Archivo de la etiqueta: cauchy schwarz

Seminario de Resolución de Problemas: Desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Seguimos con las entradas de temas de desigualdades. Con anterioridad ya hablamos de desigualdades básicas y de desigualdades con medias. En esta ocasión estudiaremos una desigualdad muy versátil: la desigualdad de Cauchy-Schwarz.

En su versión más simple, lo que dice la desigualdad de Cauchy-Schwarz es lo siguiente.

Desigualdad (de Cauchy-Schwarz). Para cualesquiera números reales $a_1,\ldots,a_n$ y $b_1,\ldots,b_n$ se tiene que $$|a_1b_1+\ldots+a_nb_n| \leq \sqrt{a_1^2+\ldots+a_n^2} \sqrt{b_1^2+\ldots+b_n^2}.$$

Primero, veremos cómo se demuestra esta desigualdad. Luego, veremos varios problemas en los que se puede aplicar. Finalmente, hablaremos un poco de sus extensiones a espacios vectoriales.

La demostración polinomial de la desigualdad de Cauchy-Schwarz

Una forma de demostrar la desigualdad de Cauchy-Schwarz es usando inducción sobre $n$. Hay otra demostración usando polinomios. Veamos esa demostración, pues tiene la idea útil de usar argumentos polinomiales para demostrar igualdades.

Consideremos la expresión $$p(t)=\sum_{i=1}^n (a_i+b_i t)^2.$$ Como es una suma de cuadrados, esta expresión es no negativa. Haciendo los cuadrados, y desarrollando la suma, podemos escribirla de la siguiente forma, que nos dice que es un polinomio cuadrático en $t$:

\begin{align*}
\sum_{i=1}^n (a_i+b_i t)^2&=\sum_{i=1}^n \left(a_i^2 + 2a_ib_i t + b_i^2 t^2\right)\\
&=\sum_{i=1}^n a_i^2 + \left(2\sum_{i=1}^n a_ib_i \right)t + \left(\sum_{i=1}^n b_i^2\right)t^2.
\end{align*}

De esta forma $p(t)$ es un polinomio cuadrático y siempre toma valores no negativos. Así, a lo más puede tener una raíz $t$, por lo que su discriminante es menor o igual a $0$:

$$ \left(2\sum_{i=1}^n a_ib_i \right)^2-4\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right)\leq 0$$

Al pasar el segundo término sumando al otro lado y dividir entre $4$ queda

$$\left(\sum_{i=1}^n a_ib_i \right)^2\leq \left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right).$$

Al sacar raíz cuadrada de ambos lados hay que tener cuidado de poner un valor absoluto al lado izquierdo. Al hacer esto, se obtiene el resultado deseado: $$\left|\sum_{i=1}^n a_ib_i \right|\leq \sqrt{\sum_{i=1}^n a_i^2}\cdot \sqrt{\sum_{i=1}^n b_i^2}.$$

Observa que la igualdad se da si y sólo si el discriminante es $0$, lo cual sucede si y sólo si el polinomio tiene una raíz $t$. Cuando esto pasa, cada uno de los sumandos al cuadrado de $p(t)$ debe ser $0$. Así, existe un real $t$ tal que $a_i=-tb_i$ para todo $i=1,\ldots,n$. Esto lo podemos decir en términos vectoriales como que «la igualdad se da si y sólo si el vector $(a_1,\ldots,a_n)$ es un múltiplo escalar del vector $(b_1,\ldots,b_n)$ » .

Un problema sobre acotar el valor de una variable

Problema. Sean $a,b,c,d$ números reales tales que
\begin{align*}
a+b+c+d&=6\\
a^2+b^2+c^2+d^2&=12.
\end{align*}
¿Cuál es el máximo valor que puede tener $d$?

Sugerencia. Aplica la desigualdad de Cauchy-Schwarz a las ternas $(a,b,c)$ y $(1,1,1)$.

Solución. Aplicando la desigualdad a las ternas $(a,b,c)$ y $(1,1,1)$ obtenemos que $$|a+b+c|\leq \sqrt{a^2+b^2+c^2}\cdot{\sqrt{3}}.$$ Usando las hipótesis sobre $a,b,c,d$, tenemos que esta desigualdad es equivalente a $|6-d|\leq \sqrt{3}\cdot {\sqrt{12-d^2}$. Elevando al cuadrado de ambos lados, obtenemos las desigualdades equivalentes
\begin{align*}
36-12d+d^2&\leq 3(12-d^2)\\
36-12d+d^2&\leq 36-3d^2\\
4d^2-12d&\leq 0\\
4d(d-3)&\leq 0.
\end{align*}

Para que se satisfaga esta desigualdad, tiene que pasar o bien que simultáneamente $d\leq 0$ y $d\geq 3$ (lo cual es imposible), o bien que simultáneamente $d\geq 0$ y $d\leq 3$. En conclusión, esto acota el máximo valor posible de $d$ con $3$.

En efecto, existe una solución con $d=3$. De acuerdo al caso de igualdad de la desigualdad de Cauchy-Schwarz, debe pasar cuando $(a,b,c)$ es un múltiplo escalar de $(1,1,1)$, es decir, cuando $a=b=c$. Como $a+b+c+d=6$ y queremos $d=3$, esto forza a que $a=b=c=1$. Y en efecto, tenemos que con esta elección $$a^2+b^2+c^2+d^2=1+1+1+9=12.$$

$\square$

Aplicando Cauchy-Schwarz en un problema con el circunradio

A veces podemos aprovechar información implícita en un problema geométrico y combinarla con la desigualdad de Cauchy-Schwarz. Veamos un problema en el que sucede esto.

Problema. Sea $P$ un punto en el interior del triángulo $ABC$ y $p,q,r$ las distancias de $P$ a los lados $BC, CA, AB$ respectivamente, que tienen longitudes $a,b,c$, respectivamente. Sea $R$ el circunradio de $ABC$. Muestra que $$\sqrt{p}+\sqrt{q}+\sqrt{r} \leq \sqrt{\frac{a^2+b^2+c^2}{2R}}.$$

Sugerencia pre-solución. Necesitarás aplicar la desigualdad de Cauchy-Schwarz más de una vez. Haz una figura para entender la expresión $ap+bq+cr$. Necesitarás también la fórmula que dice que se puede calcular el área $T$ de un triángulo mediante la fórmula $$T=\frac{abc}{R}.$$

Solución. Lo primero que haremos es aplicar la desigualdad de Cauchy-Schwarz en las ternas $(\sqrt{ap},\sqrt{bq},\sqrt{cr})$ y $(1/\sqrt{a},1/\sqrt{b},1/\sqrt{c})$ para obtener $$\sqrt{p}+\sqrt{q}+\sqrt{r}\leq \sqrt{ap+bq+cr}\cdot\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}.$$

Observa que $ap$ es dos veces el área de $\triangle BCP$. De manera similar, tenemos que $bq$ y $cr$ son las áreas de $\triangle CAP$ y $\triangle ABP$ respectivamente. Así, si llamamos $T$ al área de $\triangle ABC$ tenemos que $ap+bq+cr=2T$. Otra expresión para el área de $\triangle ABC$ en términos de su circunradio $R$ es $$T=\frac{abc}{4R}.$$ En otras palabras, $ap+bq+cr=\frac{abc}{2R}$.

Esto nos permite continuar con la desigualdad como sigue:
\begin{align*}
\sqrt{p}+\sqrt{q}+\sqrt{r} &\leq \sqrt{\frac{abc}{2R}}\cdot\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\\
&=\sqrt{\frac{abc}{2R}}\cdot\sqrt{\frac{ab+bc+ca}{abc}}\\
&=\sqrt{\frac{ab+bc+ca}{2R}}.
\end{align*}

Esto es casi la desigualdad que queremos. Para terminar, basta mostrar que $$ab+bc+ca\leq a^2+b^2+c^2.$$ Esto se puede hacer de varias formas (intenta hacerlo usando la desigualdad MA-MG). Pero para continuar viendo la versatilidad de la desigualdad de Cauchy-Schwarz, observa que se puede deducir de ella aplicándola a las ternas $(a,b,c)$ y $(b,c,a)$.

$\square$

En el problema anterior, ¿para qué puntos $P$ se alcanza la igualdad?

Cauchy-Schwarz más allá de los números reales

Lo que está detrás de la desiguadad de Cauchy-Schwarz es en realidad la noción de producto interior en álgebra lineal. En cualquier espacio vectorial sobre los reales que tenga un producto interior $\langle \cdot, \cdot \rangle$ se satisface una desigualdad del tipo de la de Cauchy-Schwarz. No entraremos en los detalles de la teoría que se necesita desarrollar, pues eso se estudia en un curso de álgebra lineal. Sin embargo, enunciaremos el teorema y veremos una forma de aplicarlo.

Teorema (desigualdad de Cauchy-Schwarz). Si $V$ es un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ entonces para cualesquiera dos vectores $u$ y $v$ se satisface que $$|\langle u , v\rangle|\leq \sqrt{\langle u , u\rangle}\cdot \sqrt{\langle v , v\rangle}.$$

Se puede mostrar que bajo las hipótesis del teorema la función $\norm{u}:=\langle u , u\rangle$ es una norma. Como platicamos con anterioridad, una norma satisface la desigualdad del triángulo, que en espacios vectoriales tiene un nombre especial.

Teorema (desigualdad de Minkowski). Si $V$ es un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ y $\norm{u}:=\langle u , u\rangle$, entonces para cualesquiera dos vectores $u$ y $v$ se satisface que $$\norm{u}+\norm{v}\geq \norm{u+v}.$$

Es relativamente sencillo ver que las desigualdades de Cauchy-Schwarz y de Minkowski son «equivalentes», en el sentido de que se puede mostrar una fácilmente suponiendo la otra y viceversa.

La desigualdad de Cauchy-Schwarz que usamos en las secciones anteriores es para el producto interior en $\mathbb{R}^n$ dado por $$\langle (a_1,\ldots,a_n),(b_1,\ldots,b_n) \rangle = a_1b_1+\ldots + a_nb_n,$$ al cual le llamamos el producto punto.

Si tenemos a $V$ el espacio vectorial de las funciones continuas reales en el intervalo $[0,1]$, entonces $$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$ es un producto interior para $V$. Esto nos puede ayudar a resolver algunos problemas.

Problema. Sea $f:[0,1]\to \mathbb{R}^+$ una función continua. Muestra que $$\left ( \int_0^1 f(x)\, dx \right) \left (\int_0^1 \frac{1}{f(x)}\, dt \right) \geq 1.$$

Sugerencia pre-solución. Aplica la desigualdad de Cauchy-Schwarz con el producto interior que discutimos antes de esta entrada.

Solución. Tomemos el producto interior $$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$ en el espacio vectorial de funciones reales y continuas en $[0,1]$. Como la imagen de $f$ está en los reales positivos, podemos definir la función $h:[0,1]\to \mathbb{R}^+$ dada por $h(x)=\sqrt{f(x)}$.

Tenemos que
\begin{align*}
\left \langle h, \frac{1}{h}\right \rangle &= \int_0^1 h(x)\cdot \frac{1}{h(x)}\, dx\\
&=\int_0^1 1\, dx\\
&=1.
\end{align*}

Por otro lado,

\begin{align*}
\langle h, h \rangle &= \int_0^1 h(x)\cdot h(x)\, dx\\
&=\int_0^1 f(x)\, dx.
\end{align*}

y

\begin{align*}
\left\langle \frac{1}{h}, \frac{1}{h} \right\rangle&= \int_0^1 \frac{1}{h(x)}\cdot \frac{1}{h(x)}\, dx\\
&=\int_0^1 \frac{1}{f(x)}\, dx
\end{align*}

La conclusión se sigue entonces de manera inmediata de la desigualdad de Cauchy-Schwarz para $\langle \cdot, \cdot \rangle$.

$\square$

Más problemas

Puedes encontrar más problemas que usan la desigualdad de Cauchy-Schwarz en la sección 7.1 del libro Problem Solving through Problems de Loren Larson. También puedes consultar más técnicas y problemas en el libro Desigualdades de la Olimpiada Mexicana de Matemáticas.

Álgebra Lineal I: Producto interior y desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, platicamos acerca de formas bilineales y de formas cuadráticas. Ahora veremos un tipo de formas bilineales especiales: las positivas y las positivas definidas. Las formas positivas definidas nos ayudan a definir qué es un producto interior. Esta es una noción fundamental que más adelante nos ayudará a definir distancias y ángulos.

Formas bilineales positivas y positivas definidas

Para hablar de geometría en espacios vectoriales, la siguiente noción es fundamental. Es importante notar que es una definición únicamente para formas bilineales simétricas.

Definición. Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo vector $x$ de $V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo vector $x\neq 0$ de $v$.

Tenemos una noción análoga para formas cuadráticas.

Definición. Sea $q:V\to \mathbb{R}$ una forma cuadrática con forma polar $b$. Diremos que $q$ es positiva si $b$ lo es, y diremos que es positiva definida si $b$ lo es.

Ejemplo 1. Como ya vimos antes, el producto punto de $\mathbb{R}^n$ es una forma bilineal simétrica. También es positiva definida, pues si tenemos $x=(x_1,\ldots,x_n)$, tenemos que $$x\cdot x = x_1^2+\ldots+x_n^2\geq 0,$$ y esta es una igualdad si y sólo si $x_1=\ldots=x_n=0$, lo cual sucede si y sólo si $x=0$.

$\triangle$

Ejemplo 2. Considera $V=\mathbb{R}_2[x]$ y consideremos la forma bilineal $b$ dada por $$b(p,q)=p(0)q(1)+p(1)q(0).$$ Esta es una forma bilineal simétrica pues \begin{align*}b(p,q)&=p(0)q(1)+p(1)q(0)\\&=q(0)p(1)+q(1)p(0)\\&=b(q,p).\end{align*} Notemos que $$b(p,p)=2p(0)p(1),$$ que no necesariamente es positivo. Por ejemplo, si tomamos el polinomio $p(x)=x-\frac{1}{2}$, tenemos que \begin{align*}b(p,p)&=2p(0)p(1)\\&=-2\cdot\frac{1}{2}\cdot\frac{1}{2}\\&=-\frac{1}{2}.\end{align*} Así, esta es una forma bilineal simétrica, pero no es positiva (y por lo tanto tampoco es positiva definida).

$\triangle$

Problema. Considera la forma cuadrática $Q$ en $M_{2}(\mathbb{R})$ que suma el cuadrado de las entradas de la diagonal de una matriz, es decir, aquella dada por $$Q\begin{pmatrix} a & b\\c & d\end{pmatrix}=a^2+d^2.$$ Determina su forma polar y si es positiva o positiva definida.

Solución. Para encontrar la forma polar $B$ de $Q$, usamos la identidad de polarización
\begin{align*}
B&\left(\begin{pmatrix}a&b\\c&d\end{pmatrix},\begin{pmatrix} e & f\\ g & h \end{pmatrix}\right)\\
&=\frac{(a+e)^2+(d+h)^2-a^2-e^2-d^2-h^2}{2}\\
&=\frac{2ae+2dh}{2}\\
&=ae+dh.
\end{align*}

Como $Q\begin{pmatrix}a&b\\c&d\end{pmatrix}=a^2+d^2\geq 0$, tenemos que $Q$ (y $B$) son positivas. Sin embargo, $Q$ no es positiva definida (ni $B$), pues por ejemplo, $$Q\begin{pmatrix}0&1\\1&0\end{pmatrix} = 0.$$

Producto interior

Estamos listos para definir aquellos espacios sobre los que podemos hacer geometría.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$

  • Un producto interior en $V$ es una forma bilineal simétrica y positiva definida.
  • Decimos que $V$ es un espacio Euclideano si es de dimensión finita y está equipado con un producto interior.

Estamos siguiendo la convención del libro de Titu Andreescu, en donde es importante pedir que $V$ sea de dimensión finita para ser Euclideano.

Cuando estamos hablando de espacios con producto interior, o de espacios Euclideanos, tenemos una forma bilineal simétrica y positiva definida $b$. Sin embargo, en vez de usar constantemente $b(x,y)$, para simplificar la notación usaremos simplemente $\langle x, y\rangle$.

Definición. Si $V$ es un espacio con producto interior $\langle \cdot,\cdot \rangle$, definimos la norma de un vector $x$ como $$\Vert x \Vert =\sqrt{\langle x, x \rangle}.$$

Ejemplo. Como dijimos arriba, el producto punto en $\mathbb{R}^n$ es una forma bilineal simétrica, así que es un producto interior. Como $\mathbb{R}^n$ es de dimensión finita, entonces es un espacio Euclideano.

La norma de un vector $x=(x_1,\ldots,x_n)$ está dada por $\Vert x \Vert = \sqrt{x_1^2+\ldots+x_n^2},$ y geométricamente se interpreta como la distancia de $x$ al origen.

Un ejemplo más concreto es $\mathbb{R}^4$, en donde la norma del vector $(1,2,3,1)$ es $\sqrt{1^2+2^2+3^2+1^2}=\sqrt{15}$.

$\triangle$

La notación de producto interior quizás te recuerde la notación que se usa cuando hablamos de dualidad. Sin embargo, es muy importante que distingas los contextos. En el caso de dualidad, tenemos $$\langle \cdot, \cdot \rangle: V^\ast\times V \to \mathbb{R},$$ y en este contexto de producto interior tenemos $$\langle \cdot, \cdot \rangle: V\times V \to \mathbb{R}.$$ Más adelante, puede que te encuentres en tu preparación matemática con el teorema de representación de Riesz, a partir del cual tendrá sentido que se use la misma notación.

Desigualdad de Cauchy-Schwarz

A continuación presentamos un resultado fundamental es espacios con formas bilineales positivas y positivas definidas.

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se alcanza la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Demostración. Supongamos primero solamente que $b$ es positiva. Consideremos la función $f:\mathbb{R}\to \mathbb{R}$ dada por $f(t)=q(x+ty)$. Como $q$ es forma cuadrática positiva, tenemos que $f(t)\geq 0$ para todo real $t$. Por otro lado, expandiendo y usando que $b$ es simétrica, tenemos que
\begin{align*}
f(t)&=q(x+ty)\\
&=b(x+ty,x+ty)\\
&=b(x,x)+2b(x,y)\cdot t + b(y,y) \cdot t^2\\
&=q(x) + 2b(x,y)\cdot t + q(y) \cdot t^2.
\end{align*}

En esta expresión, $q(x)$, $2b(x,y)$ y $q(y)$ son reales, así que $f(t)$ es un polinomio cuadrático en $t$. Como $f(t)\geq 0$ para todo $t$ en $\mathbb{R}$, el discriminante de este polinomio es no positivo, en otras palabras, $$(2b(x,y))^2-4q(x)q(y)\leq 0.$$

Sumando $4q(x)q(y)$ y dividiendo entre $4$ ambos lados de la desigualdad, obtenemos que $$b(x,y)^2\leq q(x)q(y),$$ la cual es la desigualdad que queremos.

Si $x$ y $y$ son linealmente dependientes, podemos despejar a uno en términos del otro. Sin perder generalidad, podemos suponer que $x=\alpha y$. En este caso, $$b(\alpha y,y)^2=\alpha^2 b(y,y)=q(\alpha(y))q(y),$$ así que se da la igualdad.

Ahora, supongamos además que $b$ es positiva definida y que se da la igualdad. Si esto sucede, el discriminante del polinomio cuadrático de arriba es igual a $0$ y por lo tanto el polinomio tiene una raíz $t$. En otras palabras, $q(x+ty)=0$. Pero como $q$ es positiva definida, esto implica que $x+ty=0$, de donde $x$ y $y$ son linealmente dependientes. Así, si $x$ y $y$ son linealmente independientes, tenemos que la desigualdad es estricta.

$\square$

El siguiente caso particular es uno de los más importantes y los más usados, por lo cual amerita que lo enunciemos separadamente.

Corolario. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ equipado con un producto interior $\langle \cdot, \cdot \rangle$. Para cualesquiera $x,y$ en $V$ se cumple $|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert$.

Puede que te preguntes por qué enfatizamos los resultados de desigualdades. En varias partes de tu formación matemática trabajarás con espacios vectoriales en donde quieres hacer cálculo. Ahí, se define la convergencia y los límites en términos de una norma. Las desigualdades que probemos para espacios vectoriales son útiles para cuando se quiere demostrar la validez de ciertos límites. Más adelante mencionaremos algunas cosas adicionales al respecto.

Más adelante…

En esta entrada definimos el concepto de producto interior y vimos cómo el producto interior induce una norma en el espacio vectorial. El concepto de norma nos permite generalizar la noción de distancia y esto nos permitirá ver cómo se puede hacer cálculo en espacios vectoriales.

En las siguientes entradas veremos cómo se define esta norma para diferentes espacios vectoriales con diferentes productos interiores. Podremos ver entonces cómo se generalizan otras nociones que ya hemos visto en cursos anteriores; como el concepto de ángulo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Considera la función $q(w,x,y,z)=wx+yz$. Muestra que es una forma cuadrática en $\mathbb{R}^4$. Encuentra su forma polar y determina si es una forma cuadrática positiva y/o positiva definida.
  • Muestra que $$q(w,x,y,z)=x^2+y^2+z^2+xy+yz+zx$$ es una forma cuadrática en $\mathbb{R}^4$ y determina si es positiva y/o positiva definida.
  • Considera $V=\mathcal{C}[0,1]$ el espacio vectorial de funciones continuas en el intervalo $[0,1]$. Muestra que $$\langle f,g\rangle = \int_0^1 f(x)g(x)\, dx$$ define un producto interior en $V$. ¿Es $V$ un espacio Euclideano? Determina la norma de la función $f(x)=x^3$.
  • Sea $V=\mathbb{R}_2[x]$ el espacio vectorial de polinomios con coeficientes reales y de grado a lo más $1$. Muestra que $$\langle p,q\rangle = p(0)q(0)+p(1)q(1)+p(2)q(2)$$ hace a $V$ un espacio Euclideano.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»