectorial con las mismas operaciones.
  • Demuestra que si $V$ es un espacio vectorial, $W$ es un subespacio de $V$ y $U$ es un subespacio de $W$, entonces $U$ es un subespacio de $V$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»