Variable Compleja I: Continuidad en $\mathbb{C}$

Por Pedro Rivera Herrera

Introducción

En esta entrada abordaremos de manera formal el concepto de continuidad en el sentido complejo. El concepto de continuidad en el ámbito matemático se remonta hace cientos de años atrás, aunque fue hasta mediados del siglo XIX cuando matemáticos como Augustin Louis Cauchy comienzan a dar una formulación precisa de dicho concepto. Desde entonces el concepto de continuidad ha sido refinado, abstraído y generalizado para muchas de las ramas de las matemáticas, en particular en el Cálculo y el Análisis.

En el caso real, solíamos asociar la idea intuitiva de que una función real continua era aquella cuya gráfica no tenía «huecos» o «saltos». Sin embargo, como hemos mencionado antes, en el caso complejo nos será imposible visualizar la gráfica de una función compleja, por lo que resulta interesante cuestionarnos sobre cómo podríamos pensar de forma intuitiva dicho concepto en el caso complejo.

Aunque tendremos definiciones similares a las del caso real, no debemos dar por hecho que el comportamiento de las funciones complejas será necesariamente el mismo que el de las funciones reales, de hecho veremos que las funciones complejas extienden ciertas propiedades de las funciones reales de dos variables continuas, pero veremos que en general las funciones complejas se comportan distinto a las funciones vectoriales de $\mathbb{R}^2$ a $\mathbb{R}^2$, pues resultan ser más restrictivas en ciertas propiedades.

Continuidad de funciones complejas

Definición 15.1. (Continuidad de una función compleja.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Diremos que $f$ es continua en un punto $z_0\in S$ si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $|\,z-z_0\,|<\delta$, entonces $|\,f(z)-f(z_0)\,|<\varepsilon$. Si $f$ es continua en todo punto $z_0 \in S$, entonces diremos que $f$ es continua en $S$. Si $f$ no es continua en $z_0\in S$, entonces diremos que es discontinua en $z_0$.

Ejemplo 15.1
a) Veamos que las funciones $f(z) = \operatorname{Re}(z)$ y $g(z) = \operatorname{Im}(z)$ son continuas para todo $z_0\in\mathbb{C}$.
Solución. Sea $z_0 \in \mathbb{C}$. De acuerdo con la observación 3.1 tenemos que: \begin{equation*} |\,\operatorname{Re}(z) – \operatorname{Re}(z_0)\,| \leq |\,z – z_0\,|,\end{equation*} \begin{equation*}|\,\operatorname{Im}(z) – \operatorname{Im}(z_0)\,| \leq |\,z – z_0\,|. \end{equation*} Por lo que para todo $\varepsilon>0$ existe $\delta = \varepsilon >0$ tal que si $z\in\mathbb{C}$ y $|\,z – z_0\,| < \delta$, entonces:
\begin{equation*}|\,f(z) – f(z_0)\,| = |\,\operatorname{Re}(z) – \operatorname{Re}(z_0)\,| < \varepsilon, \end{equation*} \begin{equation*}|\,g(z) – g(z_0)\,| = |\,\operatorname{Im}(z) – \operatorname{Im}(z_0)\,| < \varepsilon. \end{equation*} De donde se sigue el resultado.

b) Veamos que la función $h(z)=|\,z\,|$ es continua para todo $z_0 \in\mathbb{C}$.
Solución. Sean $z, z_0\in\mathbb{C}$, con $z_0$ fijo. Por la proposición 3.3 sabemos que: \begin{equation*}|\,|\,z\,| – |\,z_0\,| \,| \leq |\,z – z_0\,|. \end{equation*} Entonces, para todo $\varepsilon>0$ existe $\delta = \varepsilon>0$ tal que si $z\in\mathbb{C}$ y $|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,h(z) – h(z_0)\,| = |\,|\,z\,| – |\,z_0\,| \,| < \varepsilon. \end{equation*} Por lo que $f$ es continua para todo $z_0\in\mathbb{C}$.

Observación 15.1.
Al igual que con el límite, podemos ver que la continuidad de una función compleja $f(z) = u(x,y) + i v(x,y)$, se puede garantizar a través de la continuidad de las funciones reales $u(x,y)$ y $v(x,y)$, correspondientes con la parte real y la parte imaginaria de $f$. Para ello recordemos la definición de continuidad para una función real de dos variables, vista en nuestros cursos de Cálculo.

Definición 15.2. (Continuidad de una función real de dos variables.)
Sean $U\subset\mathbb{R}^2$ y $u:U\to\mathbb{R}$ una función real de dos variables, digamos $x$ e $y$. Para $(x_0, y_0)\in U$ diremos que $u$ es contninua en $(x_0, y_0)$ si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $(x,y)\in U$ y $\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$, entonces: \begin{equation*} |u(x,y) – u(x_0,y_0)| < \varepsilon. \end{equation*}

Proposición 15.1.
Toda función compleja es continua si y solo si su parte real y su parte imaginaria son continuas.

Demostración. Sean $S \subset \mathbb{C}$ y $f: S \to \mathbb{C}$ una función compleja arbitraria y sea $z = x+iy \in S$.

De acuerdo con la proposición 12.1 sabemos que toda función compleja $f$ puede escribirse de la forma:\begin{equation*} f(z) = u(x,y) + i v(x,y), \end{equation*} donde las funciones reales $u(x,y)$ y $v(x,y)$ son su parte real y su parte imaginaria, respectivamente.

Para $z_0 = x_0 + iy_0\in S$ fijo tenemos por la observación 3.1 que: \begin{equation*} |\,u(x,y) – u(x_0, y_0)\,| \leq |\,f(z) – f(z_0)\,| \leq |\,u(x,y) – u(x_0, y_0)\,| + |\,v(x,y) – v(x_0, y_0)\,|, \end{equation*} \begin{equation*} |\,v(x,y) – v(x_0, y_0)\,| \leq |\,f(z) – f(z_0)\,| \leq |\,u(x,y) – u(x_0, y_0)\,| + |\,v(x,y) – v(x_0, y_0)\,|, \end{equation*} por lo que considerando las definiciones 15.1, 15.2 y las desigualdades anteriores se sigue el resultado.

$\blacksquare$

Observación 15.2.
Notemos que en la definición 15.1 se tiene implícita la condición de que:

  1. existe $f(z_0)$.

De acuerdo con la proposición 9.4 de la entrada 9, sabemos que para $z_0 \in S\subset\mathbb{C}$ pueden suceder dos casos:

  • $z_0$ es un punto aislado de $S$, es decir que $z_0 \in S \setminus S’$,
  • $z_0$ es un punto de acumulación de $S$, es decir que $z_0 \in S \cap S’$.

Debe ser claro que si $z_0$ es un punto aislado, entonces existe alguna $\delta$-vecindad de $z_0$, digamos $B(z_0,\delta)$, tal que no contiene otros puntos de $S$ aparte de $z_0$, es decir para todo $z\in S$: \begin{equation*} |\,z-z_0\,|<\delta \quad \Longrightarrow \quad z=z_0, \end{equation*} por lo que $|\,f(z) – f(z_0)\,|=0<\varepsilon$. Entonces, de acuerdo con la definición 15.1, una función compleja $f$ es siempre continua en un punto aislado.

Mientras que si $z_0 \in S\cap S’$ también debe cumplirse que:

  1. existe $\lim\limits_{z \to z_0} f(z)$,
  2. y $\lim\limits_{z \to z_0} f(z) = f(z_0)$.

Por lo que basta con que no se cumpla alguna de estas tres condiciones para que una función $f\in\mathcal{F}(S)$ sea discontinua en $z_0\in S\subset\mathbb{C}$.

Ejemplo 15.2.
Sea $c\in\mathbb{C}$ una constante y $n\in\mathbb{N}^+$. Consideremos a la función $f(z) = c z^n$. Veamos que $f$ es continua en $\mathbb{C}$.

Solución. De acuerdo con la observación 14.5 de la entrada anterior, para toda $n\in\mathbb{N}^+$ tenemos que: \begin{equation*} \lim_{z \to z_0} f(z) = c z_0^n. \end{equation*} Por otra parte, tenemos que $f(z_0) = cz_0^n$ para todo $n\in\mathbb{N}^+$, por lo que $f$ es una función continua en $\mathbb{C}$.

Ejemplo 15.3.
a) Verificar si la función $f(z) = z^2 – iz + 2$ es continua en $z_0 = 1 – i \in \mathbb{C}$.
Solución. De acuerdo con la observación 15.2 para ver si la función $f$ es continua en el punto $z_0 \in \mathbb{C}$ basta con ver que se cumplan las tres condiciones establecidas en dicha observación.

  1. Es claro que $f$ está definida en $z_0$, y es tal que: \begin{equation*} f(z_0) = (1-i)^2 – i(1-i) + 2 = 1 – 3i. \end{equation*}
  2. Considerando la observación 14.6 tenemos que: \begin{align*} \lim_{z \to z_0} f(z) &= \left(\lim_{z \to z_0} z\right)^2 – i \left( \lim_{z \to z_0} z\right) + 2\\ & = \left(1-i\right)^2 – i \left(1-i\right) + 2\\ & = 1-3i. \end{align*}
  3. Tenemos que: \begin{equation*} \lim_{z \to z_0} f(z) = f(z_0). \end{equation*}

Por lo tanto $f$ es continua en $z_0 = 1-i \in \mathbb{C}$.

b) Consideremos a la siguiente función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} z^2 & \text{si} & z \neq i, \\ 0 & si & z = i. \end{array} \right. \end{equation*} Probar que $f$ no es continua en $z_0 = i$.
Solución. Notemos que:

  1. $f$ está definida en $z_0$, y es tal que: \begin{equation*} f(z_0) = 0. \end{equation*}
  2. De acuerdo con la observación 14.6 tenemos que: \begin{align*} \lim_{z \to z_0} f(z) &= \left(\lim_{z \to i} z\right)^2\ & = (i)^2 = -1. \end{align*}
  3. Es claro que: \begin{equation*} \lim_{z \to z_0} f(z) = -1 \neq 0 = f(z_0). \end{equation*}

Por lo tanto, tenemos que $f$ no es continua en $z_0 = i$.

Observación 15.3.
Dado que $\mathbb{C}$ dotado con el módulo es un espacio métrico, entonces son válidas las propiedades de continuidad para espacios métricos probadas en la entrada 9, en particular establecemos la siguiente caracterización.

Proposición 15.2.
Sean $S\subset \mathbb{C}$, $z_0 \in S$ y $f\in\mathcal{F}(S)$ una función. Las siguientes condiciones son equivalentes:

  1. $f$ es continua en $z_0$ de acuerdo con la definición 15.1,
  2. para todo $\varepsilon>0$ existe $\delta>0$ tal que: \begin{equation*} B(z_0,\delta) \cap S \subset f^{-1}\left[ B(f(z_0),\varepsilon)\right]. \end{equation*}
  3. $\lim\limits_{n\to\infty} f(z_n) = f(z_0)$, para toda sucesión $\{z_n\}_{n\geq 1} \subset S$ que converge a $z_0$.

$\blacksquare$

Proposición 15.3.
Sean $S\subset \mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Las siguientes condiciones son equivalentes:

  1. $f$ es continua en $S$ de acuerdo con la definición 15.1,
  2. si $U\subset \mathbb{C}$ es abierto en $\mathbb{C}$, entonces $f^{-1}(U)$ es también abierto en $S$,
  3. si $F\subset \mathbb{C}$ es cerrado en $\mathbb{C}$, entonces $f^{-1}(F)$ es también cerrado en $S$.

$\blacksquare$

Proposición 15.4.
Sea $H\subset \mathbb{C}$, $g\in\mathcal{F}(H)$ una función tal que $g(H) \subset S \subset\mathbb{C}$ y sea $f\in\mathcal{F}(S)$. Supongamos que $z_0$ es un punto de acumulación de $H$, que $\lim\limits_{z \to z_0} g(z) = w_0 \in S$ y que $f$ es continua en $w_0$. Entonces $\lim\limits_{z \to z_0} f(g(z)) = f(w_0)$, es decir: \begin{equation*} \lim_{z \to z_0} f(g(z)) = f\left(\lim_{z \to z_0} g(z) \right). \end{equation*}

Demostración. Dadas las hipótesis, tenemos que dado $\varepsilon>0$ existe $\eta>0$ tal que si $w\in S$ y $|\,w – w_0\,| < \eta $ entonces: \begin{equation*} |\,f(w) – f(w_0)\,| < \varepsilon. \end{equation*} Más aún, tenemos que para dicha $\eta>0$ existe un $\delta>0$ tal que si $z\in H$ y $0<|\,z-z_0\,|<\delta$ entonces: \begin{equation*} |\,g(z) – w_0\,| < \eta. \end{equation*} Por lo que considerando estas dos implicaciones se sigue que si $z\in H$ y $0<|\,z-z_0\,|<\delta$ entonces: \begin{equation*} |\,f(g(z)) – f(w_0)\,| < \varepsilon. \end{equation*} Por lo tanto $\lim\limits_{z \to z_0} f(g(z)) = f(w_0)$.

$\blacksquare$

Proposición 15.5.
Sean $S\subset \mathbb{C}$ y $f,g\in\mathcal{F}(S)$ dos funciones continuas en $S$, entonces:

  1. $f \pm g$ es continua en $S$.
  2. $fg$ es continua en $S$. Si $g$ es constante, es decir si $g(z) = c\in\mathbb{C}$ para todo $z\in S$, entonces $cf$ es continua en $S$.
  3. Si $g(z) \neq 0$ para todo $z\in S$, entonces $\dfrac{f}{g}$ es continua en $S$.
  4. Si $z_0 \in S$ y $h$ es una función definida en un conjunto $U \subset f(S)$ tal que $h$ es continua en $f(z_0)$, entonces la composición $h\circ f$ es continua en $z_0$.

Demostración. Utilizando la definición 15.1 y la proposición 14.3 de la entrada anterior es fácil probar el resultado, por lo que se deja como ejercicio al lector.

$\blacksquare$

Corolario 15.1.
Los polinomios son continuos en $\mathbb{C}$. Las funciones racionales son continuas en su dominio de definición.

Demostración. Sea $p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$, con $z\in\mathbb{C}$, un polinomio de coeficientes complejos, es decir $c_i \in\mathbb{C}$ para toda $i\in{0,1,\ldots, n}$, con $c_n\neq 0$.

Procedemos a realizar la prueba por inducción sobre $n$. Notemos que para $n=0$ se tiene que $p(z) = c_0\neq 0$ es una función constante, entonces considerando el ejemplo 14.1(c) de la entrada anterior, tenemos que: \begin{equation*} \lim_{z\to z_0} p(z) = \lim_{z\to z_0} c_0= c_0 = p(z_0), \end{equation*} por lo que en dicho caso $p(z)$ es continuo para todo $z_0\in\mathbb{C}$.

Para $n=1$, tenemos que $p(z) = c_0 + c_1 z$, por lo que considerando la proposición 15.5(1), al ser $c_0$ y $c_1 z$ funciones continuas en $\mathbb{C}$, entonces $p(z) = c_0 + c_1 z$ es continuo para todo $z\in\mathbb{C}$. Supongamos que el polinomio $q(z) = c_0 + \sum_{i = 1}^{k}c_i z^i$, para algún $k\in\mathbb{N}$ fijo, es continuo para todo $z\in\mathbb{C}$.

Para $n=k+1$ tenemos que: \begin{align*} p(z) & = c_0 + \sum_{i = 1}^{k+1}c_i z^i\\ & = c_0 + \sum_{i = 1}^{k}c_i z^i + c_{k+1} z^{k+1}\\ & = q(z) + c_{k+1} z^{k+1}, \end{align*} por hipótesis de inducción tenemos que $q(z)$ es un polinomio continuo y al ser $c_{k+1} z^{k+1}$ una función continua, entonces por la proposición 15.5(1), es claro que para $n=k+1$ el polinomio $p(z)$ es continuo para todo $z\in\mathbb{C}$, por lo que el resultado es válido para todo $n\in\mathbb{N}$.

Por otra parte, consideremos a $f(z) = \dfrac{p(z)}{q(z)}$, la cual es una función racional definida como el cociente de dos polinomios. De acuerdo con la proposición 15.5(3), considerando que todo polinomio es continuo en $\mathbb{C}$ se sigue que $f$ es continua en todo su dominio de definición, es decir en $S =\{z\in\mathbb{C} \, : \, q(z)\neq 0\}$.

$\blacksquare$

Ejemplo 15.4.
Considera la siguiente función y determina dónde es continua. \begin{equation*} f(z) = \frac{z-i}{z^2 + 1}. \end{equation*}

Solución. Tenemos que $z^2 + 1 = 0$ si y solo si $z=i$ o $z=-i$, por lo que el dominio natural de $f$ es el conjunto $S = \mathbb{C}\setminus\{i, -i\}$. De acuerdo con el corolario 15.1, dado que $f$ es una función racional entonces $f$ es continua en $S$.

Una pregunta que podemos hacernos es ¿se puede asignar un valor a la función $f$ de tal modo que sea continua en $z=i$?

Notemos que: \begin{equation*} f(z) = \frac{z-i}{z^2 + 1} = \frac{z-i}{(z-i)(z+i)}. \end{equation*} Para $z\neq i$ tenemos que: \begin{align*} \lim_{z \to i} f(z) & = \lim_{z \to i} \frac{z-i}{z^2 + 1}\\ & = \lim_{z \to i} \frac{z-i}{(z-i)(z+i)}\\ & = \lim_{z \to i} \frac{1}{z+i}\\ & = \frac{1}{2i} = -\frac{i}{2}. \end{align*} Por lo que podemos definir a la función:
\begin{equation*} g(z)= \left\{ \begin{array}{lcc} \dfrac{z-i}{z^2 + 1} & \text{si} & z \neq -i, \\ -\dfrac{i}{2} & si & z = i, \end{array} \right. \end{equation*} la cual claramente es una función continua en $z=i$, por lo que la discontinuidad de la función $f(z)$ en el punto $z=i$ pudo removerse.

Definición. 15.3. (Discontinuidad removible.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función discontinua en un punto $z_0\in S$. Se dice que $f(z)$ tiene una {\bf discontinuidad removible} en $z_0$ si existe el límite de $f(z)$ en dicho punto y la función no está definida en $z_0$ o tiene asignado un valor distinto al del límite, en tal caso la función $f(z)$ puede hacerse continua definiendo el valor de la función en $z_0$ como el valor del límite.

Si un punto $z_0 \in S$ no es una discontinuidad removible, diremos que es una discontinuidad irremovible.

Ejemplo 15.5.
Veamos que la función $f(z) = \dfrac{\operatorname{Re}(z)}{z}$ tiene una discontinuidad irremovible en $z=0$.

Solución. De acuerdo con el corolario 15.1, es claro que la función $f(z)$ no es continua en $z=0$. Veamos que el límite de la función $f(z)$ cuando $z$ tiende a $0$ no existe.

Sea $z=x+iy \neq 0$. Si nos aproximamos a $0$ a lo largo del eje real, es decir si $y=0$ y $z=x$, entonces: \begin{align*} \lim_{z\to 0 } f(z) & = \lim_{z\to 0 } \frac{\operatorname{Re}(z)}{z}\\ & = \lim_{x\to 0 } \frac{x}{x}\\ & = \lim_{x\to 0 } 1\\ & = 1. \end{align*} Por otra parte, si nos aproximamos a $0$ a lo largo del eje imaginario, es decir si $x=0$ y $z=iy$, entonces: \begin{align*} \lim_{z\to 0 } f(z) & = \lim_{z\to 0 } \frac{\operatorname{Re}(z)}{z}\\ & = \lim_{x\to 0 } \frac{0}{iy}\\ & = \lim_{x\to 0 } 0\\ & = 0. \end{align*} Por lo que el $\lim\limits_{z \to 0} f(z)$ no existe. Entonces la función tiene una discontinuidad irremovible en $z=0$.

Ejemplo 15.6.
Veamos que la función $f(z) =\operatorname{Arg}(z)$ tiene una discontinuidad irremovible en $z=0$. Más aún, veamos que todo $z$ en el eje real negativo es una discontinuidad irremovible y por tanto que $f$ solo es continua en el dominio $\mathbb{C} \setminus (-\infty, 0]$.

Solución. Sabemos que para $z=0$ la función argumento principal no está definida, por lo que en $z=0$ dicha función no es continua. Veamos que dicho valor es una discontinuidad irremovible mostrando que el límite en dicho punto no existe.

Sabemos que:

  1. si $z=x>0$, entonces $\operatorname{Arg}(z) = 0$,
  2. si $z=x<0$, entonces $\operatorname{Arg}(z) = \pi$.

Por lo que:

  1. para $x>0$ se tiene que $\lim\limits_{z \to 0} \operatorname{Arg}(z) = \lim\limits_{x \to 0^+} \operatorname{Arg}(z) = 0$,
  2. mientras que para $x<0$ se tiene que $\lim\limits_{z \to 0} \operatorname{Arg}(z) = \lim\limits_{x \to 0^-} \operatorname{Arg}(z) = \pi$.

Por la unicidad del límite concluimos que no existe $\lim\limits_{z \to 0} \operatorname{Arg}(z)$, por lo que $z=0$ es una discontinuidad irremovible.

Sea $z_0\in \mathbb{C}\setminus\{0\}$, tal que $z_0 = x_0 < 0$, fijo, entonces $\operatorname{Arg}(z_0) = \pi$. De acuerdo con la definición de la función $\operatorname{Arg}(z)$ dada en la entrada 13, es claro que para $z=x+iy\in\mathbb{C}\setminus\{0\}$, se tiene que:

  1. si $x<0$ y $y\geq0$, entonces $\operatorname{Arg}(z) = \operatorname{arc\,tan}\left( \frac{y}{x} \right) + \pi$,
  2. si $x<0$ y $y <0$, entonces $\operatorname{Arg}(z) = \operatorname{arc \,tan}\left( \frac{y}{x} \right) – \pi$.

Por lo que, si nos aproximamos a $z_0$ mediante $z = z_0 + iy$ tenemos:
\begin{align*} \lim\limits_{z \to z_0} \operatorname{Arg}(z) = \lim\limits_{y \to 0^+} \operatorname{Arg}(z) = \pi,\\ \lim\limits_{z \to z_0} \operatorname{Arg}(z) = \lim\limits_{y \to 0^-} \operatorname{Arg}(z) = -\pi. \end{align*}

Entonces la función $\operatorname{Arg}(z)$ es discontinua en $z_0 = x_0<0$ y desde que no existe $ \lim\limits_{z \to z_0} \operatorname{Arg}(z)$ tenemos que $z_0$ es una discontinuidad irremovible. Como $z_0 = x_0<0$ era arbitrario, entonces todo $z_0 \in (-\infty, 0)$ es una discontinuidad irremovible.

Procedemos a verificar que $f$ es continua en el dominio $\mathbb{C} \setminus (-\infty, 0]$.

Por la proposición 13.1, entrada 13, sabemos que para $z\neq 0$ si $z \in \mathbb{C} \setminus (-\infty, 0)$ entonces: \begin{equation*} \operatorname{Arg}(z) = 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right), \end{equation*} de donde $u(x,y) = 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right)$ y $v(x,y) =0$, las cuales son funciones reales continuas, entonces de la proposición 15.1 se sigue que la función $\operatorname{Arg}(z)$ es continua en $\mathbb{C} \setminus (-\infty, 0]$.

Observación 15.4.
Debe ser claro que la función $f(z) = \operatorname{Arg}(z) = \operatorname{Arg}_{(-\pi, \pi]}(z)$ corresponde con una rama de la función multivaluada $G(z) = \operatorname{arg}(z)$ desde que $f$ es continua en $\mathbb{C} \setminus (-\infty, 0] = \left\{ z\in\mathbb{C} : |\,z\,|>0, -\pi < \operatorname{arg} z < \pi \right\}$, dicha rama es llamada la rama principal del argumento.

Más aún, para $\alpha \in \mathbb{R}$ fijo e $I=(\alpha, \alpha+2\pi]$, tenemos por la proposición 13.3 que la función $g(z) = \operatorname{Arg}_I(z)$ está dada por: \begin{equation*} \operatorname{Arg}_I(z) = \operatorname{Arg}\left(-z\operatorname{cis}(-\alpha)\right) + \alpha + \pi, \end{equation*} por lo que podemos verificar que $g$ será continua dónde lo sea $f$.

Veamos entonces que $g$ es continua en $\mathbb{C}\setminus L_\alpha$, donde $L_\alpha = \left\{ r\operatorname{cis}(\alpha) : r \geq 0 \right\}$, figura 69.

Notemos que si $z \in L_\alpha$, entonces $z = r\operatorname{cis}(\alpha)$, con $r = |\,z\,|$ y $\alpha = \operatorname{arg} z$. Claramente $r>0$ pues en $z=0$ la función $f$ no está definida. Entonces, por la prueba de la proposición 13.3 tenemos que: \begin{equation*} -z \operatorname{cis}(-\alpha) = -r\operatorname{cis}(\alpha)\operatorname{cis}(-\alpha) = -r\operatorname{cis}(\alpha – \alpha) = -r(1) = -r, \end{equation*} de donde $-r < 0$, por lo que $-r \in (-\infty, 0)$, pero en dicho conjunto $f$ no es continua, por lo que para $z \in L_\alpha$ la función $g(z) = \operatorname{Arg}_I(z) $ no es continua.

Por otra parte, si $z \in \mathbb{C}\setminus L_\alpha$ tenemos que $z = \rho \operatorname{cis}(\theta)$, con $\rho = |\,z\,|>0$ y $\theta = \operatorname{Arg}_I(z)$, entonces: \begin{equation*} \alpha < \theta < \alpha + 2\pi \quad \Longleftrightarrow \quad -\pi < \theta – \alpha – \pi < \pi, \end{equation*} pues $\operatorname{cis}(\alpha + 2\pi) = \operatorname{cis}(\alpha) \operatorname{cis}(2\pi) = \operatorname{cis}(\alpha)$.

Tenemos que:
\begin{equation*} -z \operatorname{cis}(-\alpha) = \operatorname{cis}(-\pi) \, \rho \operatorname{cis}(\theta)\operatorname{cis}(-\alpha) = \rho \operatorname{cis}(\theta – \alpha – \pi ), \end{equation*} por lo que $ -z \operatorname{cis}(-\alpha) \in \mathbb{C}\setminus(-\infty, 0]$, donde $f$ es continua.

Entonces la función $g(z) = \operatorname{Arg}_I(z)$ solo es continua en $\mathbb{C}\setminus L_\alpha$. Por lo tanto, la función $g$ determina una rama de la función multivaluada $G(z) = \operatorname{arg}(z)$, siempre que se defina en el dominio, figura 69: \begin{equation*} D = \mathbb{C}\setminus L_\alpha = \left\{ z\in\mathbb{C} : |\,z\,|>0, \alpha < \operatorname{arg} z < \alpha + 2\pi \right\}. \end{equation*}

Figura 69: Dominio de continuidad $D$ de la rama del argumento $g(z) = \operatorname{Arg}_I(z)$.

Ejemplo 15.7.
Veamos que la función $f(z) = z^{1/2}$, correspondiente con la raíz cuadrada principal, definición 13.5, tiene una discontinuidad irremovible en $z=-1$. Más aún, veamos que todo $z$ en el eje real negativo es una discontinuidad irremovible, aún cuando esta función solo asigna una única raíz. Concluyamos que la raíz cuadrada principal es una rama, la rama principal de la función multivaluada $F(z) = z^{1/2}$, solo si se restringe al dominio $\mathbb{C} \setminus (-\infty, 0]$.

Solución. Sea $z =r\operatorname{cis}(\theta)\neq 0$. De acuerdo con la definición 13.5, la raíz cuadrada principal está dada por: \begin{equation*} f(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r=|\,z\,|$ y $\theta =\operatorname{Arg}(z)$.

Sea $z_0 = -1$, veamos que no existe $\lim\limits_{z\to z_0} f(z) = \lim\limits_{z\to -1} z^{1/2}$. Para ello consideremos a la circunferencia unitaria $C(0,1)$, es decir la circunferencia centrada en $z=0$ y de radio $1$, figura 70.

Figura 70: Punto $z\in C(0,1)$ que se aproxima a $z_0=-1$ por dos trayectorias distintas, dadas por la circunferencia $C(0,1)$.

Si $z \in C(0,1)$, entonces podemos aproximarnos a $z_0 = -1$ mediante la trayectoria dada por el cuarto de circunferencia en el segundo cuadrante, es decir $\pi/2 < \operatorname{Arg}(z) < \pi$, con $\operatorname{Arg}(z) \to \pi$, entonces: \begin{align*} \lim_{z\to -1} z^{1/2} & = \lim_{z\to -1} \sqrt{|\,z\,|}\operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \lim_{\operatorname{Arg}(z) \to \pi} \sqrt{1}\operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \lim_{\operatorname{Arg}(z) \to \pi} \left[ \operatorname{cos}\left(\frac{\operatorname{Arg}(z)}{2}\right) + i \operatorname{sen}\left(\frac{\operatorname{Arg}(z)}{2}\right)\right]\\ & = \operatorname{cos}\left(\frac{\pi}{2}\right) + i \operatorname{sen}\left(\frac{\pi}{2}\right)\\ & = 0 + i(1)\\ & = i. \end{align*}

Si ahora nos aproximamos a $z_0=-1$ con $z\in C(0,1)$ a través de la trayectoria dada por el cuarto de circunferencia en el tercer cuadrante, es decir $-\pi < \operatorname{Arg}(z) < -\pi/$, con $\operatorname{Arg}(z) \to -\pi$, entonces: \begin{align*} \lim_{z\to -1} z^{1/2} & = \lim_{z\to -1} \sqrt{|\,z\,|}\operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \lim_{\operatorname{Arg}(z) \to -\pi} \sqrt{1}\operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \lim_{\operatorname{Arg}(z) \to -\pi} \left[ \operatorname{cos}\left(\frac{\operatorname{Arg}(z)}{2}\right) + i \operatorname{sen}\left(\frac{\operatorname{Arg}(z)}{2}\right)\right]\\ & = \operatorname{cos}\left(-\frac{\pi}{2}\right) + i \operatorname{sen}\left(-\frac{\pi}{2}\right)\\ & = 0 + i(-1)\\ & = -i. \end{align*}

Dado que estos dos límites son distintos, concluimos que $\lim\limits_{z\to -1} z^{1/2}$ no existe, por tanto $z_0 = -1$ es una discontinuidad irremovible.

De manera similar podemos probar que cualquier punto en el eje real negativo es una discontinuidad irremovible. Sin embargo, desde que la función $\operatorname{Arg}(z)$ es discontinua en $(-\infty, 0]$ y la función $f$ está dada en términos de dicha función, debe ser claro que $f$ será discontinua en el mismo conjunto.

Procedemos a verificar que $f$ es continua en el dominio $\mathbb{C} \setminus (-\infty, 0]$, es decir que bajo esa restricción obtenemos una rama de la función multivaluada $F(z) = z^{1/2}$, a la cual llamamos la rama principal $f_0$, es decir: \begin{equation*} f_0(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r=|\,z\,|$ y $\theta =\operatorname{Arg}(z)$ y $z \in \mathbb{C} \setminus(-\infty,0] = \left\{ w\in\mathbb{C} : |\,w\,|>0, -\pi < \operatorname{Arg}(w) <\pi \right\}$.

Sea $z = x+iy \in \mathbb{C} \setminus (-\infty, 0]$. Por la proposición 13.1 tenemos que: \begin{equation*} \operatorname{Arg}(z) = 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right). \end{equation*}

Entonces, para $r=|\,z\,|$ y $\theta =\operatorname{Arg}(z)$ tenemos que: \begin{align*} f_0(z) & = \sqrt{|\,z\,|} \operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \sqrt[4]{x^2+y^2} \operatorname{cis}\left(\frac{2 \operatorname{arc tan}\left(\dfrac{y}{\sqrt{x^2+y^2} + x}\right)}{2}\right)\\ & = \sqrt[4]{x^2+y^2} \operatorname{cos}\left(\operatorname{arc tan}\left(\dfrac{y}{\sqrt{x^2+y^2} + x}\right)\right) + i \sqrt[4]{x^2+y^2} \operatorname{sen}\left(\operatorname{arc tan}\left(\dfrac{y}{\sqrt{x^2+y^2} + x}\right)\right)\\ & := u(x,y) + iv(x,y). \end{align*}

Como las funciones $u(x,y)$ y $v(x,y)$ son funciones reales continuas, entonces por la proposición 15.1 concluimos que la función $f_0$ es continua en $\mathbb{C} \setminus (-\infty, 0]$ y por tanto que es una rama de la función multivaluada $F(z) = z^{1/2}$.

Observación 15.5.
Considerando la definición 14.2 y la proposición 14.4 de la entrada anterior, notemos que podemos extender el concepto de continuidad para funciones definidas sobre el plano complejo extendido, es decir, diremos que una función $f: \mathbb{C}_\infty \to \mathbb{C}_\infty$ es continua en $\infty$ si \begin{equation*} f(\infty) = \lim_{z\to \infty} f(z) \end{equation*} y si $f(a) = \infty$, entonces $f$ es continua en $a$ si \begin{equation*} f(a) = \infty =\lim_{z\to a} f(z). \end{equation*}

Ejemplo 15.8.
Consideremos a la siguiente función:
\begin{equation*} f(z) = \frac{z+i}{z-i}. \end{equation*} Es claro que dicha función no está definida en $z=i$. Sin embargo, dado que: \begin{equation*} f(i) = \infty = \lim_{z\to i} f(z) \end{equation*} y \begin{equation*} f(\infty) = 1 = \lim_{z\to \infty} f(z), \end{equation*} entonces definiendo: \begin{equation*} g(z)= \left\{ \begin{array}{lcc}
\dfrac{z+i}{z-i} & \text{si} & z \neq i, \\ 1 & \text{si} & z = \infty, \\ \infty & \text{si} & z = i, \end{array} \right. \end{equation*} es claro que $g$ es una función continua de $\mathbb{C}_\infty$ en $\mathbb{C}_\infty$.

De acuerdo con los resultados de la entrada 10 para funciones continuas entre espacios métricos, tenemos que son válidas las siguientes afirmaciones para funciones complejas continuas.

Proposición 15.6. (Funciones continuas sobre conjuntos conexos y compactos.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función continua en $S$.

  1. Si $S$ es un conjunto conexo, entonces $f(S)$ es también conexo.
  2. Si $S$ es un conjunto compacto, entonces $f(S)$ es también compacto.

$\blacksquare$

Cerraremos esta entrada con el siguiente concepto.

Definición 15.4. (Continuidad uniforme.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Diremos que $f$ es uniformemente continua en $S$, si para todo $\varepsilon>0$ existe $\delta>0$ (que depende solo de $\varepsilon$) tal que si $z, w \in S$ y $|\,z-w\,|<\delta$ entonces $|\,f(z) – f(w)\,|<\varepsilon$.

Ejemplo 15.9.
Sea $f(z) = \overline{z}$ definida en $\mathbb{C}$. Veamos que $f$ es uniformemente continua en $\mathbb{C}$.

Solución. Para $z,w\in\mathbb{C}$ tenemos que: \begin{equation*} |\,f(z) – f(w)\,| = |\,\overline{z} – \overline{w}\,| = |\,\overline{\overline{z} – \overline{w}}\,| = |\,z-w\,| < \varepsilon, \end{equation*} por lo que tomando $\delta=\varepsilon>0$ se cumple la definición.

Observación 15.6.
De acuerdo con la definición 15.4, notamos que el concepto de continuidad uniforme es más restrictivo que el de continuidad de una función, por lo que la continuidad uniforme estará sujeta al conjunto $S$ en el que la función esté definida, para ver esto consideremos el siguiente:

Ejemplo 15.10.
a) Sea $f(z) = z^2$ definida en $S = B(0,1)$. Veamos que $f$ es uniformemente continua en $S$.

Solución. Notemos que para $z,w\in S$ se tiene que $|\,z\,|<1$ y $|\,w\,|<1$. Entonces: \begin{align*} |\,f(z) – f(w)\,| & = |\,z^2 – w^2\,|\\ & = |\,z – w\,| |\,z + w\,|\\ & < \left( |\,z\,| + |\,w\,|\right) \delta\\ & < 2\delta <\varepsilon, \end{align*} por lo que basta con tomar $\delta = \frac{\varepsilon}{2}>0$ para que se cumpla la definición.

b) Sea $f(z) = z^2$ definida en $\mathbb{C}$. Veamos que $f$ no es uniformemente continua en $\mathbb{C}$.

Solución. Sea $\varepsilon=1$, entonces dado $\delta>0$, por la propiedad arquimediana existe $n\in\mathbb{N}^+$ tal que $n\delta >1$. Sean $z = n$ y $w=n+\frac{\delta}{2}$, entonces se tiene que $|\,z-w\,|=\frac{\delta}{2} < \delta$, pero:
\begin{align*} |\,f(z) – f(w)\,| & = |\,z^2 – w^2\,|\\ & = n^2 + n\delta +\frac{\delta^2}{4} – n^2\\ & = n\delta +\frac{\delta^2}{4} > n\delta > 1 = \varepsilon, \end{align*} por lo que $f$ no es uniformemente continua en $\mathbb{C}$.

Proposición 15.7.
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Las siguientes afirmaciones son equivalentes.

  1. $f$ es uniformemente continua en $S$,
  2. $\operatorname{Re} f$ e $\operatorname{Im} f$ son uniformemente continuas en $S$,
  3. para cualesquiera sucesiones $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ en $S$ tales que $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, se cumple que $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

Dadas las hipótesis, tenemos que:
$1. \Leftrightarrow 2.$ Su prueba es análoga a la de la proposición 15.1, por lo que se deja como ejercicio al lector.

$1. \Rightarrow 3. $
Sean $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ dos sucesiones en $S$ tales que $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$ y supongamos que $f$ es uniformemente continua en $S$.

Sea $\varepsilon>0$, entonces existe $\delta>0$ tal que si $z,w\in S$ y $|\,z-w\,|<\delta$, entonces $|\,f(z) – f(w)\,|<\varepsilon$. Como $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, entonces para el $\delta>0$ se tiene que existe $N\in\mathbb{N}^+$ tal que: \begin{equation*} |\,|\,z_n – w_n\,| – 0 \,| = |\,z_n – w_n\,| < \delta, \quad \forall n\geq N, \end{equation*} por lo que para toda $n\geq N$ se cumple que: \begin{equation*} |\,|\,f(z_n) – f(w_n)\,| – 0 \,| = |\,f(z_n) – f(w_n)\,| < \varepsilon, \end{equation*} es decir que $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

$3. \Rightarrow 1.$
Sean $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ dos sucesiones en $S$ tales que si $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, entonces $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

Por reducción al absurdo, supongamos que $f$ no es uniformemente continua en $S$, entonces existe $\varepsilon>0$ tal que para todo $\delta>0$ existen $z,w\in S$ tales que $|\,z-w\,|<\delta$ y $|\,f(z) – f(w)\,|\geq \varepsilon$.

Tenemos que para todo $n\in\mathbb{N}^+$ se tiene que $z_n, w_n \in S$ y $\frac{1}{n}>0$, por lo que: \begin{equation*} |\,z_n – w_n\,|<\frac{1}{n} \quad \text{y} \quad |\,f(z_n) – f(w_n)\,|\geq \varepsilon, \end{equation*} lo cual contradice nuestra hipótesis, por lo que $f$ es uniformemente convergente.

Tarea moral

  1. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que $f$ es continua en $z_0 \in S$ si y solo si $\overline{f}$ es continua en $z_0 \in S$.
  2. Sea $S = [a,b] = \{ x\in\mathbb{R} \, : \, a\leq x \leq b\}$. Considera a $S\subset \mathbb{C}$ y sea $f: S \to \mathbb{C}$ una función compleja de variable real. Tomando $z=x+i0$ podemos escribir $f(z) = u(x) + i v(x)$. Prueba que $f$ es continua si y solo si $u$ y $v$ son continuas.
  3. Analiza la continuidad de la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} \dfrac{z^3 – 1}{z-1} & \text{si} & |\,z\,| \neq 1, \\ 3 & \text{si} & |\,z\,| = 1, \end{array} \right. \end{equation*} en los puntos $z_0 = 1$, $z_1 = -1$, $z_2 = i$ y $z_3 = -i$.
  4. Analiza la continuidad de las siguientes funciones y determina el valor de $f(z)$ en el punto $z_0$ de tal forma que la función sea continua en dicho punto.
    a) $f(z) = \dfrac{z^3 – z_0}{z – z_0}$.
    b) $f(z) = \left(\dfrac{1}{z – z_0}\right)\left( \dfrac{1}{z} – \dfrac{1}{z_0}\right)$.
    c) $f(z) = \dfrac{\operatorname{Re}(z) \operatorname{Im}(z)}{|\,z\,|^2}$.
    d) $f(z) = \dfrac{\left(\operatorname{Re}(z)\right)^2 – \left(\operatorname{Im}(z)\right)^2}{|\,z\,|^2}$.
  5. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que si $f$ es continua en $z_0 \in S$, entonces $|\,f\,|$ es continua en $z_0 \in S$. ¿Es cierto el recíproco?
  6. Considera la siguiente función definida en $\mathbb{C}_\infty$: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} \dfrac{z+1}{4z+3} & \text{si} & z \neq \frac{-3}{4}, \\ \infty & \text{si} & z = \frac{-3}{4}. \end{array} \right. \end{equation*} Analiza la continuidad de $f$ en $z = -\frac{3}{4}$.
  7. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que si $f$ es uniformemente continua en $S$, entonces $f$ es continua en $S$. ¿Es cierto el recíproco?
  8. Sea $f(z)=\dfrac{1}{z^2}$, prueba que:
    a) $f$ es uniformemente continua en $S = \left\{z\in\mathbb{C} : \frac{1}{2} \leq |\,z\,| \leq 1\right\}$,
    b) $f$ no es uniformemente continua en $S = \{z\in\mathbb{C} : |\,z\,| \leq 1\}$.

Más adelante…

En esta entrada hemos abordado de manera formal el concepto de continuidad y continuidad uniforme para funciones complejas. Caracterizamos la continuidad (y la continuidad uniforme) de las funciones complejas a través de la continuidad (y la continuidad uniforme) de su parte real e imaginaria, en particular vimos que toda función compleja continua es de la forma $f(z) = u(x,y) + i v(x,y)$.

Aunque las definiciones que hemos dado en esta entrada son muy similares a las de las funciones reales, veremos en la siguiente entrada que al trabajar con funciones complejas algunos conceptos se vuelven más restrictivos para estas funciones, el cual es el caso de la diferenciabilidad compleja.

La siguiente entrada abordaremos la diferenciabilidad en el sentido complejo y veremos que la diferenciabilidad para $\mathbb{R}^2$, que hemos estudiado en nuestros cursos de Cálculo, no bastará para garantizar la diferenciabilidad en el sentido complejo.

Entradas relacionadas

Variable Compleja I: Límites en $\mathbb{C}$

Por Pedro Rivera Herrera

Introducción

A lo largo de nuestros cursos de Cálculo hemos trabajado con el concepto de límite a detalle, ya que como sabemos, conceptos esenciales en la teoría de las funciones reales como el de continuidad y derivada, además de muchos otros, tienen sustento y se definen precisamente a través del límite. Intuitivamente sabemos que el límite de una función real, cuando existe, digamos $\lim\limits_{x\to x_0} f(x) = L$, nos dice que los valores de la función $f$ estarán tan cercanos al número real $L$ siempre que $x$ esté próximo a $x_0$, pero sin llegar a ser igual a dicho valor.

En esta entrada veremos que al igual que en el caso real, el concepto de límite para funciones complejas nos permitirá hablar de la continuidad y la diferenciabilidad de una función compleja. Aunque el concepto de límite para funciones complejas será idéntico a nuestra idea de proximidad en el caso real, veremos que el caso complejo es mucho más rico ya que aquí consideraremos más de dos posibles direcciones en que un número complejo se aproxime a otro.

Límite complejo

Recordemos que para $S\subset\mathbb{C}$, el conjunto $S’$ denota al conjunto de los puntos de acumulación de $S$.

Definición 14.1. (Límite de una función compleja.)
Sea $S \subset \mathbb{C}$ y sea $z_0 \in S’$. Dada $f\in\mathcal{F}(S)$, diremos que el número complejo $L\in\mathbb{C}$ es el límite de $f(z)$ cuando z tiende a $z_0$, lo cual denotamos como $\lim\limits_{z\to z_0} f(z) = L$, si para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $z\in S$ y $0<|\,z – z_0\,|<\delta$ entonces $|\,f(z) – L\,|<\varepsilon$.

Observación 14.1.
En caso de existir el límite, este es único. Supongamos que $\lim\limits_{z \to z_0} f(z) = L_1$ y $\lim\limits_{z \to z_0} f(z) = L_2$. Por la definición 14.1 tenemos que dado $\varepsilon>0$ existen $\delta_1>0$ y $\delta_2>0$ tales que si $z\in S$ y $0<|\,z – z_0\,|<\delta_1$, $0<|\,z – z_0\,|<\delta_2$, entonces $|\,f(z) – L_1\,|<\frac{\varepsilon}{2}$ y $|\,f(z) – L_2\,|<\frac{\varepsilon}{2}$. Como $z_0 \in S’$, entonces para $\delta = \text{mín}\{\delta_1, \delta_2\} > 0$ existe $z^* \in S$ tal que $0<|\,z^* – z_0\,| < \delta$, por lo que: \begin{equation*} |\,L_1 – L_2\,| \leq |\,f(z^*) – L_1\,| + |\,f(z^*) – L_2\,| < \varepsilon. \end{equation*} Como se cumple para todo $\varepsilon>0$, entonces $L_1 = L_2$.

Observación 14.2.
Primeramente, notemos que la existencia del límite $L$ no depende de que la función $f$ esté definida en el punto $z_0$. Por otra parte, de acuerdo con la observación 14.1 tenemos que para garantizar la existencia de $\lim\limits_{z \to z_0} f(z)$, debe suceder que la función $f$ evaluada en $z$ se aproxime siempre al mismo número complejo $L$, esto sin importar la forma en que $z$ se aproxime a $z_0$, figura 68. Es decir, si $f$ se aproxima a dos números complejos distintos, digamos $L_1$ y $L_2$, cuando $z$ se aproxima a $z_0$ siguiendo dos trayectorias distintas, entonces $\lim\limits_{z \to z_0} f(z)$ no existe.

Figura 68: Gráfica de los planos $z$ y $w$ donde se representan dos posibles formas en que $f(z)$ se aproxima a $L$ conforme $z$ se aproxima a $z_0$. La existencia del límite no depende de la forma en que $z$ se aproxime a $z_0$.

Ejemplo 14.1.
a) Consideremos la siguiente función: \begin{equation*} f(z)= \dfrac{z^2 + 4}{z-2i}. \end{equation*} Es claro que el dominio natural de $f$ es $S = \mathbb{C} \setminus\{2i\}$. Sin embargo, veamos que $\lim\limits_{z \to 2i} f(z) = 4i$.

Solución. Sea $z \in S$. Notemos que: \begin{equation*} \dfrac{z^2 + 4}{z-2i} \,-\, 4i = \dfrac{(z+2i)(z-2i)}{z-2i} \,- \, 4i = z – 2i, \end{equation*} por lo que:

\begin{equation*}|\,f(z) – 4i\,| = |\,z – 2i\,|. \end{equation*} Entonces para $\varepsilon>0$ definimos $\delta = \varepsilon$, entonces $|\,f(z) – 4i\,|<\varepsilon$ si $0<|\,z – 2i\,|<\delta$, es decir $\lim\limits_{z \to 2i} f(z) = 4i$.

b) Consideremos a la función $f(z) = \overline{z}^2 – 2$. Es claro que la función $f$ está definida en todo $\mathbb{C}$. Veamos que $\lim\limits_{z\to 1-i} f(z) = -2 + 2i$.

Solución. Sean $z\in\mathbb{C}$ y $\varepsilon>0$. Notemos que: \begin{align*}|\,\overline{z}^2 – 2 -(-2+2i)\,| & = |\,\overline{z}^2 – 2i\,| = |\,\overline{\overline{z}^2 – 2i}\,| = |\,z^2 + 2i\,|\\ & = |\,z-(1-i)\,| \, |\,z+(1-i)\,|\\
&\leq |\,z-(1-i)\,| \, \bigg( |\,z-(1-i)\,| + 2|\,1-i\,| \bigg). \end{align*} Haciendo $0<|\,z-(1-i)\,|<1$ tenemos que: \begin{align*} |\,\overline{z}^2 – 2 -(-2+2i)\,| &\leq |\,z-(1-i)\,| \, \bigg( 1 + 2\sqrt{2} \bigg) \end{align*} Por lo que tomando $\delta= \text{mín}\left\{1, \dfrac{\varepsilon}{1+2\sqrt{2}}\right\}>0$, se sigue que si $0<|\,z-(1-i)\,|<\delta$ entonces: \begin{equation*} |\,f(z) – (-2+i)\,| = |\,\overline{z}^2 – 2 -(-2+2i)\,| < \varepsilon. \end{equation*} Por lo tanto $\lim\limits_{z\to 1-i} f(z) = -2 + 2i$.

c) Sea $c\in\mathbb{C}$ una constante. Consideremos a las funciones $f(z) = c$, $g(z)=z$ y $h(z)=\overline{z}$. Es claro que dichas funciones complejas están definidas en todo $\mathbb{C}$. Entonces para todo $z_0\in\mathbb{C}$ se cumple que para todo $\varepsilon>0$ existe $\delta = \varepsilon>0$ tal que: \begin{align*} \lim_{z \to z_0} f(z) = c,\\ \lim_{z \to z_0} g(z) = z_0,\\ \lim_{z \to z_0} h(z) = \overline{z_0}. \end{align*}

Ejemplo 14.2.
Consideremos a la función: \begin{equation*} f(z) = \dfrac{z}{\overline{z}}, \end{equation*} cuyo dominio es $S =\mathbb{C}\setminus\{0\}$. Veamos que $\lim\limits_{z\to 0} f(z)$ no existe.

Solución. De acuerdo con la observación 14.2, basta encontrar dos trayectorias por las que $z$ se aproxime a $0$ que nos den valores distintos para dicho límite.

Notemos que si nos acercamos a $0$ a través del eje real, es decir tomando $z=x+i0$, con $x\rightarrow 0$, entonces: \begin{equation*} \lim_{z \to 0} f(z) = \lim_{z \to 0} \dfrac{z}{\overline{z}} = \lim_{x \to 0} \dfrac{x+i0}{x-i0} = \lim_{x \to 0} \dfrac{x}{x} = 1. \end{equation*}

Mientras que si nos acercamos a $0$ a través del eje imaginario, es decir tomando $z=0+iy$, con $y\rightarrow 0$, entonces: \begin{equation*} \lim_{z \to 0} f(z) = \lim_{z \to 0} \dfrac{z}{\overline{z}} = \lim_{y \to 0} \dfrac{0+iy}{0-iy} = \lim_{y \to 0} \dfrac{iy}{-iy} = -1. \end{equation*}

Por lo que $\lim\limits_{z\to 0} f(z)$ no existe.

Observación 14.3.
De acuerdo con la proposición 8.6 de la entrada 8, tenemos que para $z_0\in\mathbb{C}$ y $S\subset\mathbb{C}$ se cumple que $z_0$ es un punto de acumulación de $S$ si y solo si existe una sucesión $\{z_n\}_{n \geq 1}$ en $S$ tal que $z_n \neq z_0$ para todo $n\in \mathbb{N}^+$ y $\lim\limits_{n\to \infty} z_n = z_0$.

Este resultado es útil para caracterizar la existencia del límite de una función compleja a través de sucesiones complejas, para ello planteamos la siguiente:

Proposición 14.1.
Sean $S \subset \mathbb{C}$, $z_0\in S’$, $L\in\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Entonces se cumple que $\lim\limits_{z \to z_0} f(z) = L$ si y solo si $\lim\limits_{n \to \infty} f(z_n) = L$, para toda sucesión $\{z_n\}_{n \geq 1} \subset S$ tal que $z_n \neq z_0$ para todo $n\in \mathbb{N}^+$ y $\lim\limits_{n\to \infty} z_n = z_0$.

Demostración. Dadas las hipótesis tenemos:

$\Rightarrow)$
Supongamos que $\lim\limits_{z \to z_0} f(z) = L$. Veamos que $\lim\limits_{n \to \infty} f(z_n) = L$, para toda sucesión $\{z_n\}_{n \geq 1} \subset S$ tal que $z_n \neq z_0$ para todo $n\in \mathbb{N}^+$ y $\lim\limits_{n\to \infty} z_n = z_0$.

Dado $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $0<|z-z_0|<\delta$, entonces $0<|f(z)-L|<\varepsilon$.

Sea $\{z_n\}_{n\geq 1}\subset S$ una sucesión tal que $z_n \neq z_0$ para todo $n\in\mathbb{N}^+$ y $\lim\limits_{n \to \infty} z_n = z_0$. Para $\delta>0$ se cumple para toda $n\geq N$ que $0<|\,z_n – z_0\,|<\delta$. Por lo tanto: \begin{equation*} |\,f(z_n) – L\,| < \varepsilon, \quad \forall n\geq N, \end{equation*} es decir que $\lim\limits_{n \to \infty} f(z_n) = L$.

$(\Leftarrow$
Supongamos que para toda sucesión $\{z_n\}_{n \geq 1} \subset S$ tal que $z_n \neq z_0$ para todo $n\in \mathbb{N}^+$ y $\lim\limits_{n\to \infty} z_n = z_0$, se cumple que $\lim\limits_{n \to \infty} f(z_n) = L$. Veamos que $\lim\limits_{z \to z_0} f(z) = L$.

Por reducción al absurdo supongamos que $\lim\limits_{z \to z_0} f(z) \neq L$. Entonces existe $\varepsilon>0$ tal que para todo $\delta>0$ existe $z_\delta \in S$ tal que $0<|\,z_\delta – z_0\,| < \delta$ y $0<|\,f(z_\delta) – L\,| \geq \varepsilon$.

Dado que para toda $n\in \mathbb{N}^+$ se cumple que $\frac{1}{n}$ es positivo, entonces existe $z_n \in S$ tal que: \begin{equation*} 0<|\,z_n – z_0\,|<\frac{1}{n} \quad \text{y} \quad |\,f(z_n) – L\,| \geq \varepsilon, \end{equation*} es decir que la sucesión $\{z_n\}_{n\geq 1}$, con $z_n \neq z_0$ para todo $n\in\mathbb{N}^+$, converge a $z_0$, pero la sucesión $\{f(z_n)\}_{n\geq 1}$ no converge a $L$, lo cual contradice nuestra hipótesis, por lo que $\lim\limits_{z \to z_0} f(z) = L$.

$\blacksquare$

Observación 14.4.
De acuerdo con la proposición 12.1 de la entrada 12, sabemos que toda función compleja $f$ puede escribirse de la forma: \begin{equation*} f(z) = u(x,y) + i v(x,y), \end{equation*} con $u(x,y)$ y $v(x,y)$ funciones reales que corresponden con su parte real e imaginaria, respectivamente. Veamos que podemos garantizar la existencia del límite de una función compleja a través de estas funciones, para ello recordemos primeramente la definición de límite para una función real de dos variables, vista en nuestros cursos de Cálculo.

Definición 14.2. (Límite de una función real de dos variables.)
Sean $U\subset\mathbb{R}^2$ un conjunto abierto y $u: U\to \mathbb{R}$ una función real de dos variables, digamos $x$ e $y$. Para $(x_0, y_0) \in U’$ y $a\in \mathbb{R}$ diremos que: \begin{equation*} \lim_{(x,y) \to (x_0, y_0)} u(x,y) = a, \end{equation*} si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $(x,y)\in U$ y $0<\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$, entonces: \begin{equation*} |u(x,y) – a| < \varepsilon. \end{equation*}

Proposición 14.2.
Sean $S\subset\mathbb{C}$, $z_0=x_0+iy_0\in S’$ y $L=a+ib\in\mathbb{C}$. Entonces para toda función compleja $f(z) = u(z)+iv(z)$ definida en $S$ se cumple que: \begin{equation*} \lim_{z \to z_0} f(z) = L \quad \text{si y solo si} \quad \lim_{z \to z_0} u(z) = a \,\,\, \text{y} \,\, \lim_{z \to z_0} v(z) = b. \end{equation*}

Demostración. Dadas las hipótesis, de acuerdo con la observación 3.1 tenemos que para todo $z=x+iy\in S$ se cumple que: \begin{equation*} |\,u(z) – a\,| \leq |\,f(z) – L\,| \leq |\,u(z) – a\,| + |\,v(z) – b\,|, \end{equation*} \begin{equation*} |\,v(z) – b\,| \leq |\,f(z) – L\,| \leq |\,u(z) – a\,| + |\,v(z) – b\,|. \end{equation*} Considerando las definiciones 14.1, 14.2 y las desigualdades anteriores se sigue el resultado.

$\blacksquare$

De acuerdo con la proposición 14.2, tenemos que la existencia de un límite en $\mathbb{C}$ está garantizada por la existencia de los límites de dos funciones reales, por lo que podemos utilizar los resultados que conocemos para límites de funciones reales de dos variables para verificar si dicho límite existe en $\mathbb{C}$.

Ejemplo 14.3.
Consideremos a la función $f(z) = z^2$, la cual está definida en todo $\mathbb{C}$. Veamos que para todo $z_0\in\mathbb{C}$ se cumple: \begin{equation*} \lim_{z \to z_0} f(z) = z_0^2. \end{equation*}

Solución. Procediendo por la definición 14.1 es fácil probar la existencia de dicho límite. Sin embargo, podemos hacer uso de la proposición 14.2 para probar el resultado.

Sean $z=x+iy, z_0 = x_0+iy_0 \in \mathbb{C}$ con $z_0$ fijo. Entonces tenemos que: \begin{equation*} f(x+iy) = u(x,y) + iv(x,y), \end{equation*} donde $\operatorname{Re}(f(z)) = u(x,y) = x^2 -y^2$ e $\operatorname{Im}(f(z))=v(x,y) = 2xy$. Tenemos que: \begin{align*} \lim_{z \to z_0} \operatorname{Re}(f(z)) = \lim_{\substack{x \to x_0 \\ y \to y_0}} u(x,y) = x_0^2 – y_0^2,\\ \lim_{z \to z_0} \operatorname{Im}(f(z)) = \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x,y) = 2x_0 y_0. \end{align*} Por lo tanto $\lim\limits_{z \to z_0} f(z) = x_0^2 – y_0^2 + i2x_0y_0 = z_0^2$.

Observación 14.5.
Notemos que para la función $f(z)=z^n$, con $n\in\mathbb{N}^+$ y $z\in\mathbb{C}$, se puede probar por inducción que para todo $z_0\in\mathbb{C}$: \begin{equation*} \lim_{z \to z_0} f(z) = \lim_{z \to z_0} z^n = z_0^n. \end{equation*}

Proposición 14.3. (Álgebra de límites.)
Sean $f,g\in\mathcal{F}(S)$, sea $z_0 \in S’$ y sean $c, L_1, L_2 \in \mathbb{C}$. Supongamos que $\lim\limits_{z \to z_0} f(z) = L_1$, $\lim\limits_{z \to z_0} g(z) = L_2$. Entonces:

  1. $\lim\limits_{z \to z_0} \left[f(z) \pm c g(z)\right] = L_1 \pm c \, L_2$.
  2. $\lim\limits_{z \to z_0} \left[f(z)g(z)\right] = L_1L_2$.
  3. Si $L_2 \neq 0$, entonces $\lim\limits_{z \to z_0} \left[\dfrac{f(z)}{g(z)}\right] = \dfrac{L_1}{ L_2}$.

Demostración. Dadas las hipótesis, tenemos que:

  1. Si $c = 0$ entonces se sigue el resultado. Supongamos que $c\neq 0$ y sea $\varepsilon>0$, entonces existen $\delta_1>0$, $\delta_2>0$ tales que si $z\in S$ y $0<|\,z-z_0\,|<\delta_1$, $0<|\,z-z_0\,|<\delta_2$, entonces: \begin{align*} |\,f(z) – L_1\,| < \frac{\varepsilon}{2},\\ |\,g(z) – L_2\,| < \frac{\varepsilon}{2|c|}. \end{align*} Por lo que tomando $\delta = \text{mín}\{\delta_1, \delta_2\}>0$, tenemos que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,f(z) \pm cg(z) – (L_1 \pm c \, L_2) \,| \leq |\,f(z) – L_1\,| + |\,c\,| \, |\,g(z) – L_2\,| < \varepsilon. \end{equation*}
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.

$\blacksquare$

Observación 14.6.
De acuerdo con la proposición 14.3 y el inciso (c) del ejemplo 14.1, podemos calcular de forma inmediata el límite de un polinomio en cualquier punto, o el límite de una función racional en un punto donde dicha función esté definida, simplemente evaluando el polinomio o la función racional en el punto dado.

Ejemplo 14.4.
Hallar cada uno de los siguientes límites:
a) $\lim\limits_{z \to 3i} \dfrac{z^2 + 9}{z – 3i}$.
b) $\lim\limits_{z \to 2+3i} (z – 5i)^2$.
c) $\lim\limits_{z \to i} 3z^2 + 2z -1$.

Solución. Considerando la observación 14.6 y las propiedades de los límites tenemos:
a) \begin{align*} \lim_{z \to 3i} \dfrac{z^2 + 9}{z – 3i} & = \lim_{z \to 3i} \dfrac{(z + 3i)(z – 3i)}{z – 3i}\\ & = \lim_{z \to 3i} z + 3i\\ & = \lim_{z \to 3i} z + \lim_{z \to 3i} 3i\\ & = 3i + 3i\\ & = 6i. \end{align*}

b) \begin{align*} \lim_{z \to 2+3i} (z – 5i)^2 & = \lim_{z \to 2+3i} (z – 5i)(z – 5i)\\ & = \left(\lim_{z \to 2+3i} z – 5i\right)^2\\ & = \left(\lim_{z \to 2+3i} z – \lim_{z \to 2 + 3i} 5i \right)^2\\ & = \left(2 + 3i – 5i \right)^2\\ & = \left( 2 – 2i\right)^2\\ & = -8i. \end{align*}

c) \begin{align*} \lim_{z \to i} 3z^2 + 2z – 1 & = 3 \lim_{z \to i} z^2 + 2\lim_{z \to i} z – \lim_{z \to i} 1\\ & = 3\left( \lim_{z \to i} z\right)^2 + 2i – 1\\ & = 3i^2 + 2i – 1 \\ & = -4 + 2i. \end{align*}

De acuerdo con la proposición 14.3, tenemos que las propiedades de los límites para funciones reales se extienden para el caso complejo. Veamos que otras propiedades de los límites para funciones reales pueden ser modificadas para el caso de funciones complejas.

Proposición 14.4. (Teorema de comparación.)
Sean $S\subset\mathbb{C}$, $f,g\in\mathcal{F}(S)$ dos funciones y $z_0\in S’$.

  1. Si $\lim\limits_{z\to z_0} f(z)=0$ y para algún $r>0$ se cumple que $|\,g(z)\,| \leq |\,f(z)\,|$ para toda $z\in B(z_0,r)\setminus\{z_0\}$, entonces $\lim\limits_{z\to z_0} g(z)=0$.
  2. Si $\lim\limits_{z\to z_0} f(z)=0$ y para algún $r>0$ se cumple que existe $M>0$ tal que $|\,g(z)\,| \leq M$ para toda $z\in B(z_0,r)\setminus\{z_0\}$, entonces $\lim\limits_{z\to z_0} f(z) g(z) =0$.

Demostración. Dadas la hipótesis, tenemos que:

  1. Para $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces $|\,f(z)\,|<\varepsilon$. Sea $z\in B(z_0,\delta)\setminus\{z_0\}$, entonces $|\,g(z)\,| \leq |\,f(z)\,|$, por lo que $|\,g(z) – 0\,| < \varepsilon$ siempre que $0<|\,z-z_0\,|<\delta$, es decir $\lim\limits_{z\to z_0} g(z)=0$.
  2. Para $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces $|\,f(z)\,|<\varepsilon$. Dado que para $z\in B(z_0,\delta)\setminus\{z_0\}$ se cumple que existe $M>0$ tal que $|\,g(z)\,| \leq M$, entonces para $0<|\,z-z_0\,|<\delta$ tenemos que: \begin{equation*} 0 \leq |\,f(z) g(z)\,| \leq M |\,f(z)\,|. \end{equation*} De acuerdo con el ejercicio 3 de esta entrada y la proposición 14.3(2) tenemos que $\lim\limits_{z\to z_0} M |f(z)| =0$, entonces considerando el inciso anterior se cumple que $\lim\limits_{z\to z_0} f(z) g(z) =0$.

$\blacksquare$

Consideremos ahora a la función $f(z) = 1/z$, dada en el ejemplo 12.1(d). Al pensarla como una función compleja definida en $\mathbb{C}$, es claro que el dominio $S$ de dicha función es $S = \mathbb{C}\setminus\{0\}$. Sin embargo, considerando al plano complejo extendido tomemos $f:S\subset\mathbb{C}_\infty \to \mathbb{C}_\infty$, por lo que podemos definir a la imagen de $z=0$ bajo dicha función como el punto al infinito, es decir $w = f(z) = \infty$. Es claro que al trabajar con $\mathbb{C}_\infty$ la función f es biyectiva, por lo que podemos pensar en la inversa de $f$, es decir en $z = f^{-1}(w) = 1/w$. Entonces ¿qué pasa con $\lim\limits_{w\to 0} f(f^{-1}(w))$? ¿y con $\lim\limits_{z \to \infty} f(z)$? ¿Qué relación hay entre dichos límites?

Por otra parte, como vimos en la entrada 11, cuando pensamos en que un número complejo tiende a infinito, lo cual denotamos como $z \to \infty$, estamos considerando que su módulo crece de manera arbitraria, es decir $|\,z\,| \to \infty$. Del mismo modo al hablar de una función $f$ que tiende a infinito, lo cual denotamos como $f(z) \to \infty$, estamos considerando que el módulo de dicha función crece de forma arbitraria, es decir $|\,f(z)\,| \to \infty$.

Para formalizar todo lo anterior consideremos las siguientes definiciones.

Definición 14.3. ($\rho$-vecindad de $\infty$.)
Sea $\rho>0$ suficientemente pequeño. En el plano complejo extendido $\mathbb{C}_\infty$, una $\rho$-vecindad de $\infty$ o simplemente una vecindad de $\infty$, es el conjunto: \begin{equation*} B(\infty, \rho) = \left\{z\in\mathbb{C} \,: \, \frac{1}{\rho} < |\,z\,| \right\}. \end{equation*} Un conjunto $U\subset\mathbb{C}_\infty$ abierto que contenga a una $\rho$-vecindad de $\infty$, para algún $\rho>0$, es también una $\rho$-vecindad de $\infty$.

Definición 14.4. (Límites al infinito e infinitos.)
Sea $f:S\subset\mathbb{C} \to \mathbb{C}$ una función.

  1. Diremos que $\lim\limits_{z\to \infty} f(z) = w_0$ si para todo $\varepsilon>0$, existe $\delta>0$ tal que si $z\in S$ y $|\,z\,|>\frac{1}{\delta}$, entonces: \begin{equation*} |\,f(z) – w_0\,| < \varepsilon. \end{equation*}
  2. Diremos que $\lim\limits_{z\to z_0} f(z) = \infty$ si para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $z\in S$ y $0<|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon}. \end{equation*}
  3. Diremos que $\lim\limits_{z\to \infty} f(z) = \infty$ si para todo $\varepsilon>0$, existe $\delta>0$ tal que si $z\in S$ y $|\,z\,|>\frac{1}{\delta}$, entonces: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon}. \end{equation*}

Ejemplo 14.5.
a) Sea $f(z) = \dfrac{1}{z^2}$, con $z\neq 0$, entonces: \begin{equation*} \lim_{z\to \infty} f(z) = 0. \end{equation*} Solución. Sea $\varepsilon>0$. Notemos que para $\delta=\sqrt{\varepsilon}>0$, si $z\neq 0$ y $|\,z\,| > \dfrac{1}{\delta}$, entonces: \begin{equation*} \left|\,f(z) – 0\,\right| = \left|\,\frac{1}{z^2} – 0\,\right| = \frac{1}{|\,z^2\,|} = \frac{1}{|\,z\,|^2} < \varepsilon. \end{equation*} Por lo que $\lim\limits_{z\to \infty} f(z) = 0$.
b) Sea $f(z) = \dfrac{1}{z-3}$, con $z\neq 3$, entonces: \begin{equation*} \lim_{z\to 3} f(z) = \infty. \end{equation*} Solución. Sea $\varepsilon>0$. Notemos que para $\delta=\varepsilon>0$, si $z\neq 3$ y $0<|\,z-3\,|<\delta$, entonces: \begin{equation*} \left|\,f(z)\,\right| = \left|\,\frac{1}{z-3}\,\right| = \frac{1}{|\,z-3\,|} > \frac{1}{\varepsilon}. \end{equation*} Por lo que $\lim\limits_{z\to 3} f(z) = \infty$.

De lo anterior tenemos que los valores $z_0$ y $L$ en la definición 14.1 pueden ser sustituidos de forma indistinta por el punto al infinito, es decir en: \begin{equation*} \lim_{z \to z_0} f(z) = L, \end{equation*} podemos remplazar a $z_0$ y/o $L$ por $\infty$, para ello solo habría que remplazar apropiadamente sus vecindades por vecindades de $\infty$. Para tener más claro esto y poder trabajar de manera más sencilla con estos límites tenemos el siguiente resultado.

Proposición 14.5.
Sea $f:S \subset \mathbb{C} \to \mathbb{C}$ una función y sean $z_0$ en el plano $z$, que corresponde al del dominio de $f$, y $w_0$ en el plano $w$, que corresponde al plano de la imagen de $f$, observación 12.1, entonces:

  1. \begin{equation*} \lim_{z \to z_0} f(z) = \infty \quad \text{si y solo si} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0. \end{equation*}
  2. \begin{equation*} \lim_{z \to \infty} f(z) = w_0 \quad \text{si y solo si} \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0. \end{equation*}
  3. \begin{equation*} \lim_{z \to \infty} f(z) = \infty \quad \text{si y solo si} \quad \lim_{z \to 0} \frac{1}{f(1/z)} = 0. \end{equation*}

Demostración. Dadas las hipótesis, tenemos que:

  1. Sea $z\in S$. Si $\lim\limits_{z \to z_0} f(z) = \infty$ existe, entonces de la definición 14.4(2) tenemos que para todo $\varepsilon>0$, existe $\delta>0$ tal que: \begin{equation*} |\,f(z)\,| > \frac{1}{\varepsilon} \quad \text{si} \quad 0<|\,z-z_0\,|<\delta. \end{equation*} Notemos que para el punto $w=f(z)$ se tiene que $|\,w\,| > 1/\varepsilon$, es decir $w$ pertenece a un $\varepsilon$-vecindario de $\infty$, siempre que $0<|\,z-z_0\,|<\delta$. De lo anterior tenemos que: \begin{equation*} \left|\,\frac{1}{f(z)} – 0 \,\right| = \left|\,\frac{1}{f(z)}\,\right| = \frac{1}{|f(z)|} < \varepsilon \quad \text{si} \quad 0<|\,z-z_0\,|<\delta. \end{equation*} Por lo que $\lim\limits_{z \to z_0} \dfrac{1}{f(z)} = 0$.
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.

$\blacksquare$

La proposición 14.5 es de gran utilidad al trabajar con el punto al infinito. La idea de dicha proposición es representar al punto al infinito y su entorno mediante sus imágenes en la función $w = f(z) = 1/z$. Esto es, el punto $z=\infty$ corresponde con el punto $w=0$ y un $\varepsilon$-vecindario de $\infty$ corresponde con un $\varepsilon$-vecindario de $0$. Por lo que la existencia de un límite de una función $f(z)$ que considere al punto $z=\infty$ dependerá de la existencia de un límite que considere al punto $w=0$.

Ejemplo 14.6.
a) Consideremos a la función $f(z) = \dfrac{2z^3-1}{z^2+1}$ definida en $S=\mathbb{C}\setminus\{i,-i\}$. Veamos que: \begin{equation*} \lim_{z \to \infty} f(z) = \infty. \end{equation*} Solución. Notemos que: \begin{equation*} f(1/z) = \frac{(2/z^3)-1}{(1/z^2)+1}, \quad \quad \frac{1}{f(1/z)} = \frac{(1/z^2)+1}{(2/z^3)-1}. \end{equation*} De acuerdo con la proposición 14.5 como: \begin{equation*} \lim_{z \to 0} \frac{1}{f(1/z)} = \lim_{z \to 0} \frac{(1/z^2)+1}{(2/z^3)-1} = \lim_{z \to 0} \frac{z^3\left[(1/z^2)+1\right]}{z^3\left[(2/z^3)-1\right]} = \lim_{z \to 0} \frac{z^3 + z}{2 – z^3} = 0. \end{equation*} Entonces $\lim\limits_{z \to \infty} f(z) = \infty$.
b) Consideremos a la función $g(z) = \dfrac{iz+3}{z+1}$ con dominio $S=\mathbb{C}\setminus\{-1\}$. Veamos que: \begin{equation*} \lim_{z \to -1} g(z) = \infty. \end{equation*} Solución. Notemos que: \begin{equation*} \lim_{z \to -1} \frac{1}{g(z)} = \lim_{z \to -1} \frac{z+1}{iz+3} = 0. \end{equation*} Por lo que se sigue de la proposición 14.5 que $\lim\limits_{z \to \infty} g(z) = \infty$.
c) Sea $h(z) = \dfrac{2z+i}{z+1}$ una función definida en $S=\mathbb{C}\setminus\{-1\}$. Veamos que: \begin{equation*} \lim_{z \to \infty} h(z) = 2. \end{equation*} Solución. De acuerdo con la proposición 14.5 como: \begin{equation*} \lim_{z \to 0} h(1/z) = \lim_{z \to 0} \frac{(2/z)+i}{(1/z)+1} = \lim_{z \to 0} \frac{2+iz}{1 + z} = 2. \end{equation*} Entonces $\lim\limits_{z \to \infty} h(z) = 2$.

Tarea moral

  1. Completa la demostración de las proposiciones 14.3 y 14.5.
  2. Considera a la función $f(z) = \dfrac{zi}{2}$ definida en el disco abierto $B(0,1)$. Prueba usando la definición que: \begin{equation*} \lim_{z \to 1} f(z) = \frac{i}{2}. \end{equation*}
  3. Usando la definición de límite prueba que si: \begin{equation*} \lim_{z\to z_0} f(z) = w_0, \end{equation*} entonces: \begin{equation*} \lim_{z\to z_0} |\,f(z)\,| = |w_0|. \end{equation*} ¿Es cierto el recíproco?
  4. Considera la función $T:S\subset\mathbb{C}\to \mathbb{C}$ dada por: \begin{equation*} T(z) = \frac{az+b}{cz+b}, \quad \text{con} \,\, ad – bc \neq 0. \end{equation*} Usando la definición, prueba que:
    a) Si $c=0$, entonces: \begin{equation*} \lim_{z \to \infty} T(z) = \infty. \end{equation*} b) Si $c\neq 0$, entonces: \begin{align*} \lim_{z \to \infty} T(z) = \frac{a}{c},\\ \lim_{z \to -\frac{d}{c}} T(z) = \infty. \end{align*}
  5. Sean $a\in\mathbb{C}$ y $f,g\in\mathcal{F}(S)$ dos funciones. Considerando la definición 14.4 prueba las siguientes reglas para límites que consideran al punto al infinito.
    a) Si $\lim\limits_{z\to z_0} f(z)=\infty$ y $\lim_{z\to z_0} g(z)=a$, entonces $\lim\limits_{z\to z_0}\left[ f(z) + g(z) \right]=\infty$.
    b) Si $\lim\limits_{z\to z_0} f(z)=\infty$ y $\lim\limits_{z\to z_0} g(z)=a\neq 0$, entonces $\lim\limits_{z\to z_0}\left[ f(z) \cdot g(z) \right]=\infty$.
    c) Si $\lim\limits_{z\to z_0} f(z)=\infty = \lim\limits_{z\to z_0} g(z)$, entonces $\lim\limits_{z\to z_0}\left[ f(z) \cdot g(z) \right]=\infty$.
    d) Si $\lim\limits_{z\to z_0} f(z)=\infty$ y $\lim\limits_{z\to z_0} g(z)=a$, entonces $\lim\limits_{z\to z_0}\dfrac{g(z)}{f(z)}=0$.
    e) Si $\lim\limits_{z\to z_0} f(z)=\infty$ y $\lim\limits_{z\to z_0} g(z)=a\neq 0$, entonces $\lim\limits_{z\to z_0}\dfrac{g(z)}{f(z)}=\infty$.

Más adelante…

En esta entrada hemos abordado de manera formal la definición de límite desde el enfoque de la variable compleja. Mediante una serie de resultados hemos caracterizado el límite complejo a través del estudio de la parte real e imaginaria de una función compleja, ya que dichas funciones reales las hemos estudiado a detalle en nuestros cursos de Cálculo, por lo que los resultados que conocemos para dichas funciones pueden emplearse al trabajar con funciones complejas.

Aunque las definiciones que hemos dado en esta entrada son idénticas a las de las funciones reales de variable real, veremos en las siguientes entradas que al trabajar con funciones complejas algunos conceptos se vuelven más restrictivos para estas funciones.

La siguiente entrada abordaremos un concepto fundamental en el estudio de las funciones complejas, el de continuidad, el cual estará ligado al concepto de límite, por lo que los resultados de esta entrada nos serán de utilidad.

Entradas relacionadas

Álgebra Superior I: Suma y producto de naturales y sus propiedades

Por Guillermo Oswaldo Cota Martínez

Introducción

La función suma

Usaremos el teorema de recursión que revisamos en la entrada pasada para definir la función suma entre números naturales.

Primero, recordemos qué nos menciona este teorema:

Teorema (Recursión Débil): Sea $X$ un conjunto y $x_{0}\in X$. Supongamos que tenemos una función $f:X\to X$. Entonces existe una única función $\phi:\mathbb{N}\to X$ tal que:

  • $\phi(0)=x_{0}$
  • $\phi(\sigma(n))=f(\phi(n)).$

Ahora, definamos la función suma como sigue: La función sumar $n$ unidades a un número estará dada por $s_n:\mathbb{N} \rightarrow \mathbb{N} $ dada por:

  • $s_n(0) = n$
  • $s_n(\sigma(m)) = \sigma(s_n(m))$

Notación: Para cada par de números naturales $n,m$, escribiremos $$s_n(m) = n+m. $$
Y por el teorema de recursión, esta es una función bien definida. Ahora veamos cuál es esta función. La primera condición nos dice que la función evaluada en el $0$ es $n$. Ahora veamos cómo es que esta función se define para los siguientes números, nota que si aplicamos la segunda condición, obtenemos que $$s_n(\sigma(0)) = \sigma(s_n(0)).$$ Recordando cómo definimos la función sucesora, sustituimos $\sigma(0)$ por $1$ para obtener que $$s_n(1) = \sigma(s_n(0)) = \sigma(n).$$ De tal manera que $$s_n(1) = n+1 .$$ De manera similar se puede comprobar que $$s_n(2)=n+2 .$$ Y de manera recursiva, podemos demostrar que $$\begin{align*}
s_n(3) &= n+3 \\
s_n(4) &= n+4 \\
s_n(5) &= n+5 \\
&\vdots \\
s_n(m) &= n+m \\
&\vdots
\end{align*}$$ Como podrás observar, la función $s_n$ corresponde a sumarle a un número $n$ unidades. Formalmente así es como se defina la suma entre dos números. Veamos a continuación algunas propiedades de la suma. Como dato adicional, nota que para todo número natural $n$, $s_n(1)=\sigma(n)$ .

Propiedades de la suma

Proposición. La suma es asociativa, esto quiere decir, para $n,m,k \in \mathbb{N}$ se cumple que: $$ s_n(s_m(k)) = s_{n+m}(k) .$$
Demostración. Sean $n,m,k \in \mathbb{N}$. Lo que queremos demostrar es que $$n+(m+k) = (n+m)+k.$$ Para ello, nota que bastará probar que $s_n \circ s_m = s_{n+m}$. Para ello notemos que

  1. $s_n(s_m(0)) = s_n(m) = m+n$
  2. $s_n(s_m(\sigma(k))) = s_n(\sigma(s_m(k))) = \sigma(s_n(s_m(k)))$

Por otro lado, por definición de la suma:

  1. $s_{n+m}(0) = n+m$
  2. $s_{n+m}(\sigma(k)) = \sigma(s_{n+m}(k))$

Esto quiere decir que tanto $s_n \circ s_m$ como $s_{n+m}$ cumplen las dos condiciones del teorema de recursión, y este nos asegura que $$s_{n+m} = s_n \circ s_m$$ pues el teorema asegura que la función que cumple dichas dos condiciones es única.

$\square$

Proposición. La suma es conmutativa. Es decir, para $n,m,k \in \mathbb{N}$ se cumple que: $$s_n(m) = s_m(n).$$

Demostración. Sea $n \in \mathbb{N}$ . Haremos la demostración por inducción sobre $m$.
Base inductiva. Notemos que $s_n(0) = n$. Por otro lado, se puede demostrar sin mucha dificultad que $s_0(n) = n$ (se deja como tarea moral la demostración de este enunciado). De esta manera $$s_n(0) = s_0(m). $$

Hipótesis de inducción. Supongamos que $m \in \mathbb{N}$ es tal que $$s_n(m) = s_m(n). $$

Paso inductivo. Ahora demostraremos que $$s_n(\sigma(m)) = s_{\sigma(m)}(n). $$Para ello notemos que $$s_n(\sigma(m)) = \sigma(s_n(m))$$Ahora, aplicando la hipótesis de inducción, tenemos que $$\sigma(s_n(m)) = \sigma(s_m(n)). $$ Ahora, nota que $$ \begin{align*}
\sigma(s_m(n)) &= s_m(\sigma(n)) \\

& = s_m(s_1(n))\\

&= s_{m+1}(n) \\

&= s_{\sigma(m)}(n)
\end{align*}$$

Estas últimas dos igualdades son válidas debido a la asociatividad de la suma. Es una vez concluido esto último que podemos seguir la cadena de igualdades. Esto resulta en que $s_n(\sigma(m)) = s_{\sigma(m)}(n). $ Como se quería demostrar.

$\square$

La multiplicación

Cuando apenas estamos aprendiendo a sumar, alguna vez nos encontramos con una abreviación de sumar los mismos términos. Por ejemplo, nos dicen que si tenemos tres grupos de perros, cada uno con cinco perros, entonces podríamos contar el número total de perros con la siguiente expresión:

$5+5+5$

$3$ grupos de perros con $5$ perros cada uno

Quizá no es tan tardado en escribir $5+5+5$, y llegaríamos a la conclusión de que hay $15$ perros en total. Pero ahora ¿Qué pasaría si tenemos trescientos grupos de perros con cinco perros cada uno? Pues la notación se complica, pues para escribirlo, deberíamos anotar $5+5\underbrace{+\dots+}_{296 \text{ veces}}5+5$, es decir, sumar $5$ unas $300$ veces.

$300$ grupos de perros con $5$ perros cada uno

Es por esto que se llega a la noción de multiplicación, pues al considerar la primera suma, bien podemos escribir: $$5+5+5 = 3 \times 5.$$ Y la segunda suma: $$5+5\underbrace{+\dots+}_{296 \text{ veces}}5+5 = 300 \times 5 .$$

Ahora, nota que la primera suma se puede expresar como $$(5+5)+5 = (2 \times 5) + 5 $$ De manera que sabemos que $$3 \times 5 = (s(1) \times 5) + 5 .$$

De igual forma $$(s(298)\times 5) + 5 = 300 \times 5$$ Eso generalizando a cualquier número $n \in \mathbb{N}$ lo escribiríamos como $$s(n) \times 5 = (n \times 5) + 5 $$ Y para cualquier número $m \in \mathbb{N}$: $$s(n) \times m = (n \times m) + m $$

Definición de la multiplicación

Sean $n, m \in \mathbb{N}$, la multiplicación entre números naturales la definiremos como la función $\times : \mathbb{N} \rightarrow \mathbb{N}$ tal que:

$$\begin{align*}
0 &\times n = 0 \\
s(n) &\times m = (n \times m) + m
\end{align*} $$

Nota que esta es una definición recursiva, pues la definición de la multiplicación del sucesor de un elemento depende de la multiplicación del mismo elemento.

Usando el hecho de que sabemos que la multiplicación con el $0$ siempre es $0$, podemos obtener una propiedad interesante al ver qué pasa cuando multiplicamos cualquier elemento con el $1$, pues resultará que la multiplicación se comportará como la identidad cuando multiplicamos con el $1$.

Proposición. Para cualquier número natural $m$, $1 \times m = m$.

Demostración. Notemos que por definición $$0 \times m = 0$$, de manera que $$1 \times m = s(0) \times m $$.

A su vez, podemos usar la otra propiedad de la multiplicación para sustituir el término $s(0)$: $$s(0) \times m = (0 \times m)+m=m $$ Llegando así al resultado deseado.

$\square$

Otra proposición interesante es que esta operación es conmutativa, y es algo que sabemos por sentido común, pues podríamos escribir que $$3 \times 5 = 5 +5+5 = 15=3+3+3+3+3=5\times 3 $$ Nuestro sentido común nos lo dice, sin embargo para demostrar esto, deberemos usar inducción matemática.

Proposición. La multiplicación de números naturales es conmutativa.

Demostración. Para esto notemos que podemos definir la multiplicación de cada número natural $m$ en términos de el teorema débil de recursividad como:
$$\begin{cases}
f_m(0) &= 0\\
f_m(n+1) &= m \times n + m
\end{cases}
$$
Ahora definamos la función $g_m(n) = n \times m$ y veamos que es la misma que $f$.
Notemos que cualquier suma de $0$ consigo misma es $0$, haciendo que $g_m(0)=0$ esto se puede demostrar por inducción y resulta una tarea que puede poner en práctica tus habilidades para este tipo de demostraciones.

Notemos que adicionalmente:
$$\begin{align*}
g_m(n+1) &= (n+1) \times m\\
&= (n \times m) + m \\
&= g_m(n)+m
\end{align*} $$
Demostrando que $g_m$ también cumple la definición de $f_m$. Como el teorema de recursión débil nos garantiza que $f_m$ es única, entonces $g_m=f_m$, esto quiere decir que $m \times n = n \times m$.

Como esto sucede para cualquier número natural $m$, entonces es cierta la siguiente afirmación: «$\forall m,n \in \mathbb{N}, m\times n = n \times m$».

$\square$

Más adelante…

Ahora que hemos visto la suma y multiplicación de los números naturales, hablaremos un poco más de los conjuntos y su relación con los números naturales introduciendo «el tamaño de los conjuntos» o «cardinalidad».

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que para todo número natural $n$, $s_n(1)=\sigma(n)$.
  2. Demuestra que para todo número natural $n$, $s_0(n)=n$.
  3. Demuestra que la multiplicación es asociativa.
  4. Demuestra que $0 \times n = n \times 0$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Funciones invertibles

Por Guillermo Oswaldo Cota Martínez

Introducción

Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer los efectos de las operaciones.

Revirtiendo las cosas.

Pensemos por un momento en un cubo rubik, hay distintas técnicas para armarlo, pero por ahora nos enfocaremos en sus movimientos. La forma en que se usa el cubo, es moviendo sus caras hasta que todas las caras tengan un solo color. Imagina que tienes un cubo en tus manos, si mueves la cara que está hasta arriba, tienes dos formas de hacerlo, girar en sentido de las manecillas del reloj y girar en sentido contrario a las manecillas del reloj. No pasa nada si no estás seguro de tu movimiento, pues siempre puedes deshacer un movimiento rotando la misma cara que volteaste en sentido contrario. Incluso si mueves varias caras, podrás regresar al estado original si recuerdas exactamente las caras que volteaste y la dirección, pues para deshacer los movimientos, tendrás que empezar por la última cara que volteaste y deberás girarla al sentido contrario al que le diste vuelta. Por ejemplo esta imagen indica dos movimientos a las caras y la forma de «deshacer» los movimientos.

En la imagen también marcamos los movimientos de mover las dos caras como $f$, por ahora imagínate que ese movimiento de girar las dos caras como lo muestra la imagen, se llama el movimiento $f$. Mientras que el movimiento de deshacerlas se llama $f^{-1}$. Entonces si realizamos primero el movimiento $f$, el movimiento $f^{-1}$ revierte lo que hizo la primera, volviendo al estado inicial. Así es como vamos a pensar en la reversibilidad de las funciones, una manera de «volver a armar» el cubo.

Funciones reversibles

Diremos que una función es reversible si existe una función $f^{-1}:Im(f) \rightarrow X$ tal que $f ^{-1}\circ f = Id$ donde $Id$ es la función identidad, es decir, es la única función que asigna a cada elemento a sí mismo, es decir $Id(x)=x$.

Algunas observaciones de las funciones invertibles. Sea $f:X \rightarrow Y$ una función invertible, entonces:

  • $f$ es inyectiva.

Demostración. Supongamos que no es inyectiva, entonces existen $x_1,x_2 \in X$ distintos tales que $f(x_1) = f(x_2)$. Como $f$ es invertible, entonces existe su función inversa $f^{-1}:Im(f) \rightarrow X$, en donde $$x_1 = f^{-1} \circ f(x_1) = f^{-1} \circ f(x_2) = x_2 $$ Siendo esta una contradicción, pues supusimos que eran distintos elementos. Así, la función es inyectiva.

$\square$

  • $f^{-1}$ es inyectiva.

Demostración. De manera similar a la demostración anterior, si $y_1,y_2 \in Dom(f^{-1})$ son tales que $f^{-1}(y_1) = f^{-1}(y_2)$, se tiene que al ser $f$ inyectiva, $$f(f^{-1}(y_1)) = f(f^{-1}(y_2)) \Rightarrow y_1=y_2$$ Llegando a que $f^{-1}$ es inyectiva.

$\square$

Así, te puedes dar una idea de lo que significan las funciones invertibles. Con estas proposiciones hemos probado además que la función $f^{-1}: Im(f) \rightarrow X$ es una biyección. ¿Te imaginas porqué? Pues resulta que la función $f^{-1}$ también es suprayectiva.

  • $f^{-1} \circ f = f \circ f^{-1}$

Demostración. Sabemos que $f^{-1} \circ f = Id$, entonces bastará demostrar que $f \circ f^{-1} = Id$. Para ello consideremos $y \in Dom(f^{-1})=Im(f) \subset Y$. Supongamos que $$f \circ f^{-1}(y)=w$$. Entonces $$f^{-1}(f \circ f^{-1}(y)) = f^{-1}(w). $$ Como la composición es asociativa, entonces: $$f^{-1}(f \circ f^{-1}(y)) = (f^{-1} \circ f) \circ f^{-1}(y) = f^{-1}(y) = f^{-1}(w)$$ Como $f^{-1}$ es inyectiva, entonces $y=w$.

$\square$

  • Sea $g:Im(f) \rightarrow Z$ una función invertible, entonces $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ .

Demostración. Basta notar que por la asociatividad de las funciones:

$$ \begin{align*}
(g \circ f) \circ (f^{-1} \circ g^{-1}) &= g \circ (f \circ (f^{-1} \circ g^{-1})\\
&= g \circ ((f \circ f^{-1}) \circ g^{-1})\\
&= g \circ (Id \circ g^{-1}) \\
&= g \circ g^{-1} = Id
\end{align*}$$

$\square$

Más adelante…

Habiendo pasado por las funciones, su composición, sus propiedades y la inversa, utilizaremos estas definiciones para hablar de el tamaño de los conjuntos. Pues esta definición de funciones nos ayudan a decir «Cuántos elementos tiene un conjunto».

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que $f^{-1}$ es suprayectiva.
  2. Demuestra que $Dom(f^{-1})=Im(f)$.
  3. Demuestra que $(f \circ (g \circ h))^{-1} = h^{-1} \circ (g^{-1} \circ f^{-1})$.
  4. Da una condición suficiente para que una función no sea invertible.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Composición de funciones

Por Guillermo Oswaldo Cota Martínez

Introducción

Siguiendo la conversación de las funciones, esta vez hablaremos de la composición de funciones. Este es el concepto que nos permitirá combinar más de una función para crear nuevas funciones siempre que ciertas condiciones se cumplan.

Composiciones en relaciones

Anteriormente ya hemos mencionado que sobre tres conjuntos $X,Y,Z$ se puede definir una relación composición entre dos relaciones $R$ de $x$ en $Y$ y $T$ de $Y$ en $Z$. De manera que la relación $T \circ R$ es aquella que está compuesta de elementos de la forma $(x,z) \in X \times Z$ siempre y cuando exista alguna $y$ de manera que $(x,y) \in R$ y $(y,z) in T$. Así, la relación composición está formada de elementos que pueden ir de $X$ a $Y$ mediante la relación $R$ y de ahí pueden llegar a $Z$ mediante la relación $T$. Veremos a continuación cómo podemos traducir esto a las funciones.

Composiciones en funciones

La composición de funciones será una composición de relaciones, no cambiará la definición, pues las funciones siguen siendo relaciones y hemos establecido toda una base sobre lo que son las relaciones para llegar a hablar de las funciones de forma gradual.

Piensa en el siguiente ejemplo. Supongamos tenemos una máquina $f$ que transforma las horas en minutos y otra máquina $g$ que transforma los minutos en segundos. Cuando a la máquina $f$ le pasamos de entrada «$1$ hora», nos regresará «$60$ minutos». Mientras que cuando le pasamos la entrada «$1$ minuto» a la máquina $g$ esta nos devuelve «60 segundos». Ahora nos preguntamos ¿Hay una forma de convertir las horas en segundos? O dicho de otra forma, ¿Cómo podemos construir una máquina $h$ que convierta las horas en los segundos? Nota que no tenemos directamente la máquina que nos toma las horas y las convierte en segundos, pero sí tenemos una máquina que convierte las horas en minutos y después los minutos en segundos.

Supongamos que tenemos la entrada «1 hora» entonces con la máquina $f$ podemos saber que una hora equivale a $60$ minutos. Enseguida podemos usar la máquina $G$ para saber que que los $60$ minutos equivalen a $3600$ segundos, de manera que esa es la duración de una hora. A esta máquina $h$ le llamamos la composición de $f$ con $g$.

Pensemos a estas máquinas como funciones, si consideramos $H$ como al conjunto de número de horas a considerar ($H=\{1 hr, 2 hrs, 3 hrs, \dots\}$) a $M$ como el conjunto de los minutos ($M =\{1 min, 2 mins, 3 mins, \dots\}$) y a $S$ como el conjunto de los segundos a considerar ($S=\{1 seg, 2 segs, 3 segs, \dots\}$) entonces $f:H \rightarrow M$ y $g: M \rightarrow S$ son funciones que convierten una unidad de tiempo en otra. La función $h : H \rightarrow S$ buscada es justamente la composición de las funciones $g \circ f: H \rightarrow S$.

Nota que si queremos convertir un número de horas $n \in H$ a segundos entonces bastará con notar que $n$ horas son $f(n)$ minutos, y estos a su vez son $g(f(n))$ segundos. Veamos el primer ejemplo. Nota que $f(1 hr)=60 mins$. Entonces $g(f(1hr))=g(60min)=3600segs$. Por lo cual la función que convierte las horas a segundos es componer $f$ con $g$.

Composición de funciones

Gráficamente lo que significa la composición de funciones es la siguiente imagen:

||||

Aquí podemos visualizar la función $g \circ f$ que es la función que va de $X$ a $Z$. En ella, vemos cómo es que la función $f$ va de X a Y, siendo que el dominio de $f$ queda dentro de $Y$, pues por definición, si la función $f$ va de $X$ a $Y$, entonces para cada elemento $x \in X$ sucede que existe $y \in Y$ tal que $f(x)=y$, significando que siempre $Im(f) \subset Y$ , y en nuestro caso en particular, $Y= Dom(g)$, siendo $g$ una función que va de $X$ a $Z$. Quizá lo que no es inmediato es la siguiente contención: $Im(g \circ f) \subset Im(g) \subset Z$.

Proposición. Si $f:X \rightarrow Y $ y $g: Y \rightarrow Z$ entonces $Im(g \circ f) \subset Im(g) \subset Z$

Demostración. Para esta demostración, consideremos $w \in Im(g \circ f) $ y veamos que $w \in Im(g)$. Para ello, notemos que por definición de la composición de funciones, si $w \in. Im(g \circ f)$ entonces existe $x \in X$ tal que $g \circ f(x) = w$. Es decir, $g(f(x))=w$ a su vez, como $f(x) \in Dom(g)$ entonces existe $y$ tal que $f(x)=y$ y $g(y)=w$. Ahora notemos que $y \in Dom(g)$ entonces $g(y) \in Im(g)$, es decir, $w=g(y) \in Dom(g)$. Por otro lado, por definición de función, la imagen de $g$ está contenida en $Z$. De esta manera, se tiene la contención buscada.

$\square$

Vamos a hacer algunas observaciones de esta composición de funciones.

  1. Para componer funciones, la imagen de una función debe estar contenida en el dominio de la otra. Esto significa que si queremos componer $f$ con $g$, debemos saber que todo elemento convertido por $f$ puede ser pasado a $g$. Dicho de otra manera, si queremos convertir horas a segundos, la máquina $f$ convierte las horas a minutos, y la $g$ minutos a segundos, entonces siempre tiene que pasar que $f$ devuelva minutos para poder componerse con $g$, pues acepta nada más minutos como entrada, si $f$ convirtiera horas a días, $g$ lo rechazaría, pues un día no está expresado en términos de minutos.
  2. La composición de funciones es asociativa, es decir, $(g\circ f) \circ h = g \circ (f \circ h)$.

Demostración. Consideremos $f : X \rightarrow Y$, $g : Y \rightarrow Z$ y $h : W \rightarrow X$. Para demostrar que la función es asociativa, deberíamos demostrar que apra algún $x$ arbitrario en el dominio de la composición $(W)$, se cumple que

$$ (g\circ f) \circ h(x) = g \circ (f \circ h)(x) $$

Para ello, llamemos $f \circ h = F$, $g \circ f = G$,$h(x)=y$ y $f(y)=z$. Ahora, nota por un lado que $$ g \ circ (f \circ h)(x) = g \circ F(x) = g(F(x)) = g(z)$$

Por otro lado, $(g \circ f) \circ h(x) = G \circ h(x) = G(y) = g \circ f(y) = g(z)$

Llegando a los mismos resultados, lo que debe significar que las funciones son iguales para $x$, pudiéndose generalizar para cada elemento del dominio de la composición.

$\square$

Más adelante…

Habiendo visto la composición de funciones, estamos listos para dar el siguiente paso y encontrar una clase muy particular de funciones: funciones invertibles, que serán aquellas funciones que podemos «deshacer».

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que si $f$ es suprayectiva, entonces $Im(g \circ f) = Im(g)$.
  2. Sea $f: \mathbb{R} \ rightarrow \mathbb{R}$ dada por $f(x)=\frac{3x+1}{2}$:
    1. Encuentra $g: \mathbb{R} \ rightarrow \mathbb{R}$ tal que $g \circ f (x)= x$
    2. Demuestra que $g \circ f = f \circ g$
  3. Da condiciones suficientes y necesarias para que $g \circ f$ sea biyectiva.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»