Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Ecuaciones Diferenciales I – Videos: Teorema de existencia y unicidad para sistemas lineales de primer orden con coeficientes constantes

Por Eduardo Vera Rosales

Introducción

En la entrada anterior definimos la exponencial de una matriz $\textbf{A}$ de coeficientes constantes, denotada por $\textbf{e}^{\textbf{A}}$, demostramos sus principales propiedades, y estudiamos la relación que guarda con el sistema lineal de ecuaciones $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ y su matriz fundamental de soluciones. Con esta herramienta a nuestra disposición, podremos enunciar y demostrar el teorema de existencia y unicidad para sistemas lineales de primer orden con coeficientes constantes.

Como mencionamos en la entrada anterior, nuestra meta es tratar de generalizar la fórmula para soluciones a ecuaciones lineales de primer orden con condición inicial, la cual es de la forma $$y(t)=e^{-\int p(t) dt} \left[\int e^{\int p(t) dt}q(t)+k_{0}\right]$$ para cierta constante $k_{0}$, y encontrar una solución al problema de condición inicial $$\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q} \, \, \, \, \, \, \, \, \, \, ; \, \, \, \, \, \, \, \, \, \, \textbf{X}(0)=\textbf{C}$$ que se vea de la forma $$\textbf{X}(t)=\textbf{e}^{-\int \textbf{A}(t) dt} \left[\int \textbf{e}^{\int \textbf{A}(t) dt}\textbf{Q}(t)+\textbf{B}\right].$$

El teorema de existencia y unicidad para sistemas lineales de primer orden nos garantiza la existencia de tal solución. Además, una vez que definimos la exponencial de una matriz, ya no nos sorprenderá la notación de la fórmula anterior. Dividiremos el teorema y su demostración en dos casos: para sistemas homogéneos y para sistemas no homogéneos.

Teorema de existencia y unicidad para sistemas lineales homogéneos de primer orden con coeficientes constantes

En el primer video demostramos el teorema de existencia y unicidad para sistemas lineales homogéneos de primer orden con coeficientes constantes.

Teorema de existencia y unicidad para sistemas lineales no homogéneos de primer orden con coeficientes constantes

En el segundo video demostramos el mismo teorema pero ahora para sistemas lineales no homogéneos de primer orden con coeficientes constantes.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la solución al problema de condición inicial: $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}\textbf{X} \, \, \, \, \, \, \, \, \, \, ; \, \, \, \, \, \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$
  • Encuentra la solución al problema de condición inicial: $$\dot{\textbf{X}}=\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}\textbf{X} \, \, \, \, \, \, \, \, \, \, ; \, \, \, \, \, \, \, \, \, \, \textbf{X}(1)=\begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$
  • Encuentra la solución al problema de condición inicial: $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}\textbf{X}+ \begin{pmatrix} t \\ 1 \end{pmatrix} \, \, \, \, \, \, \, \, \, \, ; \, \, \, \, \, \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$
  • Encuentra la solución al problema de condición inicial: $$\dot{\textbf{X}}=\begin{pmatrix} 7 & 0 \\ 0 & 3 \end{pmatrix}\textbf{X}+ \begin{pmatrix} t \\ t \end{pmatrix} \, \, \, \, \, \, \, \, \, \, ; \, \, \, \, \, \, \, \, \, \, \textbf{X}(2)=\begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

Más adelante

Una vez que hemos encontrado formas explícitas para las soluciones a sistemas lineales con coeficientes constantes $\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q}$, debemos encontrar algún método para calcular eficientemente $\textbf{e}^{t\textbf{A}}$, sin pasar por el complicado camino de calcular cada serie que conforma a la exponencial de $t\textbf{A}$. El método que desarrollaremos es una aplicación de los eigenvalores y eigenvectores (o valores y vectores propios) que quizá hayas visto en cursos de álgebra lineal.

Es por eso que, aunque no estamos en un curso de álgebra lineal, haremos un alto en el camino y revisaremos de manera muy breve estos conceptos y demás herramientas que utilizaremos muy pronto. Iremos relacionando los conceptos con los temas que nos interesan, que son los de hallar una matriz fundamental de soluciones, la exponencial de una matriz, y por supuesto resolver sistemas lineales de primer orden.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Funciones trigonométricas (Parte 1)

Por Karen González Cárdenas

Introducción

De las clases en el bachillerato recordarás las siguientes definiciones, utilizando el triángulo rectángulo de la imagen siguiente:


\begin{align*}
sen\theta&=\frac{\text{cat op}}{\text{hip}}=\frac{b}{c} & csc\theta&=\frac{\text{hip}}{\text{cat op}}=\frac{c}{b}\\
cos\theta&=\frac{\text{cat ad}}{\text{hip}}=\frac{a}{c} & sec\theta&=\frac{\text{hip}}{\text{cat ad}}=\frac{c}{a}\\
tan\theta&=\frac{\text{cat op}}{\text{cat ad}}=\frac{b}{a} & cot\theta&=\frac{\text{cat ad}}{\text{cat op}}=\frac{a}{b}\\
\end{align*}
donde:
cat op = cateto opuesto ; cat ad = cateto adyacente e hip= hipotenusa.

También recordemos que tenemos la siguiente equivalencia:

$360°$ es equivalente a $2\pi$.

A lo largo de esta entrada veremos las principales características de este conjunto de funciones, sus gráficas y algunas identidades trigonométricas.

Identidades trigonométricas Pitagóricas

Si tomamos a la circunferencia unitaria y un triángulo rectángulo como en la imagen:

Observamos que al sustituir el valor hip $=1$ en las definiciones anteriores para el $sen\theta$ y el $cos\theta$ tenemos:
\begin{align*}
sen\theta&=\frac{\text{cat op}}{\text{1}} & cos\theta&=\frac{\text{cat ad}}{\text{1}}\\
&= \text{cat op} & &=\text{cat ad}\\
&= b & &=a\
\end{align*}


Dadas las igualdades obtenidas e hip$=1$ al sustituir para el resto de las funciones tenemos:
\begin{align*}
tan\theta &= \frac{sen\theta}{cos\theta} & cot\theta &=\frac{cos\theta}{sen\theta}\\
sec\theta &=\frac{1}{cos\theta} & csc\theta&=\frac{1}{sen\theta}
\end{align*}

Recordemos el conocido Teorema de Pitágoras que nos da una relación entre los catetos y la hipotenusa de un triángulo rectángulo:
$$a^{2}+b^{2}=c^{2}.$$

Si lo aplicamos al triángulo rectángulo obtenido en la imagen anterior donde:
\begin{align*}
a&= cos\theta & b&=sen\theta & c&=1
\end{align*}
entonces tenemos la siguiente igualdad:
\begin{equation}
cos^{2}\theta + sen^{2}\theta =1.
\end{equation}
Si dividimos $(1)$ entre $cos^{2}\theta$ obtenemos:
\begin{equation*}
\frac{cos^{2}\theta}{ cos^{2}\theta}+ \frac{sen^{2}\theta}{cos^{2}\theta} =\frac{1}{cos^{2}\theta}.
\end{equation*}
Que simplificando sería:
\begin{equation}
1+ tan^{2}\theta=sec^{2}\theta.
\end{equation}

Ahora bien si decidimos dividir $(1)$ entre $sen^{2}\theta$:
\begin{equation*}
\frac{cos^{2}\theta}{sen^{2}\theta} + \frac{sen^{2}\theta}{sen^{2}\theta} =\frac{1}{sen^{2}\theta}.
\end{equation*}
Que finalmente sería:
\begin{equation}
cot^{2}\theta +1= csc^{2}\theta.
\end{equation}

Las igualdades $(1)$, $(2)$ y $(3)$ son llamadas Identidades Pitagóricas:
\begin{align*}
cos^{2}\theta + sen^{2}\theta &=1,\\
1+ tan^{2}\theta &=sec^{2}\theta,\\
cot^{2}\theta +1&= csc^{2}\theta.\\
\end{align*}

Otras identidades trigonométricas


Otras identidades trigonométricas que son de utilidad son las de suma de ángulos:
\begin{align*}
cos( \alpha + \beta)&=cos(\alpha) cos(\beta) – sen(\alpha) sen(\beta),\\
sen(\alpha + \beta)&= cos(\alpha) sen(\beta) + cos(\beta) sen(\alpha).
\end{align*}
Para la resta de ángulos tendríamos un par similar:
\begin{align*}
cos( \alpha -\beta)&=cos(\alpha) cos(\beta) + sen(\alpha) sen(\beta),\\
sen(\alpha – \beta)&= cos(\alpha) sen(\beta) – cos(\beta) sen(\alpha).
\end{align*}
Ahora veremos cómo obtener las identidades para los ángulos dobles:
\begin{align*}
cos(2\alpha)&= cos(\alpha + \alpha)\\
&= cos(\alpha) cos(\alpha) – sen(\alpha) sen(\alpha)\\
&= cos^{2}\alpha – sen^{2}\alpha
\end{align*}
Por lo tanto tendríamos para el coseno de $2\alpha$:
\begin{equation}
cos(2\alpha)=cos^{2}\alpha – sen^{2}\alpha.
\end{equation}
Si procedemos análogamente para el seno de $2\alpha$:
\begin{align*}
sen(2\alpha)&= sen(\alpha + \alpha)\\
&= cos(\alpha) sen(\alpha) + cos(\alpha) sen(\alpha)\\
&= 2sen(\alpha) cos(\alpha)
\end{align*}
Así concluimos que:
\begin{equation}
sen(2\alpha)=2sen(\alpha) cos(\alpha).
\end{equation}
También tenemos un par de identidades que relacionadas con el $sen^{2}\theta$ y el $cos^{2}\theta$:
\begin{align*}
sen^{2}\theta &= \frac{1}{2}(1-cos(2\theta)), & cos^{2}\theta& =\frac{1}{2}(1+ cos(2\theta)).\\
\end{align*}
Se dejará como ejercicios en la Tarea moral obtener este par de igualdades.

Simetrías

Retomando la imagen anterior, si ahora reflejamos al triángulo respecto al eje $x$, tenemos lo siguiente:

donde observamos los siguiente:
\begin{align*}
\beta &= – \theta & c_{2}&=1 & b_{2}=sen(-\theta)\\
\end{align*}

Así al considerar a los puntos $p_{1}$ y $p_{2}$ tenemos que estarían definidos de la siguiente manera:
\begin{align*}
p_{1}&=(cos(\theta), sen(\theta)) & p_{2}&=(cos(-\theta), sen(-\theta))\\
\end{align*}
Resaltamos para $p_{2}$ que:
$$p_{2}=(cos(-\theta), sen(-\theta))=(cos(\theta), -sen(\theta)).$$
de esta igualdad podemos determinar si las funciones seno y coseno son pares o impares, este ejercicio formará parte de la Tarea moral.

Función periódica

Definición (función periódica): Decimos que una función $f$ es periódica si existe $N \in \r$ tal que para todo $x \in D_{f}$ cumple que:
$$f(x)=f(x+ N)$$
y $|N|$ se llama periodo de $f$.
En la siguiente imagen observamos que $\alpha = \pi$ por lo que tendríamos que el nuevo triángulo agregado es en realidad el original rotado:

Así tendríamos la siguiente definición para los puntos $p_{1}$ y $p_{3}$:

\begin{align*}
p_{1}&=(cos(\theta), sen(\theta)) & p_{3}&=(cos(\theta + \pi), sen(\theta+ \pi))\\
\end{align*}

Si rotamos el triángulo ahora $\alpha = 2\pi$ tenemos que $p_{4}$ estaría definido como:
$$p_{4}=(cos(\theta + 2\pi), sen(\theta+ 2\pi)).$$


¡Y observamos que obtenemos el triángulo original! Consecuentemente tenemos las siguientes igualdades:
\begin{align*}
sen(\theta)&=sen(\theta+2\pi),\\
cos(\theta)&=cos(\theta+ 2\pi).
\end{align*}
Aplicando la definición decimos que las funciones seno y coseno son periódicas con periodo $N=2\pi$.
En las gráficas de las funciones observamos el comportamiento anterior, cada $2 \pi$ se comienzan a repetir los valores:

Observación: Vemos que para todo $x \in \r$ ocurre:
$$-1 \leq sen(x) \leq 1$$
$$-1 \leq cos(x) \leq 1$$
por lo que las funciones seno y coseno son acotadas.

Consideraremos los siguientes dominios donde cada una de las funciones cumple ser inyectiva :
\begin{align*}
sen: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \rightarrow [-1,1]
\end{align*}

\begin{align*}
cos: [0, \pi] \rightarrow [-1,1]
\end{align*}

Más adelante

En la próxima entrada, continuaremos con las definiciones de las funciones tangente, cotangente, secante y cosecante. Por lo tanto, realizaremos un análisis similar al dado para las funciones seno y coseno.

Tarea moral

  • Obtener las siguientes identidades trigonométricas:
    • $$sen^{2}\theta = \frac{1}{2}(1-cos(2\theta)).$$
    • $$cos^{2}\theta =\frac{1}{2}(1+ cos(2\theta)).$$
    • $$tan(\alpha + \beta)=\frac{tan(\alpha) + tan(\beta)}{-tan(\alpha)tan(\beta)}.$$
      Sugerencia.-Considera la igualdad:
      $$tan\theta=\frac{sen\theta}{cos\theta}$$
  • Determina si las siguientes funciones son pares, impares o ninguna de las opciones anteriores:
    • $sen(\theta).$
    • $cos(\theta).$
  • Obtén la gráfica de las siguientes funciones:
    • $f(x)=sen(x+\frac{\pi}{2}).$
    • $f(x)=-2cos(x)+1.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: La exponencial de una matriz

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos a resolver algunos sistemas de ecuaciones lineales con coeficientes constantes. Sin embargo como pudimos advertir, el método de eliminación de variables funciona para casos muy sencillos con pocas ecuaciones en el sistema. Además, necesitamos previo conocimiento de cómo resolver ecuaciones diferenciales de orden superior pues dicho método nos lleva a resolver una ecuación de este tipo. Por tanto, quisiéramos un nuevo método que nos permita resolver los mismos sistemas y algunos más complejos.

Antes de presentar tal método, lo que quisiéramos conocer es si existe una fórmula explícita para las funciones solución al problema de condición inicial $$\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q}$$ con condición inicial $\textbf{X}(t_{0})=\textbf{C}$, que sea muy parecida a la fórmula que encontramos para ecuaciones lineales de primer orden $\frac{dy}{dt}+p(t)y=q(t)$ con condición inicial $y(t_{0})=y_{0}$, la cual es de la forma $$y(t)=e^{-\int p(t) dt} \left[\int e^{\int p(t) dt}q(t)+k_{0}\right]$$ para cierta constante $k_{0}$. Intercambiando las respectivas funciones, nuestra hipotética solución al sistema quedaría de la forma $$\textbf{X}(t)=\textbf{e}^{-\int \textbf{A}(t) dt} \left[\int \textbf{e}^{\int \textbf{A}(t) dt}\textbf{Q}(t)+\textbf{B}\right]$$ con cierta matriz constante $\textbf{B}$. Por supuesto, no sabemos qué significa $\int \textbf{A}(t) dt$ ni mucho menos la exponencial de esta última expresión.

En esta entrada responderemos a estas preguntas. Daremos las definiciones auxiliares necesarias para construir el concepto de exponencial de una matriz cuadrada de tamaño $n \times n$ con coeficientes constantes, que denotaremos por $\textbf{e}^{\textbf{A}}$. Posteriormente, demostraremos las principales propiedades que cumple $\textbf{e}^{\textbf{A}}$, entre ellas su relación con los sistemas de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ con condición inicial $\textbf{X}(0)=\textbf{C}$. Finalmente, dado $t \in \mathbb{R}$ relacionaremos a la exponencial de $t \textbf{A}$ con la matriz fundamental de soluciones al sistema lineal homogéneo $\dot{\textbf{X}}=\textbf{A}\textbf{X}$.

¡Manos a la obra!

La exponencial de una matriz

En el primer video de esta entrada definimos la exponencial de una matriz $\textbf{A}$ de tamaño $n \times n$ con coeficientes constantes.

Propiedades de la exponencial de una matriz

En este video probamos las principales propiedades que satisface la exponencial de una matriz, entre ellas la relación que guarda con los sistemas lineales de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ con condición inicial $\textbf{X}(0)=\textbf{C}$.

La exponencial de una matriz $\textbf{A}$ y la matriz fundamental de soluciones de $\dot{\textbf{X}}=\textbf{A}\textbf{X}$

En el último video de esta entrada relacionamos el nuevo concepto de exponencial de una matriz $\textbf{A}$ con la matriz fundamental de soluciones al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Supongamos que $$\textbf{A}=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$ Demuestra que $$\textbf{e}^{t \textbf{A}}=\begin{pmatrix} \cos{t} & \sin{t} \\ -\sin{t} & \cos{t} \end{pmatrix}.$$
  • Considera las matrices $$\textbf{A}=\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \, \, \, \, \, \, \, \, \, \, ; \, \, \, \, \, \, \, \, \, \, \textbf{B}=\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}.$$ Muestra que $\textbf{A}\textbf{B} \neq \textbf{B}\textbf{A}$, calcula $\textbf{e}^{\textbf{A}+\textbf{B}}$ y $\textbf{e}^{\textbf{A}}e^{\textbf{B}}$. ¿Contradice este ejemplo el teorema 4 del segundo video?
  • Calcula $\textbf{e}^{t \textbf{A}}$ si $$\textbf{A}=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$
  • Supongamos que $\textbf{A}$ es una matriz diagonal, es decir, una matriz cuyos únicos coeficientes distintos de cero se encuentran en la diagonal. Prueba que $\textbf{e}^{t \textbf{A}}$ es una matriz diagonal.
  • Supongamos que $\textbf{X}_{f}(t)$ es una matriz fundamental de soluciones al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Prueba que $\textbf{e}^{(t-t_{0}) \textbf{A}}=\textbf{X}_{f}(t)\textbf{X}^{-1}_{f}(t_{0})$.

Más adelante

Ahora que hemos definido a la exponencial de una matriz y visto sus principales propiedades, podremos enunciar y demostrar el teorema de existencia y unicidad para sistemas lineales de primer orden con coeficientes constantes. Dividiremos el teorema en dos casos: cuando nuestro sistema es homogéneo, es decir, el sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$; y cuando el sistema es no homogéneo, es decir, de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q}$ con su respectiva condición inicial $\textbf{X}(t_{0})=\textbf{C}$.

Esto es lo que haremos en la próxima entrada. ¡No se la pierdan!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Funciones polinomiales y racionales. Análisis geométrico de funciones

Por Karen González Cárdenas

Introducción

Quizás en algunos de tus cursos anteriores te presentaron funciones parecidas a las siguientes:
\begin{align*}
f(x)&= 4x^{2}-3x+1, & t(x)&=\frac{x^{2}+2x+5}{x^{3}+3}, & k(x)&= x^{3}\text{.}\\
\end{align*}
Todas pertenecen al conjunto de las funciones algebraicas. A lo largo de esta entrada, veremos las definiciones formales para cada una y comenzaremos a realizar un análisis geométrico con este conjunto de funciones.

Funciones polinomiales

Definición (función polinomial): Sea $f$ una función. Decimos que $f$ es una función polinomial si está definida como:
$$p(x)=a_{n}x^{n}+ a_{n-1}x^{n-1}+ \ldots + a_{0}$$
donde $ n \in \mathbb{N}\cup \left\{0 \right\}$ y los coeficientes $a_{i} \in \r$.

Definición (grado de una función polinomial): Llamamos grado de p(x) a la potencia mayor de $x$ con un coeficiente $a_{i} \neq 0$.
Ejemplos:

  • $g(x)= 120x^{10}+34x^{6}+14$
    el grado de $g(x)$ es $10$
  • $h(x)= \pi x^{3}+ 2\pi x^{2}+x$
    el grado de $h(x)$ es $3$

Una observación importante es que las funciones del tipo $f(x)=x^{n}$ con $n\in \mathbb{N}$, mejor conocidas como potencias de $x$, son un caso particular de las funciones polinomiales.

Funciones racionales

Definición (función racional): Consideremos $g$ una función. Diremos que $g$ es una función racional si está definida como el cociente de dos polinomios:
$$g(x)=\frac{a_{n}x^{n}+ a_{n-1}x^{n-1}+ \ldots + a_{0}}{b_{n}x^{n}+ b_{n-1}x^{n-1}+ \ldots + b_{0}}$$
donde $ n \in \mathbb{N}\cup \left\{0 \right\}$, los coeficientes $a_{i}, b_{i} \in \r$ y $b_{n}x^{n}+ b_{n-1}x^{n-1}+ \ldots + b_{0} \neq 0$.

Ejemplos:

  • $$h(x)=\frac{x^{2}-1}{x+3}$$
  • $$g(x)=\frac{x}{x^{3}+1}$$

Análisis geométrico

En numerosas ocasiones tendremos la necesidad de realizar un bosquejo de la gráfica de una función. Para ello nos basaremos en la gráfica de una función conocida previamente y la siguiente serie de elementos donde consideremos a $f(x)$ una función en los reales y a $\alpha$ una constante:
Traslaciones

  • Para $h(x)= f(x)+ \alpha$ con $\alpha >0$ tenemos que la gráfica de $h$ es la gráfica de $f$ trasladada verticalmente $\alpha$ unidades hacia arriba (sobre el eje $y$).
  • Y para $h(x)= f(x)- \alpha$ con $\alpha >0$ la gráfica de $h$ es la gráfica de $f$ trasladada verticalmente $\alpha$ unidades hacia abajo (sobre el eje $y$).
  • Ahora si $h(x)= f(x-c)$ con $\alpha >0$ entonces la gráfica de $h$ sería la gráfica de $f$ trasladada horizontalmente $\alpha$ unidades hacia la derecha (sobre el eje $x$).
  • En cambio si $h(x)= f(x+c)$ con $\alpha >0$ entonces la gráfica de $h$ sería la gráfica de $f$ trasladada horizontalmente $\alpha$ unidades hacia la izquierda (sobre el eje $x$).

Consideremos los siguientes ejemplos para $f(x)= x^{2}$:

Ampliaciones y reducciones

  • Si $g(x)= f(\alpha x)$ con $\alpha >1$ su gráfica sería la gráfica de $f$ comprimida horizontalmente (sobre el eje $x$).
  • Para $g(x)= f(\alpha x)$ con $0<\alpha <1$ su gráfica sería la gráfica de $f$ expandida horizontalmente (sobre el eje $x$).
  • Y para $g(x)= f(\alpha x)$ con $\alpha <-1$ su gráfica sería la gráfica de $f$ comprimida horizontalmente (sobre el eje $x$) y reflejada respecto del eje $y$.
  • Finalizamos con $g(x)= f(\alpha x)$ con $-1<\alpha <0$ su gráfica sería la gráfica de $f$ expandida horizontalmente (sobre el eje $x$) y reflejada respecto del eje $y$.

Observación: Si $\alpha=1$ vemos que $f((1)x)=f(x)$ por lo que no hay cambios.

  • Ahora bien si $g(x)= \alpha f(x)$ donde $\alpha >1$ la gráfica de $g$ es la gráfica de $f$ expandida verticalmente (sobre el eje $y$).
  • Cuando $g(x)= \alpha f(x)$ donde $0<\alpha <1$ la gráfica de $g$ es la gráfica de $f$ comprimida verticalmente (sobre el eje $y$).
  • Si $g(x)= \alpha f(x)$ donde $-1<\alpha $ la gráfica de $g$ es la gráfica de $f$ expandida verticalmente (sobre el eje $y$) y reflejada respecto del eje $x$.
  • Para $g(x)= \alpha f(x)$ donde $-1<\alpha <0$ la gráfica de $g$ es la gráfica de $f$ comprimida verticalmente (sobre el eje $y$) y reflejada respecto del eje $x$.

Observación: Para $\alpha =1$ tenemos que $(1)(f(x))=f(x)$.

Hablemos sobre la función inversa

Recordemos que si tenemos $f: A \rightarrow B$ una función esto significa que:
$$Graf(f)= \left\{(x, f(x)): x \in A \right\}\quad\text{.}$$

Ahora si consideramos a $f$ una función invertible, vemos que para $f^{-1}: B \rightarrow A$ ocurre:
$$Graf(f^{-1})= \left\{(f(x), x): f(x) \in B \right\}\quad \text{.}$$
Esto nos permite observar que un punto $(y,x) \in Graf(f^{-1})$ es la reflexión ortogonal del punto $(x,y) \in Graf(f)$ respecto a la función identidad.

De este modo podemos obtener la gráfica de $f^{-1}$ reflejando ortogonalmente la gráfica de $f$ respecto a la identidad.

En este ejemplo tomamos la función $f(x)=x^{2}$ en el dominio donde cumple ser biyectiva por lo que su función inversa sería $h(x)= \sqrt{x}$:

En la sección de Tarea moral encontrarás algunos ejercicios que te ayudarán a poner en práctica lo desarrollado en esta entrada.

Más adelante

En la siguiente entrada, comenzaremos a revisar el conjunto de las funciones trigonométricas. Veremos sus definiciones, algunas identidades trigonométricas que serán de utilidad y sus gráficas.

Tarea moral

Realiza las gráficas de las siguientes funciones dado que $f(x)=x^{3}$:

  • $f(x)+4$
  • $f(x-3)+2$
  • $f^{-1}(x)$
  • $f(2x)$
  • $2f(x)$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior I: Órdenes parciales y totales

Por Guillermo Oswaldo Cota Martínez

Introducción

En la entrada pasada, hemos introducido algunos tipos de relaciones de un conjunto en sí mismo. En esta entrada y en la siguiente, veremos algunos ejemplos de este tipo de relaciones, y lo haremos con un concepto que puede que te suene muy familiar desde algunas ideas básicas de los números: el órden.

Ordenes

En la vida cotidiana muchas veces nos surge la necesidad de comparar distintas cosas. Por ejemplo, podemos comparar qué tan lejos está un lugar a comparación de otros. Podemos decir que si una plaza comercial nos queda a dos kilómetros, está más cerca de un parque que queda a tres kilómetros de distancia. ¿Por qué pasa esto? Pues nosotros tenemos alguna noción de que dos kilómteros es menor distancia que tres. O al comparar el tamaño del disco duro de alguna computadora, podemos decir que $512$ Gb es mejor que $256$ Gb, puesto que el de $512$ tiene una mayor capacidad del de $256$. ¿Ves como es que usamos las palabras de mayor y menor? Cuando nosotros estamos usando la noción de ser mayor que o menor que, estamos hablando de un orden. Que es un tipo de relación entre un conjunto consigo mismo, por ahora veremos dos tipos de órdenes entre conjuntos: el orden parcial y el orden total.

Órdenes parciales

Piensa en la relación de $\mathbb{Z}^2$ dada por «ser menor o igual a», es decir la relación:

$$ \leq = \{(x,y) \in \mathbb{Z}^2: x \text{ es menor o igual a } y\}$$

Por ejemplo, $(1,2) \in \leq$ pues $1$ es menor o igual a $2$. Si dos elementos $x,y$ están relacionados mediante $\leq$, simplemente escribiremos $x\leq y$ en lugar de $(x,y) \in \leq$. Veamos algunas propiedades que tiene esta relación:

  1. $\leq$ es simétrica. Nota que para cualquier $x \in \mathbb{Z}$ sucede que $x=x$, en general $x \leq x$, pues la relación $\leq$ está dada por «ser menor o igual», y $x$ es igual a sí mismo.
  2. $\leq$ es antisimétrica. Para ver esto, nota que si sucede al mismo tiempo que $x \leq y$ y $y \leq x$, entonces estamos diciendo que $x$ es igual o menor a $y$ al mismo tiempo que $y$ es menor o igual a $x$. De tal forma que sucede que $$(x<y \lor x=y) \land (y<x \lor y=x) \Leftrightarrow (x<y \land y<x) \lor (x=y).$$ Nota que la primera condición no se cumple, entonces tiene que pasar que $x=y$
  3. $\leq$ es transitiva. Considera tres números $x,y,z \in \mathbb{Z}$ Y nota que si $x \leq y \land y \leq z$ entonces $x \leq z$.

Es por estas propiedades que decimos que la relación $\leq$ es un orden parcial.

Definición. Sea $X$ un conjunto y $R$ una relación de $X$ consigo misma. Diremos que $R$ es un orden parcial sobre $X$ si $R$ es relfexica, antisimétrica y transitiva a la vez.

Otro ejemplo de un orden parcial es la relación de inclusión $\subset$ dentro de los subconjuntos de algún conjunto $X$. Pues recordemos que esta relación está dada por «estar contenido en». Ahora, considera $A,B,C \in \mathcal{P}(X)$, entonces:

  • $\subset$ es reflexiva. Nota que como $A=A$, entonces $A \subset A$.
  • $\subset$ es antisimétrica. Si $A \subset B \land B \subset A$, entonces:$$\forall x ((x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)).$$ La cual es una equivalencia de $$\forall x (x \in A \Leftrightarrow x \in B) .$$ Es decir $A=B$.
  • $\subset$ es transitiva. Si $A \subset B \land B \subset C$ entonces:
    $$\begin{align*}
    \forall x((x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in C))
    \end{align*}$$ Y recordemos que podemos aplicar la regla de inferencia usada en demostraciones directas para demostrar que esto significa que
    $$\begin{align*}
    \forall x((x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in C)) &\Rightarrow \forall x(x \in A \Rightarrow x \in C)\\
    &\Leftrightarrow A \subset C.
    \end{align*}$$

Órdenes totales

Ahora, vamos a ver el siguiente concepto que es el de órdenes totales, que en pocas palabras son órdenes parciales con la propiedad de la tricotomía. Veamos de qué trata.

Cuando estemos hablando de un órden total, necesitamos que además de ser un orden parcial, tengamos siempre alguna forma de comparar los elementos de dicho conjunto. Por ejemplo, cuando tengamos dos números enteros $x,y$ siempre podemos decir que $x < y \lor x=y \lor x>y$, es decir, se cumple la propiedad de la tricotomía.

Definición. Sea $X$ un conjunto y $R$ una relación de $X$ en sí misma. Diremos que $R$ tiene la propiedad de la tricotomía, si para cada par de elementos $x,y \in X$ pasa que $x=y$ ó $(x,y) \in R$ ó $(y,x) \in R$.

Esta última definición hace que se nos permita poder «comparar» los elementos de $X$, siempre podemos decir cuál es el orden entre cada par de elementos. Piénsalo como un: si una relación tiene la tricotomía, entonces podemos siempre saber cómo se relacionan todos los elementos entre sí. Un orden total será un orden parcial que tiene esta propiedad.

Definición. Sea $X$ un conjunto y $R$ una relación de $X$ en sí misma. Diremos que $R$ es un orden total si es parcial y tiene la propiedad de la tricotomía.

Algunos ejemplos de órdenes totales son:

  • El orden de $\leq$ en $\mathbb{Z}^2$.
  • Las letras del abecedario con el orden usual. $A<B<C<\dots<Z$
  • Las palabras del diccionario forman un orden de acuerdo a cómo son las letras en las palabras, por ejemplo, si buscamos la palabra «oso», esta vendrá antes que la palabra «ratón», pues antes viene la letra «o» que la «r». A su vez, «casa» viene antes que la palabra «caspa», pues todas las letras «cas» son iguales, pero «a» viene antes que la «p». A este orden se le conoce como el orden lexicográfico. Si quieres saber más, revisa la tarea moral.

Otras definiciones sobre el orden

Dentro de un conjunto $X$ total o parcialmente ordenado mediante una relación $\leq$, podemos tener elementos especiales que tendrán nombres particulares. Como por ejemplo:

Definición. Sea $X$ un conjunto con un orden parcial $\leq$ y $x \in X$. Diremos que:

  • $x$ es un elemento maximal si para cualquier $y \in X$ distinta que $x$ no se cumple que $y \leq x$.
  • $x$ es un elemento minimal si para cualquier $y \in X$ distinta que $x$ no se cumple que $x \leq y$.
  • $x$ es un elemento máximo si para cualquier $y \in X$ se cumple que $y \leq x$.
  • $x$ es un elemento mínimo si para cualquier $y \in X$ se cumple que $x \leq y$.

Lo que nos quieren decir estas definiciones es que un elemento es maximal (o minimal) si no existe algún elemento por «arriba (o debajo)» de $x$. Es decir que no podemos encontrar un elemento que esté «después (o antes)» con respecto al orden $\leq$. Lo que nos dice un elemento máximo (o mínimo) es que todo elemento va a ser «menor o igual (mayor o igual)» a $x$. Si lo piensas, pueden sonar a definiciones muy parecidas, y de hecho siempre que un elemento sea máximo (o mínimo), será maximal (o minimal), pero el inverso puede no ser cierto.

La diferencia entre maximal y máximo está en que un máximo $x$ nos indica que siempre podemos comparar cualquiera otro de los elementos $y$ con el máximo y siempre resultará que $y \leq x$. Mientras que un maximal solo nos dice que no existirá un elemento $y$ tal que $x \leq y$, es decir no encontraremos una comparación en el que $x$ resulte ser menor. Lo mismo pasará con el minimal y mínimo.

Por ejemplo, piensa en el conjunto $X=\{1,2,3\}$ y el orden parcial $\leq = \{(1,1),(2,2),(3,3),(1,3),(2,3)\}$. Nota que aquí $3$ es un máximo, pues pasa que $1 \leq 3, 2 \leq 3, 3 \leq 3 $, pero $1$ es minimal, pues $1 \leq 3$ y como $2$ no se compara con $1$, entonces se cumple que no existe algún elemento por «debajo» de él. De la misma manera, $2$ es minimal.

Ahora, considera otro orden parcial sobre el mismo conjunto, dado por $\leq* = \{(1,1),(2,2),(3,3),(1,3),(1,2)\}$. Y nota que ahora sucede que bajo este orden, $1$ es mínimo y $2,3$ son elementos maximales.

Más adelante…

En esta entrada nos hemos enfocado en dos tipos de orden, que son los parciales y totales, y estos no solo serán útiles en este curso, pues será un concepto recurrente en temas de cálculo, geometría y demás materias. Por ahora, introdujimos este concepto y pasaremos a otro que igual se usarán mucho, que son las relaciones de equivalencia, que nos permite «partir conjuntos» de acuerdo a elementos que se relacionen entre sí.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Define la relación de orden lexicográfico $\leq_{lex}$ en $\mathbb{Z}^2 \times \mathbb{Z}^2$ en donde $(x,y) \leq_{lex} (w,z)$ si $x \leq y \lor (x=y \land (b \leq d))$. Muestra que $\leq_{lex}$ es un orden total.
  2. Demuestra que si un conjunto con un orden parcial tiene máximo (o mínimo), este es único.
  3. Considera al conjunto $X=\{1,2,3,6,18\}$ y a la relación $|$ «dividir a » dada por:
    $$\begin{align*}
    |=\{&(1,1),(1,2),(1,3),(1,6),(1,18),\\
    &(2,2),(2,6),(2,18),(3,3),(3,6),\\
    &(3,18),(6,6),(6,18),(18,18)\}.
    \end{align*}$$ Y resuelve lo siguiente:
    • Demuestra que $X$ es un orden parcial pero no total.
    • Encuentra el elemento mínimo.
    • Encuentra el elemento máximo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»