Archivo de la etiqueta: bidualidad canónica

Álgebra Lineal I: Introducción a espacio dual

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada empezamos la tercera unidad del curso de Álgebra Lineal I. Los conceptos fundamentales de esta nueva unidad son el de espacio dual y el de formas bilineales.

Hagamos un pequeño recordatorio, que será útil para entender los temas que vendrán. Ya definimos qué es un espacio vectorial y qué son las transformaciones lineales.

Para los espacios vectoriales, hablamos de subespacios, de conjuntos generadores, independientes y bases. A partir de ellos definimos qué quiere decir que un espacio sea de dimensión finita y, en ese caso, dijimos cómo definir la dimensión. Un lema fundamental para hacer esto fue el lema del intercambio de Steinitz.

Dijimos que las transformaciones lineales son funciones «bonitas» entre espacios vectoriales que «abren sumas» y «sacan escalares». Dimos como ejemplos a las proyecciones y las simetrías. Vimos lo que le hacen a generadores, linealmente independientes y bases. También, vimos que podemos expresarlas a través de matrices.

Un tipo de matrices de trasformaciones lineales muy importante son las matrices de cambios de base, que permiten conocer las coordenadas de vectores en distintas bases y pasar matrices de transformaciones lineales entre distintas bases. Finalmente, hablamos del rango para matrices y transformaciones lineales.

Es muy bueno entender estos temas lo mejor posible antes de continuar. Aunque no te queden 100% claras todas las demostraciones, por lo menos intenta sí conocer las hipótesis y los enunciados de los resultados principales.

Los temas que vendrán están basados en los capítulos 6 y 10 del libro de Titu Andreescu.

Dualidad y espacio dual

Antes de continuar, el siguiente ejemplo te debe de quedar clarísimo. Dice que hay una forma de hacer un espacio vectorial cuyos elementos son transformaciones lineales. Así es, cada vector de este espacio es una transformación lineal. Esto no debería de ser tan raro pues ya estudiamos algunos espacios vectoriales de funciones.

De ser necesario, verifica que en efecto se satisfacen los axiomas de espacio vectorial, para entender todavía mejor el ejemplo.

Ejemplo 1. Si $V$ y $W$ son espacios vectoriales sobre un mismo campo $F$, entonces el conjunto de transformaciones lineales de $V$ a $W$ es un espacio vectorial con las operaciones de suma de funciones y multiplicación por escalar.

Recordemos que la suma de funciones manda a las funciones $S:V\to W$ y $T:V\to W$ a la función $S+T:V\to W$ para la cual $$(S+T)(v)=S(v)+T(v)$$ y que la multiplicación por escalar manda al escalar $c\in F$ y a la función $T:V\to W$ a la función $cT:V\to W$ para la cual $$(cT)(v)=cT(v).$$

La razón por la cual este es un espacio vectorial es que es un subconjunto del espacio vectorial de todas las funciones de $V$ a $W$, y además es cerrado bajo sumas y multiplicaciones por escalar, de modo que es un subespacio.

A este espacio vectorial le llamamos $\text{Hom}(V,W)$.

$\triangle$

En esta unidad vamos a estudiar $\text{Hom}(V,W)$, pero para un caso particular muy concreto: para cuando $W$ es $F$, el campo sobre el cual está $V$. Podemos hacer esto, pues recuerda que podemos pensar al campo $F$ como un espacio vectorial sobre sí mismo.

A partir de ahora fijaremos el campo $F$. Si quieres, puedes pensarlo como $\mathbb{R}$ o $\mathbb{C}$ pero lo que digamos funcionará para campos arbitrarios.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. El espacio dual $V^\ast$ de $V$ es el conjunto de transformaciones lineales $l:V\to F$ dotado con las operaciones suma dada por $$(l_1+l_2)(v)=l_1(v)+l_2(v)$$ y producto por escalar dado por $$(cl)(v)=c(l(v))$$ para $l_1,l_2, l$ en $V^\ast$, $v$ en $V$ y $c$ en $F$.

A cada elemento de $V^\ast$ le llamamos una forma lineal en $V$. Usamos la palabra «forma» para insistir en que es una transformación que va hacia el campo $F$ sobre el cual está $V$.

Ejemplo 2. Consideremos al espacio vectorial $\mathbb{R}^3$. Está sobre el campo $\mathbb{R}$. Una forma lineal aquí es simplemente una transformación lineal $S_1:\mathbb{R}^3\to \mathbb{R}$, por ejemplo $$S_1(x,y,z)=x+y-z.$$ Otra forma lineal es $S_2:\mathbb{R}^3\to \mathbb{R}$ dada por $$S_2(x,y,z)=y+z-x.$$ Si sumamos ambas formas lineales, obtenemos la forma lineal $S_1+S_2$, la cual cumple $$(S_1+S_2)(x,y,z)=(x+y-z)+(y+z-x)=2y.$$

Estas son sólo dos formas lineales de las que nos interesan. Si queremos construir todo el espacio dual $(\mathbb{R}^3)^\ast$, necesitamos a todas las transformaciones lineales de $\mathbb{R}^3$ a $\mathbb{R}$.

Recordemos que cada transformación lineal $T$ de estas está representada de manera única por una matriz en $M_{1,3}(\mathbb{R})$ de la forma, digamos, $\begin{pmatrix} a & b & c\end{pmatrix}$. Así, toda transformación lineal de $\mathbb{R}^3$ a $\mathbb{R}$ lo que hace es enviar a $(x,y,z)$ a $$\begin{pmatrix} a& b & c \end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=ax+by+cz.$$ Se puede verificar que la suma de matrices y el producto escalar corresponden precisamente con la suma de sus transformaciones lineales asociadas, y su producto escalar.

Dicho de otra forma, $(\mathbb{R}^3)^\ast$ se puede pensar como el espacio vectorial de matrices $M_{1,3}(\mathbb{R})$. Observa que $\mathbb{R}^3$ y $(\mathbb{R}^3)^\ast$ tienen ambos dimensión $3$.

$\triangle$

Ejemplo 3. Consideremos el espacio vectorial $V$ de funciones continuas del intervalo $[0,1]$ a $\mathbb{R}$. Una forma lineal es una transformación lineal que a cada vector de $V$ (cada función) lo manda a un real en $\mathbb{R}$. Un ejemplo es la forma lineal $T:V\to \mathbb{R}$ tal que $$T(f)=\int_0^1 f(t)\,dt.$$ Otro ejemplo es la forma lineal $\text{ev}_0:V\to \mathbb{R}$ que manda a cada función a lo que vale en $0$, es decir, $$\text{ev}_0(f)=f(0).$$ Aquí dimos dos formas lineales, pero hay muchas más. De hecho, en este ejemplo no está tan sencillo decir quienes son todos los elementos de $V^\ast$.

$\triangle$

Espacio dual de un espacio de dimensión finita

Sea $V$ un espacio de dimensión finita $n$ y $B=\{e_1,e_2,\ldots,e_n\}$ una base de $V$. Como ya vimos antes, una transformación lineal queda totalmente definida por lo que le hace a los elementos de una base. Más concretamente, si $v=x_1e_1+\ldots+x_ne_n$, entonces lo que hace una forma lineal $l$ en $v$ es $$l(x_1e_1+\ldots+x_ne_n)=x_1a_1+\ldots+x_na_n,$$ en donde $a_i=l(e_i)$ son elementos en $F$.

Hay una manera canónica de combinar a un elemento $l$ de $V^\ast$ y a un elemento $v$ de $V$: evaluando $l$ en $v$. Así, definimos al emparejamiento canónico entre $V$ y $V^\ast$ como la función $$\langle\cdot, \cdot \rangle: V^\ast \times V$$ definida para $l$ en $V^\ast$ y $v$ en $V$ como $$\langle l,v\rangle = l(v).$$

Observa que $\langle\cdot, \cdot \rangle$ es lineal en cada una de sus entradas por separado, es decir para $c$ en $F$, para $l_1,l_2,l$ en $V^\ast$ y para $v_1,v_2,v$ en $V$ se tiene que $$\langle cl_1+l_2,v\rangle = c\langle l_1,v\rangle + \langle l_2,v\rangle$$ y que $$\langle l,cv_1+v_2\rangle = c\langle l,v_1\rangle +\langle l,v_2\rangle.$$ Esto es un ejemplo de una forma bilineal. Estudiaremos estas formas a detalle más adelante.

Vamos a hacer una pequeña pausa. Hasta ahora, para un espacio vectorial $V$ definimos:

  • Su espacio dual $V^\ast$.
  • El emparejamiento canónico entre $V$ y $V^\ast$.

Si a $V^\ast$ le estamos llamando «el dual» es porque esperamos que sea «muy parecido» a $V$. También, en una operación de dualidad nos gustaría que al aplicar dualidad dos veces «regresemos» al espacio original.

Por esta razón, nos gustaría a cada elemento $v$ de $V$ asociarle un elemento de $V^ {\ast \ast} $, el espacio dual del espacio dual. Afortunadamente, hay una forma muy natural de hacerlo. Para cada $v$ en $V$ podemos considerar la forma lineal $\text{ev}_v:V^\ast \to F$ que a cada forma lineal $l$ en $V^\ast$ le asigna $l(v)$.

Ejemplo. Considera el espacio vectorial de matrices $M_{2}(\mathbb{R})$. El espacio dual $M_{2}(\mathbb{R})^\ast$ consiste de todas las transformaciones lineales $T: M_{2}(\mathbb{R}) \to \mathbb{R}$. Un ejemplo de estas transformaciones es la transformación $T$ que a cada matriz la manda a la suma de sus entradas, $T\begin{pmatrix}a& b\\c & d\end{pmatrix}=a+b+c+d$. Otro ejemplo es la transformación $S$ que a cada matriz la manda a su traza, es decir, $S\begin{pmatrix}a& b\\c & d\end{pmatrix}=a+d$.

Consideremos ahora a la matriz $A=\begin{pmatrix} 5 & 2\\ 1 & 1\end{pmatrix}$.

A esta matriz le podemos asociar la transformación $\text{ev}_A:M_{2}(\mathbb{R})^\ast\to F$ tal que a cualquier transformación lineal $L$ de $ M_{2}(\mathbb{R})$ a $\mathbb{R}$ la manda a $L(A)$. Por ejemplo, a las $T$ y $S$ de arriba les hace lo siguiente $$\text{ev}_A(T)=T(A)=5+2+1+1=9$$ y $$\text{ev}_A(S)=S(A)=5+1=6.$$

$\triangle$

La discusión anterior nos permite dar una transformación lineal $\iota: V \to V {\ast \ast}$ tal que a cada $v$ la manda a $\text{ev}_v$, a la cual le llamamos la bidualidad canónica entre $V$ y $V^ {\ast \ast} $. Nota que $$\langle \iota(v), l\rangle=\langle l, v\rangle.$$ Un teorema importante que no probaremos en general, sino sólo para espacios vectoriales de dimensión finita, es el siguiente.

Teorema. Para cualquier espacio vectorial $V$, la bidualidad canónica es inyectiva.

De hecho, para espacios vectoriales de dimensión finita veremos que es inyectiva y suprayectiva, es decir, que es un isomorfismo entre $V$ y $V^{\ast \ast}$.

Formas coordenadas

En esta sección hablaremos de cómo encontrar una base para el espacio dual de un espacio vectorial $V$ de dimensión finita.

Supongamos que $V$ es de dimensión finita $n$ y sea $B=\{e_1,\ldots,e_n\}$ una base de $V$. A partir de la base $B$ podemos obtener $n$ formas lineales $e_i^\ast:V\to F$ como sigue. Para obtener el valor de $e_i^\ast$ en un vector $v$, expresamos a $v$ en términos de la base $$v=x_1e_1+x_2e_2+\ldots+x_n e_n$$ y definimos $e_i^\ast(v)=x_i$. A $e_i^\ast$ le llamamos la $i$-ésima forma coordenada para la base $B$ de $V$.

Directamente de las definiciones que hemos dado, tenemos que $$v=\sum_{i=1}^n e_i^\ast(v) e_i = \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i.$$

Otra relación importante es que $e_i^\ast(e_j)=0$ si $i\neq j$ y $e_i^\ast(e_j)=1$ si $i=j$. De hecho, muchas veces tomaremos esta como la definición de la base dual.

Ejemplo. Si estamos trabajando en $F^n$ y tomamos la base canónica $e_i$, entonces la forma canónica $e_i^\ast$ manda al vector $(x_1,\ldots,x_n)$ a $x_i$, que es precisamente la $i$-ésima coordenada. De aquí el nombre de formas coordenadas. En efecto, tenemos que $$v=x_1e_1+x_2e_2+\ldots+x_ne_n.$$

$\triangle$

Estamos listos para enunciar el teorema principal de esta entrada introductoria a dualidad lineal.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B=\{e_1,\ldots,e_n\}$ una base de $V$. Entonces el conjunto de formas coordenadas $B^\ast=\{e_1^\ast, \ldots,e_n^\ast\}$ es una base de $V^\ast$. En particular, $V^\ast$ es de dimensión finita $n$. Además, la bidualidad canónica $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales.

Más adelante…

Esta primera entrada introduce los conceptos de espacio dual. Estos conceptos son bastante útiles más adelante. Veremos que gracias a ellos, podemos dar una interpretación en términos de transformaciones lineales de la matriz transpuesta. En esta primer entrada también hablamos de formas lineales. Más adelante, veremos como éstas nos llevan de manera natural al concepto de «hiperplanos» en cualquier espacio vectorial. Uno de los resultados clave que demostraremos con la teoría de dualidad es que cualquier subespacio de un espacio vectorial de dimensión finita se puede pensar como intersección de hiperplanos. Gracias a esto encontraremos una fuerte relación entre subespacios y sistemas de ecuaciones lineales.

Antes de poder hacer estas cosas bien, necesitamos desarrollar bases sólidas. Por ello, en la siguiente entrada demostraremos el último teorema enunciado. También, veremos algunas recetas para resolver problemas de bases duales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Revisa por definición que si $V$ y $W$ son espacios vectoriales sobre $F$, entonces $\text{Hom}(V,W)$ es un espacio vectorial sobre $F$.
  • Encuentra más formas lineales en el espacio de funciones continuas del intervalo $[0,1]$ a $\mathbb{R}$.
  • Justifica por qué $\iota:V\to V^{\ast \ast}$ es una transformación lineal y argumenta por qué $\langle \iota (v),l\rangle = \langle l,v\rangle$.
  • En el espacio de polinomios $\mathbb{R}_n[x]$ con coeficientes reales y grado a lo más $n$, ¿quienes son las formas coordenadas para la base ordenada $(1,x,x^2,\ldots,x^{n-1},x^n)$?, ¿quiénes son las formas coordenadas para la base ordenada $(1,1+x,\ldots,1+\ldots+x^{n-1},1+\ldots+x^n)$?
  • Aplica el último teorema a la base canónica $E_{ij}$ de $M_2(\mathbb{R})$ para encontrar una base de $M_2(\mathbb{R})^\ast$
  • Considera el espacio vectorial $V$ de matrices en $M_2(\mathbb{R})$. ¿Quién es el kernel de la forma lineal en $V$ que a cada matriz la manda a su traza? ¿Quién es el kernel de la forma lineal $\text{ev}_A$ en $V^\ast$, donde $A=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»