Archivo de la etiqueta: distancia

Álgebra Lineal I: Producto interior y desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, platicamos acerca de formas bilineales y de formas cuadráticas. Ahora veremos un tipo de formas bilineales especiales: las positivas y las positivas definidas. Las formas positivas definidas nos ayudan a definir qué es un producto interior. Esta es una noción fundamental que más adelante nos ayudará a definir distancias y ángulos.

Formas bilineales positivas y positivas definidas

Para hablar de geometría en espacios vectoriales, la siguiente noción es fundamental. Es importante notar que es una definición únicamente para formas bilineales simétricas.

Definición. Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo vector $x$ de $V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo vector $x\neq 0$ de $v$.

Tenemos una noción análoga para formas cuadráticas.

Definición. Sea $q:V\to \mathbb{R}$ una forma cuadrática con forma polar $b$. Diremos que $q$ es positiva si $b$ lo es, y diremos que es positiva definida si $b$ lo es.

Ejemplo 1. Como ya vimos antes, el producto punto de $\mathbb{R}^n$ es una forma bilineal simétrica. También es positiva definida, pues si tenemos $x=(x_1,\ldots,x_n)$, tenemos que $$x\cdot x = x_1^2+\ldots+x_n^2\geq 0,$$ y esta es una igualdad si y sólo si $x_1=\ldots=x_n=0$, lo cual sucede si y sólo si $x=0$.

$\triangle$

Ejemplo 2. Considera $V=\mathbb{R}_2[x]$ y consideremos la forma bilineal $b$ dada por $$b(p,q)=p(0)q(1)+p(1)q(0).$$ Esta es una forma bilineal simétrica pues \begin{align*}b(p,q)&=p(0)q(1)+p(1)q(0)\\&=q(0)p(1)+q(1)p(0)\\&=b(q,p).\end{align*} Notemos que $$b(p,p)=2p(0)p(1),$$ que no necesariamente es positivo. Por ejemplo, si tomamos el polinomio $p(x)=x-\frac{1}{2}$, tenemos que \begin{align*}b(p,p)&=2p(0)p(1)\\&=-2\cdot\frac{1}{2}\cdot\frac{1}{2}\\&=-\frac{1}{2}.\end{align*} Así, esta es una forma bilineal simétrica, pero no es positiva (y por lo tanto tampoco es positiva definida).

$\triangle$

Problema. Considera la forma cuadrática $Q$ en $M_{2}(\mathbb{R})$ que suma el cuadrado de las entradas de la diagonal de una matriz, es decir, aquella dada por $$Q\begin{pmatrix} a & b\\c & d\end{pmatrix}=a^2+d^2.$$ Determina su forma polar y si es positiva o positiva definida.

Solución. Para encontrar la forma polar $B$ de $Q$, usamos la identidad de polarización
\begin{align*}
B&\left(\begin{pmatrix}a&b\\c&d\end{pmatrix},\begin{pmatrix} e & f\\ g & h \end{pmatrix}\right)\\
&=\frac{(a+e)^2+(d+h)^2-a^2-e^2-d^2-h^2}{2}\\
&=\frac{2ae+2dh}{2}\\
&=ae+dh.
\end{align*}

Como $Q\begin{pmatrix}a&b\\c&d\end{pmatrix}=a^2+d^2\geq 0$, tenemos que $Q$ (y $B$) son positivas. Sin embargo, $Q$ no es positiva definida (ni $B$), pues por ejemplo, $$Q\begin{pmatrix}0&1\\1&0\end{pmatrix} = 0.$$

Producto interior

Estamos listos para definir aquellos espacios sobre los que podemos hacer geometría.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$

  • Un producto interior en $V$ es una forma bilineal simétrica y positiva definida.
  • Decimos que $V$ es un espacio Euclideano si es de dimensión finita y está equipado con un producto interior.

Estamos siguiendo la convención del libro de Titu Andreescu, en donde es importante pedir que $V$ sea de dimensión finita para ser Euclideano.

Cuando estamos hablando de espacios con producto interior, o de espacios Euclideanos, tenemos una forma bilineal simétrica y positiva definida $b$. Sin embargo, en vez de usar constantemente $b(x,y)$, para simplificar la notación usaremos simplemente $\langle x, y\rangle$.

Definición. Si $V$ es un espacio con producto interior $\langle \cdot,\cdot \rangle$, definimos la norma de un vector $x$ como $$\Vert x \Vert =\sqrt{\langle x, x \rangle}.$$

Ejemplo. Como dijimos arriba, el producto punto en $\mathbb{R}^n$ es una forma bilineal simétrica, así que es un producto interior. Como $\mathbb{R}^n$ es de dimensión finita, entonces es un espacio Euclideano.

La norma de un vector $x=(x_1,\ldots,x_n)$ está dada por $\Vert x \Vert = \sqrt{x_1^2+\ldots+x_n^2},$ y geométricamente se interpreta como la distancia de $x$ al origen.

Un ejemplo más concreto es $\mathbb{R}^4$, en donde la norma del vector $(1,2,3,1)$ es $\sqrt{1^2+2^2+3^2+1^2}=\sqrt{15}$.

$\triangle$

La notación de producto interior quizás te recuerde la notación que se usa cuando hablamos de dualidad. Sin embargo, es muy importante que distingas los contextos. En el caso de dualidad, tenemos $$\langle \cdot, \cdot \rangle: V^\ast\times V \to \mathbb{R},$$ y en este contexto de producto interior tenemos $$\langle \cdot, \cdot \rangle: V\times V \to \mathbb{R}.$$ Más adelante, puede que te encuentres en tu preparación matemática con el teorema de representación de Riesz, a partir del cual tendrá sentido que se use la misma notación.

Desigualdad de Cauchy-Schwarz

A continuación presentamos un resultado fundamental es espacios con formas bilineales positivas y positivas definidas.

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se alcanza la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Demostración. Supongamos primero solamente que $b$ es positiva. Consideremos la función $f:\mathbb{R}\to \mathbb{R}$ dada por $f(t)=q(x+ty)$. Como $q$ es forma cuadrática positiva, tenemos que $f(t)\geq 0$ para todo real $t$. Por otro lado, expandiendo y usando que $b$ es simétrica, tenemos que
\begin{align*}
f(t)&=q(x+ty)\\
&=b(x+ty,x+ty)\\
&=b(x,x)+2b(x,y)\cdot t + b(y,y) \cdot t^2\\
&=q(x) + 2b(x,y)\cdot t + q(y) \cdot t^2.
\end{align*}

En esta expresión, $q(x)$, $2b(x,y)$ y $q(y)$ son reales, así que $f(t)$ es un polinomio cuadrático en $t$. Como $f(t)\geq 0$ para todo $t$ en $\mathbb{R}$, el discriminante de este polinomio es no positivo, en otras palabras, $$(2b(x,y))^2-4q(x)q(y)\leq 0.$$

Sumando $4q(x)q(y)$ y dividiendo entre $4$ ambos lados de la desigualdad, obtenemos que $$b(x,y)^2\leq q(x)q(y),$$ la cual es la desigualdad que queremos.

Si $x$ y $y$ son linealmente dependientes, podemos despejar a uno en términos del otro. Sin perder generalidad, podemos suponer que $x=\alpha y$. En este caso, $$b(\alpha y,y)^2=\alpha^2 b(y,y)=q(\alpha(y))q(y),$$ así que se da la igualdad.

Ahora, supongamos además que $b$ es positiva definida y que se da la igualdad. Si esto sucede, el discriminante del polinomio cuadrático de arriba es igual a $0$ y por lo tanto el polinomio tiene una raíz $t$. En otras palabras, $q(x+ty)=0$. Pero como $q$ es positiva definida, esto implica que $x+ty=0$, de donde $x$ y $y$ son linealmente dependientes. Así, si $x$ y $y$ son linealmente independientes, tenemos que la desigualdad es estricta.

$\square$

El siguiente caso particular es uno de los más importantes y los más usados, por lo cual amerita que lo enunciemos separadamente.

Corolario. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ equipado con un producto interior $\langle \cdot, \cdot \rangle$. Para cualesquiera $x,y$ en $V$ se cumple $|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert$.

Puede que te preguntes por qué enfatizamos los resultados de desigualdades. En varias partes de tu formación matemática trabajarás con espacios vectoriales en donde quieres hacer cálculo. Ahí, se define la convergencia y los límites en términos de una norma. Las desigualdades que probemos para espacios vectoriales son útiles para cuando se quiere demostrar la validez de ciertos límites. Más adelante mencionaremos algunas cosas adicionales al respecto.

Más adelante…

En esta entrada definimos el concepto de producto interior y vimos cómo el producto interior induce una norma en el espacio vectorial. El concepto de norma nos permite generalizar la noción de distancia y esto nos permitirá ver cómo se puede hacer cálculo en espacios vectoriales.

En las siguientes entradas veremos cómo se define esta norma para diferentes espacios vectoriales con diferentes productos interiores. Podremos ver entonces cómo se generalizan otras nociones que ya hemos visto en cursos anteriores; como el concepto de ángulo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Considera la función $q(w,x,y,z)=wx+yz$. Muestra que es una forma cuadrática en $\mathbb{R}^4$. Encuentra su forma polar y determina si es una forma cuadrática positiva y/o positiva definida.
  • Muestra que $$q(w,x,y,z)=x^2+y^2+z^2+xy+yz+zx$$ es una forma cuadrática en $\mathbb{R}^4$ y determina si es positiva y/o positiva definida.
  • Considera $V=\mathcal{C}[0,1]$ el espacio vectorial de funciones continuas en el intervalo $[0,1]$. Muestra que $$\langle f,g\rangle = \int_0^1 f(x)g(x)\, dx$$ define un producto interior en $V$. ¿Es $V$ un espacio Euclideano? Determina la norma de la función $f(x)=x^3$.
  • Sea $V=\mathbb{R}_2[x]$ el espacio vectorial de polinomios con coeficientes reales y de grado a lo más $1$. Muestra que $$\langle p,q\rangle = p(0)q(0)+p(1)q(1)+p(2)q(2)$$ hace a $V$ un espacio Euclideano.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Norma y distancia en los complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Ya definimos a $\mathbb{C}$ y sus operaciones. También definimos y dimos las propiedades de la conjugación compleja. Ahora hablaremos de la norma en los números complejos.

Definición. Dado el número complejo $w=a+bi$, su norma es $\sqrt{a^2+b^2}$. Denotamos a la norma de $w$ por $\Vert w \Vert$.

Ejemplo. La norma del complejo $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ es $$\sqrt{\left(\frac{1}{\sqrt 2}\right)^2+ \left(\frac{1}{\sqrt 2}\right)^2}=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)}=\sqrt{1}=1.$$ La norma del complejo $-3i$ es $$\sqrt{0^2+(-3)^2}=\sqrt{9}=3.$$

$\triangle$

Cuando pensamos a los números complejos como elementos del plano, identificando al complejo $a+bi$ con el punto $(a,b)$, la norma es una forma de medir qué tan alejado está del origen.

A partir de la noción de norma podemos definir la noción de distancia, que dice qué tan lejos están dos complejos entre sí.

Definición. Para dos números complejos $w$ y $z$ definimos la distancia entre $w$ y $z$ como la norma de $w-z$, es decir, $\Vert w-z\Vert$. La denotamos por $d(w, z)$

Propiedades básicas de la norma en los complejos

La norma en los complejos está relacionada con otras operaciones definidas como sigue:

Teorema 1. Sean $w$ y $z$ números complejos. Entonces:

  1. La norma es la raíz del producto de un complejo por su conjugado, es decir, $\Vert z \Vert = \sqrt{z\overline{z}}.$
  2. $\Vert z \Vert$ es un número real no negativo.
  3. $\Vert z \Vert = 0$ si y sólo si $z=0$.
  4. La norma es multiplicativa, es decir, $\Vert zw \Vert = \Vert z \Vert \Vert w \Vert$.

Demostración. Si $z=a+ib$, entonces $\overline{z}=a-ib$, y por lo tanto

\begin{align*}
\sqrt{z\overline{z}}&=\sqrt{a^2-(ib)^2}\\
&=\sqrt{a^2+b^2}\\
&=\Vert z \Vert.
\end{align*}

La norma de $z=a+ib$ es la suma del cuadrado de dos reales. Cada uno de ellos es no negativo, así que esa suma es no negativa. De este modo, al sacar raíz cuadrada obtenemos un número real y no negativo. Para que este número sea cero, necesitamos que $a^2=b^2=0$, es decir, que $a=b=0$, lo cual sucede justo cuando $z=0$.

Para mostrar la última propiedad, se pueden tomar dos números complejos explícitos y hacer las cuentas. Sin embargo, también podemos probarla usando la primer propiedad y la conmutatividad del producto, de números complejos, como sigue:

$$\Vert zw \Vert ^2= zw\overline{zw} = z\overline{z} w\overline{w}= \Vert z \Vert^2 \Vert w \Vert ^2.$$

Sacando raíz cuadrada de ambos lados obtenemos el resultado deseado.

$\square$

Ejercicios que usan las propiedades básicas

Veamos algunas formas en las que podemos usar las propiedades anteriores, de la norma, en los complejos.

Ejercicio 1. Muestra que $z$ y $\overline{z}$ tienen la misma norma.

Solución. Usando que $\overline{\overline{z}}=z$, la propiedad 1 del Teorema 1 y la conmutatividad del producto en $\mathbb{C}$ tenemos que $$\Vert \overline{z}\Vert = \sqrt{\overline{z}z}=\sqrt{z\overline{z}} = \Vert z \Vert.$$

$\triangle$

El siguiente es un corolario de la propiedad 4 del Teorema 1, que se puede mostrar usando inducción. La prueba de este corolario se deja como tarea moral.

Corolario. Para $z$ un complejo y $n$ un natural, se tiene que $$\Vert z^n \Vert = \Vert z \Vert ^n.$$

Ejercicio 2. Determina la norma del complejo $$\left(3+4i\right)^{20}.$$

Solución. Tomemos $u=3+4i$. El problema nos pide determinar $\Vert u^{20} \Vert$. Una forma de hacerlo es realizar primero la operación $u^{20}$, pero esto parece ser complicado. En vez de eso, usamos el Corolario anterior. Para ello, notamos que $$\Vert u \Vert = \sqrt{3^2+4^2}= \sqrt{25}=5.$$

De este forma, por el corolario, la norma que buscamos es $$\Vert u^{20} \Vert = \Vert u \Vert ^{20}= 5^{20}.$$

$\triangle$

Ejercicio 3. Sea $z$ un número complejo. Muestra que los siguientes números complejos tienen la misma norma: $$z, -z, iz, -iz.$$

Solución. Se sigue de la propiedad $4$ del Teorema 1 y de que $$\Vert -1 \Vert = \Vert i \Vert = \Vert -i \Vert = 1.$$

$\square$

Ejercicio 4. Muestra que para un número real, $r$, su norma compleja coincide con su valor absoluto.

Solución. Usando la propiedad 1 del Teorema 1 y que $\overline{r}=r$, tenemos que $$\Vert r \Vert = \sqrt{\overline{r}r}=\sqrt{r^2}=|r|.$$

$\square$

La desigualdad del triángulo

¿Cómo se comporta la norma con la suma de los complejos? Lo responderemos en esta sección. Pero antes, de pasar al teorema 2 que contiene la respuesta, veamos un pequeño resultado auxiliar.

Lema. Si $z$ es un número complejo, entonces $|\text{Re}(z)| \leq \Vert z \Vert$ y $|\text{Im}(z)|\leq \Vert z \Vert$. La primer igualdad se da si y sólo si $z$ es un número real y la segunda si y sólo si $z$ es un número imaginario puro, es decir, si su parte real es $0$.

Demostración. Tomemos $z=a+ib$. Tenemos que $a^2\leq a^2+b^2$, de modo que sacando raíces cuadradas tenemos que $$|\text{Re}(z)| = |a| = \sqrt{a^2}\leq \sqrt{a^2+b^2}=\Vert z \Vert.$$ La igualdad se da si y sólo si $b=0$, lo cual sucede si y sólo si $z$ es real.

$\square$

La demostración de la segunda parte es análoga, y queda como tarea moral.

Teorema 2 (desigualdad del triángulo). Para dos números complejos $w$ y $z$ se tiene que $$\Vert w+z \Vert \leq \Vert w \Vert + \Vert z \Vert.$$ La igualdad se da si y sólo si $w$ es un múltiplo real de $z$, es decir, si y sólo si existe un real $r$ tal que $w=rz$.

Demostración. Tenemos que:
\begin{align*}
\Vert w+z \Vert^2 &= (w+z)\overline{(w+z)}\\
&=(w\overline{w}+w\overline{z}+\overline{w}z+z\overline{z})\\
&=\Vert w \Vert^2 + 2\text{Re}(w\overline{z}) + \Vert z \Vert^2.
\end{align*}

Podemos continuar usando la desigualdad del Lema anterior (notemos que se obtiene la igualdad si y sólo si $w\overline{z}$ es real)

\begin{align*}
&\leq \Vert w \Vert^2 + 2\Vert w\overline{z}\Vert + \Vert z \Vert^2\\
&=\Vert w \Vert ^2 + 2 \Vert w \Vert \Vert z \Vert + \vert z \Vert^2\\
&=\left(\Vert w \Vert + \Vert z \Vert \right)^2.
\end{align*}

Esta cadena de desigualdades se resume a $$ \Vert w+z \Vert^2 \leq \left(\Vert w \Vert + \Vert z \Vert \right)^2, $$ de donde sacando raíz cuadrada en ambos lados, obtenemos lo deseado.

Como observamos durante la demostración, la igualdad se da si y sólo si $w\overline{z}$ es un número real, es decir, si y sólo si existe un real $s$ tal que $w\overline{z}=s$. Multiplicando por $z$ de ambos lados, obtenemos que $$w\Vert z \Vert^2 = sz.$$ Si $z=0$, entonces $w=0$ y por lo tanto $w$ es trivialmente un múltiplo real de $z$. Si $z\neq 0$, entonces $w=\frac{s}{\Vert z \Vert ^2}\cdot z$ también es un múltiplo real de $z$, con $r=\frac{s}{\Vert z \Vert ^2}$. Esto termina el análisis, de los casos, de la igualdad.

$\square$

Propiedades de la distancia

En la introducción definimos la distancia entre dos números complejos $w$ y $z$ como la norma de $w-z$, en símbolos, $d(w,z)=\Vert w-z \Vert$. Para formalizar ideas veamos la siguiente definición.

Definición. Sea $X$ un conjunto y $e: X\times X\rightarrow \mathbb{R}^{+}\cup \lbrace 0\rbrace$ una función, $e$ es una métrica en $X$ si, para todo $x$, $y$ y $z\in X$, satisface que:

  1. $e(x, y)\geq 0$.
  2. $e(x, y)=0$ si, y sólo si, $x=y$.
  3. $e(x, y)=e(y, x)$.
  4. $e(x, y)\leq e(x, z) + e(y, z)$.

Observa que a partir de los teoremas 1 y 2, la distancia $d$ cumple las propiedades de esta definición, por lo que decimos que $d$ es una métrica en $\mathbb{C}$. Así tenemos el siguiente teorema.

Teorema 3. Sean $w$ y $z$ dos números complejos cualesquiera y $d(w, z)=\vert\vert w- z\vert\vert$. Entonces $d$ es una métrica en $\mathbb{C}$.

Demostrar este teorema es sencillo a partir de lo que ya vimos, así que su demostración queda como tarea moral.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra la propiedad 4 del Teorema 1 usando de manera explícita las partes reales e imaginarias de los complejos $z$ y $w$.
  2. Demuestra el corolario de normas de potencias de complejos.
  3. Determina la norma del complejo $(12-5i)^{10}$.
  4. Determina la norma del complejo $(1+2i)(-3+4i)(5-6i)(-7-8i)$.
  5. Demuestra la segunda parte del Lema.
  6. Demuestra el Teorema 3.
  7. Sean $w=(3+4i)(5-i)$ y $z=(5-i)(4+2i)$. Determina $d(w,z)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»