Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Cálculo Diferencial e Integral II: Criterio de la razón y el criterio de la raíz

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos dos criterios de convergencia: el criterio de comparación y el criterio de comparación del límite, en esta sección veremos el criterio de la prueba del cociente o de la razón, y el criterio de la raíz, comencemos enunciando el teorema del criterio de la razón.

Criterio de la razón

Teorema. (Prueba de la razón o del cociente)

Sea $\left \{a_{n} \right \}$ una sucesión positiva y supón que:

$$\lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}=r$$

Entonces $\sum_{n=1}^{\infty}a_{n}$ converge si $r<1$, diverge si $r>1$ y si $r=1$ no es concluyente.

Demostración:

Observemos que:

$$a_{n}>0 \space \space \forall \space n \space \epsilon \space \mathbb{N} \Rightarrow \frac{a_{n+1}}{a_{n}}>0 \space \forall \space n \space \epsilon \space \mathbb{N} \Rightarrow \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}=r \geq 0$$

Para demostrar este teorema, dividamos por los casos siguientes:

  • Caso $1)$: Si $0\leq r < 1$, entonces:

$$\lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}=r$$

Podemos escoger un número $S$ tal que $r < S < 1 \space \Rightarrow \exists \space k \space \epsilon \space \mathbb{N}$

Tal que:

$$\forall \space n \space \geq k \space \Rightarrow \bigg{|}\frac{a_{n+1}}{a_{n}} \bigg{|}<S \space \Rightarrow a_{n+1} <S a_{n}$$

En particular:

$$a_{k+1}<S a_{k} \space \space y \space \space a_{k+2}<S a_{k+1}<S(S a_{k})=S^{2} a_{k}$$

Por tanto:

$$a_{k+2}<S^{2} a_{k} \Rightarrow a_{k+3}<S a_{k+2 }<S^{3} a_{k}$$

Continuando de esta manera hasta $n$, se tiene que:

$$a_{n}=a_{k+m}<S^{m} a_{k}$$

Por otro lado, como $S<1$, entonces la siguiente serie:

$$\sum_{m=1}^{\infty}S^{m} \space \space con \space m \geq 1$$

Es una serie geométrica, por tanto:

$\Rightarrow \sum_{m=1}^{\infty}S^{m}$ converge $\Rightarrow \sum_{m=1}^{\infty}S^{m}a_{k}$ converge

$\Rightarrow \sum_{m=1}^{\infty}a_{k+m}$ converge.

Por el criterio de comparación, así $\sum_{n=k+1}^{\infty}a_{n}$ converge,

$$\therefore \sum_{n}^{\infty}a_{n} \space converge$$

  • Caso $2)$: Si $r>1$

Vemos que:

$$\lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}=r$$

Podemos escoger un número $S$ tal que $r >S > 1 \space \Rightarrow \exists \space k \space \epsilon \space \mathbb{N}$

Tal que:

$$\forall n\geq k \space \space \bigg{|} \frac{a_{n+1}}{a_{n}} \bigg{|}>S \Rightarrow \forall \space n \geq k \space \Rightarrow a_{n+1}>S a_{n}$$

Se tiene que para:

$$a_{k+1}>S a_{k}$$

$$a_{k+2}>S a_{k+1}>S(S a_{k})=S^{2} a_{k}$$

$$a_{k+3}>S a_{k+2}>S(S^{2} a_{k})=S^{3} a_{k}$$

Continuando de esta manera, $\forall \space n\geq k$, entonces:

$$a_{k+n}>S^{n} a_{k}$$

$\sum_{n=1}^{\infty}S^{n}$ es una serie geométrica con $|S|>1$

$\Rightarrow \sum_{n=1}^{\infty}S^{n}$ diverge $\Rightarrow \sum_{n=1}^{\infty}S^{n}a_{k}$ diverge $\Rightarrow \sum_{n=1}^{\infty}a_{k+n}$ diverge

$\Rightarrow \sum_{n=k+1}^{\infty}a_{n}$ diverge

$$\therefore \sum_{n=1}^{\infty}a_{n} \space diverge$$

$\square$

  • Caso $3)$: Para este caso solo hay que dar un ejemplo, veamos:

Tomemos siguientes las series:

$$\sum_{i=1}^{\infty}\frac{1}{n^{2}} \space \space y \space \space \sum_{i=1}^{\infty}1$$

Es fácil ver que la segunda serie diverge cuando $n \to \infty$, para la primera serie, tenemos que:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_{n}}=\lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}}=\lim_{n \to \infty} \frac{n^2}{(n+1)^2}=\lim_{x \to \infty} \frac{1}{(1+\frac{1}{n^2})^2}=1$$

Lo cual sabemos que esta serie converge.

Por lo que para $r=1$ no hay conclusión de la convergencia de la serie.

$\square$

Veamos un ejemplo.

Ejemplo

Diga si la siguiente serie converge o diverge.

$$\sum_{n=1}^{\infty}\frac{1}{n!}$$

Usamos el criterio de la razón, tomamos el límite de la sucesión como:

$$\lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}=\lim_{n \to \infty}\frac{\frac{1}{(n+1)!}}{\frac{1}{n!}}=\lim_{n \to \infty}\frac{n!}{(n+1)!}=\lim_{n \to \infty}\frac{n!}{(n+1)n!}=\lim_{n \to \infty}\frac{1}{n+1}=0<1$$

Por tanto, por el criterio de la razón:

$$\therefore \sum_{n=1}^{\infty}\frac{1}{n!} \space converge$$

Ahora veamos el criterio de la raíz.

Criterio de la raíz

Teorema. (Criterio de la raíz)

Sea $\left \{ a_{n}\right \}$ una sucesión con $a_{n}\geq 0 \space \space \forall \space n \space \epsilon \space \mathbb{N}$ tal que:

$$\lim_{n \to \infty}\sqrt[n]{a_{n}}=L$$

Entonces $\sum_{n=1}^{\infty}a_{n}$ converge si $L<1$ y diverge si $L>1$.

Demostración:

Divimos esta demostración por casos:

  • $1): L<1$

Supongamos que $L<1$, observamos que $L \geq0$, tomamos $r$ tal que $L<r<1$, por definición del limite:

$$\exists \space k \space \epsilon \space \mathbb{N}$$

Tal que:

$$\forall \space n\geq k \Rightarrow \space \sqrt[n]{a_{n}}<r$$

$$\Rightarrow a_{n}<r^{n}$$

Pero:

$\sum_{n=k}^{\infty }r^{n}$ converge ya que $r<1$ y es una serie geométrica, por el criterio de comparación.

$$\Rightarrow \sum_{n=k}^{\infty }a_{n} \space converge$$

$$\therefore \sum_{n=1}^{\infty }a_{n} \space converge$$

  • $2): L>1$

Ahora, supongamos que $L>1$, toma $r$ tal que $1<r<L$, por definición del límite:

$$\exists \space k \space \epsilon \space \mathbb{N}$$

Tal que:

$$\forall \space n\geq k \Rightarrow \space \sqrt[n]{a_{n}}>r$$

$$\Rightarrow a_{n}>r^{n}$$

Pero $1<r$, por consiguiente por el criterio de las series geométricas:

$$\Rightarrow \sum_{n=k}^{\infty }r^{n} \space diverge \space \Rightarrow \sum_{n=r}^{\infty }a_{n} \space diverge$$

Por el criterio de comparación:

$$\therefore \sum_{n=1}^{\infty }a_{n} \space diverge$$

$\square$

Veamos un ejemplo.

Ejemplo

Diga si la siguiente serie converge o diverge.

  • $$\sum_{n=1}^{\infty }\frac{(1+\frac{1}{n})^{2n}}{e^{n}}$$

Apliquemos el criterio de la raíz, tomamos el límite de la sucesión como:

$$\lim_{n \to \infty}\sqrt[n]{a_{n}}=\lim_{n \to \infty }\sqrt[n]{\frac{(1+\frac{1}{n})^{2n}}{e^{n}}}=\lim_{n \to \infty }\frac{(1+\frac{1}{n})^{2n}}{e}=\frac{1}{e}<1$$

Por tanto, por el criterio de la raíz:

$$\therefore \sum_{n=1}^{\infty }\frac{(1+\frac{1}{n})^{2n}}{e^{n}} \space converge$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Diga si la siguientes series convergen o divergen.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\sum_{n=1}^{\infty}\frac{9^{n}}{2^{n+1}n}$$
  2. $$\sum_{n=1}^{\infty }(\frac{1}{n^{2}}-\frac{1}{n^{10}})^{n}$$
  3. $$\sum_{n=1}^{\infty}\frac{(2n)!}{n!n!}$$
  4. $$\sum_{n=1}^{\infty}\left ( \frac{1}{1+n} \right )^{n}$$
  5. $$\sum_{n=1}^{\infty}\left ( \frac{2n+3}{3n+2} \right )^{n}$$

Más adelante…

En esta sección vimos otros dos criterios más de convergencia que son el criterio de la razón en el cual el valor del límite de la división entre la sucesión $a_{n+1}$ y $a_{n}$ nos dice si la serie es convergente o divergente, y el criterio de la raíz que dependiente del valor se toma del límite de la raíz n-esima de la sucesión nos dice si la sucesión es convergente o divergente. En la siguiente sección veremos otro criterio de convergencia, que es el criterio de la integral.

Entradas relacionadas

Cálculo Diferencial e Integral II: Criterio de comparación y comparación del limite

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos dos criterios de convergencia para las series, el criterio de la divergencia y el criterio de acotación, en esta sección veremos otros dos criterios de convergencia para las series que son los criterios de comparación y el criterio del límite.

Criterio de comparación

Teorema. (Criterio de comparación)

Sea $\left \{ a_{n} \right \}$ y $\left \{ b_{n} \right \}$ tal que $0 \leq a_{n} \leq b_{n}$ $\forall \space n \space \epsilon \space \mathbb{N}$ y supón que $\sum_{n=1}^{\infty }b_{n}$ converge, entonces $\sum_{n=1}^{\infty }a_{n}$ converge.

Mientras que si $\sum_{n=1}^{\infty }a_{n}$ diverge, entonces $\sum_{n=1}^{\infty }b_{n}$ diverge.

Demostración:

Sea $0\leq a_{n}\leq b_{n}$ y supón que $\sum_{n=1}^{\infty }b_{n}$ converge.

Sea $\left \{ S_{n} \right \}$ la sucesión de sumas parciales de $\left \{ b_{n} \right \}$, y sea $\left \{ t_{n} \right \}$ las sumas parciales de $\left \{ a_{n} \right \}$.

Por demostrar que $\left \{ t_{n} \right \}$ esta acotada.

Observemos que $\sum_{n=1}^{\infty }b_{n}$ converge, entonces $\left \{ S_{n} \right \}$ esta acotada por el criterio de acotación, por lo que, $\exists \space M \space \epsilon \space \mathbb{R}$ tal que $|S_{n}| \space \leq M \space \forall \space n \space \epsilon \space \mathbb{N}$.

Pero $a_{i}\leq b_{i} \space \forall \space i \space\epsilon \space \mathbb{N}$.

$$\Rightarrow a_{1}+a_{2}+….+a_{n}\leq b_{1}+b_{2}+….+b_{m}$$

$$\Rightarrow t_{n} \leq S_{n}\leq M$$

$$\Rightarrow t_{n}\leq M \space \space \forall \space n \space \epsilon \space \mathbb{N} $$

Por lo cual $t_{n}$ está acotado, nuevamente, por el criterio de acotación como $t_{n}$ está acotado, entonces $a_{n}$ también lo está.

$\therefore \left \{ t_{n} \right \}$ esta acotado $\Rightarrow \sum_{n=1}^{\infty }a_{n}$ converge.

Ahora la demostración de sí $\sum_{n=1}^{\infty }a_{n}$ diverge entonces $\sum_{n=1}^{\infty }b_{n}$ diverge, lo podemos demostrar por contradicción:

Por hipótesis $\sum_{n=1}^{\infty }a_{n}$ diverge, pero supongamos que $\sum_{n=1}^{\infty }b_{n}$ converge, entonces por lo que acabamos de ver, $\sum_{n=1}^{\infty }a_{n}$ converge, lo cual con lleva a una contradicción, ya que $\sum_{n=1}^{\infty }a_{n}$ diverge.

$\therefore \sum_{n=1}^{\infty }b_{n}$ diverge.

$\square$

Los que nos dice este teorema es que podemos acotar una serie $ \left \{ a_{n} \right \} $ por otra serie $\left \{ b_{n} \right \}$ y conocer su convergencia o divergencia, para posteriormente, saber la convergencia o divergencia de la serie $ \left \{ a_{n} \right \} $.

Veamos un ejemplo.

Ejemplo

Diga si la siguiente serie converge o diverge.

  • $$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}$$

Sabemos que para $n >2: \space \space \sqrt[n]{n}<\sqrt{n} \space n \space \epsilon \space \mathbb{N}$, así que $\frac{1}{\sqrt{n}}< \frac{1}{\sqrt[n]{n}}$.

Pero sabemos que $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverge. Por el criterio de comparación, entonces se tiene que $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}$ diverge.

Ahora veamos el criterio de comparación del límite.

Criterio de comparación del límite

Teorema. (Comparación del límite)

Sea $a_{n}>0$ y $b_{n}>0$ tal que:

$$\lim_{n\to \infty }\frac{a_{n}}{b_{n}}=C>0.$$

$\Rightarrow \sum_{n=1}^{\infty}a_{n}$ converge $\Leftrightarrow \sum_{n=1}^{\infty}b_{n}$ converge.

En otras palabras:

$\Rightarrow \sum_{n=1}^{\infty}a_{n}$ diverge $\Leftrightarrow \sum_{n=1}^{\infty}b_{n}$ diverge.

Demostración:

$\Leftarrow \lrcorner$

Supón que $\sum_{n=1}^{\infty}b_{n}$ converge, tratemos de acotar $a_{n}$ por algo convergente.

Tomemos $\varepsilon = C$.

Como $\lim_{n \to \infty}\frac{a_{n}}{b_{n}}=C$, por definición del limite se tiene que:

$\exists \space k \space\epsilon \space \mathbb{N}$ tal que si $n\geq k$ entonces:

$$\bigg{|}\frac{a_{n}}{b_{n}}-C \bigg{|}<\epsilon =C$$

$$\Rightarrow -C<\frac{a_{n}}{b_{n}}-C<C$$

$$\Rightarrow 0<\frac{a_{n}}{b_{n}} < 2C$$

$$\Rightarrow a_{n}<2 \space C \space b_{n}$$

Pero por hipótesis tenemos que:

$\sum_{n=1}^{\infty}b_{n}$ converge $\Rightarrow \sum_{n=1}^{\infty}2b_{n}$ converge $\Rightarrow \sum_{n=1}^{\infty}2Cb_{n}$ converge.

ya que, por la propiedades de las series:

$$ \sum_{n=1}^{\infty}2Cb_{n}=2C\sum_{n=1}^{\infty}b_{n} \space \space y \space \space \sum_{n=1}^{\infty}b_{n} \space \space converge $$

$$\therefore \space Por \space el \space criterio \space de \space comparación \space \space \sum_{n=1}^{\infty}a_{n} \space \space converge.$$

Ahora demostremos el de ida:

$\Rightarrow \lrcorner$

Supón que $\sum_{n=1}^{\infty}a_{n}$ converge, consideremos $\lim_{n \to \infty} \frac{b_{n}}{a_{n}}=\frac{1}{C}$, como:

$$C>0 \Rightarrow \frac{1}{C}>0$$

Tomemos $\epsilon =\frac{1}{C}$. Por definición del límite $\exists \space N \space \epsilon \space \mathbb{N}$ tal que:

$$\forall \space n \geq N \Rightarrow \bigg{|}\frac{b_{n}}{a_{n}}-\frac{1}{C}\bigg{|}< \epsilon =\frac{1}{C}$$

$$\Rightarrow -\frac{1}{C}<\frac{b_{n}}{a_{n}}-\frac{1}{C}<\frac{1}{C}$$

$$\Rightarrow 0<\frac{b_{n}}{a_{n}}< \frac{2}{C}$$

$\Rightarrow b_{n}<\frac{2}{C}a_{n}$ por lo que acotamos $b_{n}$, así:

$\sum_{n=1}^{\infty}a_{n}$ converge $\Rightarrow \sum_{n=1}^{\infty}2a_{n}$ converge $\Rightarrow \sum_{n=1}^{\infty} \frac{2}{C}a_{n}$ converge.

$$\therefore \space Por \space el \space criterio \space de \space comparación \space \space \sum_{n=1}^{\infty}b_{n} \space \space converge.$$

La demostración para el caso cuando divergen es muy similar a la demostración anterior, solo cambiamos la desigualdad en la definición del límite y aplicamos nuevamente el criterio de comparación.

$\square$

Ejemplo

Diga si la siguiente serie converge o diverge.

  • $$\sum_{n=1}^{\infty} \frac{1}{a\sqrt{n}+b}$$

Donde $a$ y $b$ son constantes y $ a\neq 0 $.

Sea $\left \{ b_{n} \right \}=\frac{1}{a\sqrt{n}+b}$, tomemos a la sucesión $\left \{ a_{n} \right \}=\frac{1}{\sqrt{n}}$ entonces tomando el límite tenemos que:

$$ \lim_{n \to \infty}\frac{a_{n}}{b_{n}} =\lim_{n \to \infty}\frac{\frac{1}{\sqrt{n}}}{\frac{1}{a\sqrt{n}+b}}=\lim_{n \to \infty}\frac{a\sqrt{n}+b}{\sqrt{n}} \Rightarrow \lim_{n \to \infty}(a+\frac{b}{\sqrt{n}})= a$$

Con $a\neq 0$

Pero como $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ diverge, por el criterio de comparación del límite:

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{a\sqrt{n}+b} \space diverge $$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Diga si la siguientes series convergen o divergen.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\sum_{n=1}^{\infty}\frac{ln(n)}{n}$$
  2. $$\sum_{n=1}^{\infty}\frac{1}{2^{n}-1}$$
  3. $$\sum_{n=1}^{\infty}\frac{5}{5n-1}$$
  4. $$\sum_{n=1}^{\infty}\frac{2n^{2}+3n}{\sqrt{5+n^{5}}}$$
  5. $$\sum_{n=1}^{\infty}\frac{1}{2^{n}-1}$$

Más adelante…

En esta sección vimos dos criterios más de convergencia, el criterio de comparación, el cual se acota una sucesión con otra sucesión para estudiar si diverge o no converge la sucesión que está acotando, lo cual nos dice la convergencia o divergencia de la sucesión que está acotada; y el criterio de comparación del límite que nos dice que si la división entre dos sucesiones positivas, da como resultado una constante entonces las sucesiones convergen o divergen. En la siguiente sección veremos el criterio de la raíz y el criterio de la razón.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Geometría de soluciones a sistemas de dos ecuaciones de primer orden. Plano fase y campo vectorial asociado

Por Eduardo Vera Rosales

Introducción

Bienvenidos a la última unidad del curso de Ecuaciones Diferenciales Ordinarias. En la unidad anterior estudiamos sistemas de ecuaciones diferenciales de primer orden de la forma $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}.$$ En particular, estudiamos a profundidad sistemas de ecuaciones lineales de primer orden con coeficientes constantes, los cuales se pueden escribir de forma abreviada como $$\dot{\textbf{X}}=\textbf{A}\textbf{X}$$ donde $\textbf{A}$ es una matriz cuadrada cuyas entradas son los coeficientes del sistema. Mediante el método de valores y vectores propios logramos hallar la solución general a tales sistemas dependiendo de la forma de la matriz $\textbf{A}$ y sus valores propios.

En esta unidad continuaremos estudiando sistemas de ecuaciones y sus soluciones pero desde un punto de vista cualitativo. En particular, nos enfocaremos en sistemas de dos ecuaciones de primer orden y en su plano fase, el cual es un dibujo que nos da la información suficiente para saber cómo se comportan las soluciones. Nos limitaremos inicialmente a estudiar ecuaciones lineales con coeficientes constantes, pero en próximas entradas analizaremos sistemas no lineales, los cuales no hemos resuelto de manera analítica (los métodos son complejos para abordar en un primer curso), pero podremos estudiarlos cualitativamente.

Comenzaremos en esta entrada definiendo el plano fase y el campo vectorial asociado al sistema, el cual nos ayudará a dibujar las curvas que representan a las soluciones del sistema, y veremos algunos ejemplos que nos ayudarán a entender tales conceptos.

¡Vamos a comenzar!

Plano fase de un sistema de dos ecuaciones de primer orden

Definimos el concepto de sistema de ecuaciones autónomo (cuyas ecuaciones no dependen explícitamente de la variable independiente $t$), asociamos a cada solución del sistema una curva en el plano $x(t) – y(t)$, y definimos el plano fase asociado al sistema.

Campo vectorial asociado al sistema

Definimos el campo vectorial asociado a un sistema de dos ecuaciones y estudiamos la relación que guarda con las curvas del plano fase del sistema.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Los campos vectoriales de las imágenes fueron realizados en el siguiente enlace.

  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\textbf{X}.$$ ¿Cuál es el campo vectorial asociado al sistema? Dibuja a mano algunos vectores del campo vectorial, y algunas curvas solución en el plano fase. ¿Puedes dibujarlas todas con la información obtenida?
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}\textbf{X}.$$ Dibuja algunas curvas solución en el plano fase. En la siguiente imagen puedes ver el campo vectorial asociado.
Campo vectorial asociado al problema
Campo vectorial asociado al sistema del problema. Elaboración propia
  • Resuelve el sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\textbf{X}+\begin{pmatrix} 0 \\ 1\end{pmatrix}.$$ Dibuja algunas curvas solución en el plano fase. En la siguiente imagen puedes ver el campo vectorial asociado.
Campo vectorial asociado al problema
Campo vectorial asociado al sistema del problema. Elaboración propia
  • En el primer video vimos que cada solución a un sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ determina una curva en el plano fase. Considera ahora una curva solución en el plano fase. ¿Determina una única solución al sistema? Es decir, ¿esta curva representa a una única solución al sistema?
  • Considera el sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}\textbf{X}.$$ Determina si el siguiente dibujo puede representar al campo vectorial asociado.
Campo vectorial. Elaboración propia

Más adelante

Una vez que hemos definido el plano fase de un sistema de dos ecuaciones $\dot{\textbf{X}}=\textbf{F}(x,y)$, vamos a comenzar a estudiar el comportamiento de las curvas solución. Para esto debemos estudiar los puntos de equilibrio, que serán aquellos puntos $(x,y)$ tales que $\textbf{F}(x,y)=(0,0)$. De dichos puntos va a depender el comportamiento del plano fase entero, por lo que estudiaremos su estabilidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Teoría de los Conjuntos I: Axioma del par y axioma de unión

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada abordaremos algunos axiomas de construcción: el axioma de unión y el axioma del par. Estos, junto al esquema de comprensión nos permitirán construir un montón de conjuntos nuevos. A partir de esta entrada, utilizaremos con mayor frecuencia el conjunto vacío, hasta ahora, el único conjunto que conocemos.

Axioma del par

El primer axioma que nos permitirá construir nuevos conjuntos es el axioma del par.

Axioma del par. Sean $a$ y $b$ conjuntos arbitrarios, existe $c$ un conjunto cuyos únicos elementos son $a$ y $b$.

El axioma del par nos permite construir pares no ordenados. Dados los conjuntos $a$ y $b$ resulta que $\set{a,b}=\set{b,a}$. En el caso de que $a=b$, tenemos que $c=\set{a,a}=\set{a}$, a este último conjunto le llamaremos conjunto unitario de $a$.

Ejemplo.

Consideremos al conjunto vacío. Por el axioma del par, tenemos que $\set{\emptyset}$ es conjunto. Luego, como $\set{\emptyset}$ es conjunto si volvemos a aplicar el axioma del par tendremos que $\set{\set{\emptyset}}$ es conjunto. Si aplicamos iteradamente el axioma del par tendremos que $\set{\dots \set{\emptyset}\dots}$ es conjunto.

$\square$

Si observas con cuidado hemos construido muchos conjuntos que constan de un solo elemento. Por lo que podemos preguntarnos si el axioma del par nos permite construir nuevos conjuintos o todos los que hemos obtenido son el mismo. La respuesta es que no. La proposición que sigue nos ayudará a probar que $\emptyset$ es distinto de $\set{\emptyset}$.

Proposición. $\emptyset\not= \set{\emptyset}$.

Demostración.

Recordemos que para probar que $A\not=B$, queremos probar que $A\not\subseteq B$ o $B\not\subseteq A$.

Para mostrar que $\set{\emptyset}\not\subseteq\emptyset$ tenemos que exhibir un conjunto $x\in\set{\emptyset}$ tal que $x\notin\emptyset$. Tenemos que $\set{\emptyset}$ es un conjunto que tiene como único elemento al conjunto $\emptyset$, es decir, $\emptyset\in\set{\emptyset}$. Luego, como $\emptyset\notin\emptyset$, se sigue que $\set{\emptyset}\not\subseteq\emptyset$.

$\square$

En la tarea moral será tu turno de probar que $\set{\emptyset}\not=\set{\set{\emptyset}}$, $\set{\set{\emptyset}}\not=\set{\set{\set{\emptyset}}}$,…

Es importante poder ir simplificando nuestra notación. Como ya tenemos dos conjuntos que son distintos, les pondremos un nombre especial.

Definición. Llamaremos $0$ a $\emptyset$ y $1$ a $\{\emptyset\}$.

Aquí estamos usando los símbolos $0$ y $1$, que seguramente conoces mejor como números que como conjuntos. En los ejercicios de esta entrada definiremos también quiénes son $2$, $3$ y $4$. Pero, ¡no te apresures! Todavía no podemos definir a todos todos los naturales como conjuntos. Esto lo formalizaremos hasta la tercera unidad.

Por ahora podemos preguntarnos de que manera podemos definir al $3$ y $4$ pues el axioma del par solo nos permite construir conjuntos de a lo más dos elementos, como se muestra en el siguiente ejemplo.

Ejemplo.

Consideremos $\emptyset$ y $\set{\emptyset}$ conjuntos. Por axioma del par tenemos que $\set{\emptyset, \set{\emptyset}}$ es conjunto.

Ahora, podemos considerar a los conjuntos $\set{\emptyset}$ y $\set{\emptyset, \set{\emptyset}}$, tenemos que $\set{\set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ es conjunto.

Luego, $\set{\set{\emptyset, \set{\emptyset}}, \set{\set{\emptyset}, \set{\emptyset, \set{\emptyset}}}}$ también lo es.

De manera que, podemos construir conjuntos más y más complejos con el axioma del par pero siempre tendrán a lo más dos conjuntos como elementos.

$\square$

Axioma de la unión

Axioma de la unión. Para cualquier conjunto $A$, existe un conjunto $U$ tal que $x\in U$ si y sólo si existe $y\in A$ tal que $x\in y$.

Ejemplo.

Consideremos los conjuntos $\emptyset$ y $\set{\emptyset}$, luego por axioma del par tenemos que $A=\set{\emptyset,\set{\emptyset}}$ es conjunto. Veamos quién es $U$ para el conjunto $A$. Resulta que en este caso, $U=\set{\emptyset}$.

En efecto: si $x\in U$ entonces $x\in y$ para algún $y\in A$. Luego, los únicos elementos de $A$ son $\emptyset$ y $\set{\emptyset}$. Así, $x\in\emptyset$ o $x\in\set{\emptyset}$.

Si $x\in\emptyset$ entonces $x\in\set{\emptyset}$ por vacuidad. La otra posibilidad es que $x\in\set{\emptyset}$. En ambos casos, $x\in\set{\emptyset}$ y, por tanto, $U\subseteq\set{\emptyset}$.

Luego, si $x\in\set{\emptyset}\in A$ se sigue por definición de $U$ que $x\in U$. Así, $\set{\emptyset}\subseteq U$. De esta manera podemos concluir que $U=\set{\emptyset}$.

$\square$

Si ponemos atención al ejemplo anterior, va a resultar que los elementos del conjunto $U$ son los elementos de los elementos de $A$. $A$ tiene como elementos a $\emptyset$ y $\set{\emptyset}$, el conjunto vacío no tiene elementos por lo que el único elemento de $U$ es el elemento de $\set{\emptyset}$ que es $\emptyset$.

El axioma de la unión nos va a permitir construir conjuntos con más de dos elementos. Veamos el siguiente ejemplo.

Ejemplo.

Consideremos a los conjuntos $\set{\emptyset, \set{\emptyset}}$ y $\set{\set{\set{\emptyset}}}$. Por axioma del par, $A= \set{\set{\emptyset, \set{\emptyset}}, \set{\set{\set{\emptyset}}}}$ es conjunto. Luego, $U$ para el conjunto $A$ es $U=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$. Veamos que se dan ambas contenciones.

$\subseteq$] Sea $x\in U$, entonces existe $y\in A$ tal que $x\in y$. En este caso, los únicos elementos de $A$ son $\set{\emptyset, \set{\emptyset}}$ y $\set{\set{\set{\emptyset}}}$, por lo que $x\in \set{\emptyset, \set{\emptyset}}$ o $x\in \set{\set{\set{\emptyset}}}$.

  • Si $x\in \set{\emptyset, \set{\emptyset}}$, entonces $x=\emptyset$ o $x=\set{\emptyset}$. En el caso de que $x=\emptyset$, se sigue que $x\in \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$ y en caso de que $x=\set{\emptyset}$ ocurre también que $x\in \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$.
  • Si $x\in \set{\set{\set{\emptyset}}}$, entonces $x=\set{\set{\emptyset}}$ y $x\in \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$.

Así, $U\subseteq \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$.

$\supseteq$] Sea $x\in \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$. Entonces $x=\emptyset$ o $x=\set{\emptyset}$ o $x=\set{\set{\emptyset}}$.

  • Si $x=\emptyset$, entonces $x\in \set{\emptyset, \set{\emptyset}}$ y, dado que $\set{\emptyset, \set{\emptyset}}\in A$, se sigue por definición de $U$ que $x\in U$.
  • Si $x=\set{\emptyset}$, entonces $x\in \set{\emptyset, \set{\emptyset}}$ y nuevamente $x\in U$ por definición, ya que $\set{\emptyset,\set{\emptyset}}\in A$.
  • Si $x=\set{\set{\emptyset}}$, entonces $x\in \set{\set{\set{\emptyset}}}$ y como $\set{\set{\set{\emptyset}}}\in A$, $x\in U$.

Por lo tanto, $\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}\subseteq U$.

$\square$

Definición. Sea $A$ un conjunto, el conjunto que nos otorga el axioma de la unión es único debido al axioma de extensión. Le llamaremos unión de $A$ y lo denotaremos como $\bigcup A$.

La definición de unión se puede particularizar a cuando queremos unir solamente dos conjuntos. Esto lo ponemos en una definición especial pues se usa muy frecuentemente.

Definición. Sean $A$ y $B$ conjuntos. Definimos al conjunto $A\cup B=\bigcup\set{A,B}$.

En la siguiente observación mostramos que $A\cup B$ se puede describir por medio de la colección $\set{x:x\in A\vee x\in B}$.

Observación. $x\in A\cup B$ si y sólo si $x\in A$ o $x\in B$.

Demostración.

Sea $x\in A\cup B$. Entonces, $x\in z$ para algún $z\in\set{A,B}$. Si $z=A$, entonces $x\in A$ y, si $z=B$, entonces, $x\in B$. Si ahora suponemos que $x\in A$ o $x\in B$, $x\in z$ para algún $z\in\set{A,B}$, por lo que $x\in A\cup B$.

$\square$

Ejemplo.

Consideremos ahora a los conjuntos $A= \set{\set{\emptyset}, \set{\set{\emptyset}}}$ y $B= \set{\set{\set{\emptyset}}}$ construidos con el axioma de par. Tenemos que $A\cup B= \bigcup \set{\set{\set{\emptyset}, \set{\set{\emptyset}}}, \set{\set{\set{\emptyset}}}}= \set{\set{\emptyset}, \set{\set{\emptyset}}}$.

$\square$

A continuación vamos a demostrar que los elementos de un conjunto $S$ se quedan contenidos en la unión de $S$.

Proposición. Sea $A$ un conjunto tal que $A\in S$, entonces $A\subseteq \bigcup S$.

Demostración.
Supongamos que $A\in S$ y sea $x\in A$, tenemos que $x\in \bigcup S$. En efecto, para $x\in A$ arbitrario existe $y\in S$ tal que $x\in y$, a saber $y=A$. Por lo tanto, $A\subseteq S$.

$\square$

Ejemplo.

Consideremos al conjunto $S=\set{\emptyset, \set{\emptyset, \set{\emptyset}}}$. Resulta que $\bigcup S=\set{\emptyset, \set{\emptyset}}$.

Los elementos de $S$ son $\emptyset$ y $\set{\emptyset, \set{\emptyset}}$ en este ejemplo se cumple que $\emptyset\subseteq \bigcup S$ y $\set{\emptyset, \set{\emptyset}}\subseteq\bigcup S$.

$\square$

Tarea moral

  • Demuestra que $\set{\emptyset}\not=\set{\set{\emptyset}}$, $\set{\set{\emptyset}}\not=\set{\set{\set{\emptyset}}}$,…
  • Sean $A$ y $B$ conjuntos, prueba que $A=B$ si y sólo si $\set{A}=\set{B}$.
  • Prueba que $\set{\set{\emptyset, \set{\emptyset}}, \set{\set{\emptyset}}}$ es conjunto.
  • Calcula $\bigcup\set{\set{\emptyset, \set{\emptyset}}, \set{\set{\emptyset}}}$.
  • Definimos $2=1\cup \{1\}$, $3=2\cup \{2\}$ y $4=3\cup \{3\}$.
    • Justifica mediante los axiomas que $2,3,4$ en efecto son conjuntos.
    • Verifica que $4=\{0,1,2,3\}$.
    • Muestra que $0,1,2,3,4$ son todos ellos conjuntos diferentes entre sí.

Más adelante…

En la siguiente entrada continuaremos con el axioma del conjunto potencia, el cual nos permitira hablar acerca de los subconjuntos de un conjunto. Con este axioma y los que hemos visto en las entradas anteriores tendremos las herramientas suficientes para abordar el álgebra de conjuntos y probar algunas contenciones importantes entre conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Paradoja de Russell

Por Gabriela Hernández Aguilar

Introducción

En esta entrada tendremos un acercamiento a una de las grandes controversias que tuvó la teoría de los conjuntos: la paradoja de Russell, también llamada paradoja del barbero. Es importante que prestes especial atención al esquema de comprensión que vimos en la entrada anterior, pues a partir de la paradoja de Rusell y el esquema de comprensión estudiaremos al contradictorio «conjunto de todos los conjuntos».

La paradoja del barbero

«En un lejano poblado de un antiguo emirato había un barbero llamado As-Samet diestro en afeitar cabezas y barbas, maestro en escamondar pies y en poner sanguijuelas. Un día el emir se dio cuenta de la falta de barberos en el emirato, y ordenó que los barberos solo afeitaran a aquellas personas que no pudieran hacerlo por sí mismas. Cierto día el emir llamó a As-Samet para que lo afeitara y él le contó sus angustias:

-En mi pueblo soy el único barbero. No puedo afeitar al barbero de mi pueblo, ¡que soy yo!, ya que si lo hago, entonces puedo afeitarme por mí mismo, por lo tanto ¡no debería afeitarme!. Pero, si por el contrario no me afeito, entonces algún barbero debería afeitarme, ¡pero yo soy el único barbero de allí!

El emir pensó que sus pensamientos eran tan profundos, que lo premió con la mano de la más virtuosa de sus hijas. Así, el barbero As-Samet vivió para siempre feliz y barbón.»

López Mateos, Manuel (1978). Los Conjuntos. México D.F.: Publicaciones del Departamento de Matemáticas, Facultad de Ciencias, UNAM.

Si analizamos la historia anterior, As-Samet estaba metido en verdaderos problemas debido al mandato del emir. Dado que As-Samet era barbero, podía afeitarse a sí mismo, entonces el barbero no debía afeitarlo. Sin embargo, decir que él mismo se puede afeitar es igual a decir que el barbero lo afeitará y eso desobedece el mandato, por lo tanto no debe afeitarse.

Ahora, como no se puede afeitar a sí mismo, entonces el barbero debe afeitarlo, es decir, él debe afeitarse, y eso también desobedece el mandato. Por lo tanto, As-Samet debe afeitarse si y sólo si As-Samet no debe afeitarse, lo cual es un absurdo. ¡Qué gran lío!

Formalización de la paradoja del barbero

Vimos en la entrada anterior que el esquema de comprensión nos permite construir conjuntos a partir de elementos en un conjunto con una propiedad. A continuación definiremos a una colección y veremos que hay colecciones que no son conjuntos.

Definición: Dada $P(x)$ una propiedad, definimos a la colección determinada por $P$ como todos los conjuntos que satisfacen a la propiedad $P$. A dicha colección la denotaremos mediante $\set{x:P(x)}$.

Ahora que hemos definido a una colección, vamos a ver un ejemplo de que no toda colección será un conjunto. Para ello, presentaremos esta paradoja dando una propiedad «$P(x): x\notin x$» que se interpreta como los conjuntos $x$ que no se pertenecen a sí mismos. Definimos $B$ como la colección $B=\set{x:P(x)}$ , tenemos lo siguientes casos:

  • Si $B\in B$, entonces $P(B)$ se cumple, es decir, $B\notin B$.
  • Si $B\notin B$, entonces $P(B)$ no se satisface, es decir, no es cierto que $B\notin B$, por lo que $B\in B$.

Ahora, si juntamos los casos anteriores tendremos que $B\in B$ si y sólo si $B\notin B$, lo cual nos lleva forzosamente a una contradicción. Por lo tanto, es imposible que $B$ sea un conjunto, sin embargo $B$ si es una colección.

La colección de todos los conjuntos

La idea anterior es problemática, pero informal: no hemos dicho por qué sí nos lleva a problemas dentro de nuestro sistema axiomático. El problema se originaría de suponer que hay un conjunto de todos los conjuntos.

Proposición. El conjunto de todos los conjuntos no existe.

Demostración. (Por reducción al absurdo).

Supongamos que el conjunto de todos los conjuntos si existe. Sea $V$ dicho conjunto y consideremos «$P(x): x\notin x$», tenemos que $A=\set{x\in V: x\notin x}$ es un conjunto por el esquema de comprensión. De modo que $A\in V$ pues $V$ tiene a todos los conjuntos, además $P(A)$ puede o no ser verdadero, evaluemos los dos casos posibles.

  • Si $P(A)$ es verdadero, entonces $A\notin A$ y por lo tanto, $A\in A$.
  • Si $P(A)$ es falso, entonces $A\in A$ y por lo tanto, $A\notin A$.

Por lo tanto, $A\in A$ si y sólo si $A\notin A$ lo cuál es una contradicción. Dado que esta vino de suponer que $V$ es un conjunto, concluimos que el conjunto de todos los conjuntos no existe.

$\square$

Denotaremos a $V$ como la colección de todos los conjuntos.

La conclusión que obtenemos es que para dar un conjunto requerimos más que una propiedad, necesitamos también que los elementos que satisfagan dicha propiedad sean elementos de algo que previamente ya sabemos es un conjunto. Este problema lo soluciona el esquema de comprensión.

Tarea moral

Con los temas que hemos visto hasta este momento demuestra o explica los siguientes ejercicios:

  • ¿Cómo podemos averiguar si dos conjuntos son iguales?
  • Explica con tus palabras porqué $\set{x:x\notin x}$ no es un conjunto.
  • Escribe colecciones que consideres que son conjuntos. Más adelante tendrás el conocimiento necesario para determinar si dichas colecciones son o no conjuntos.

Más adelante…

En la siguiente entrada abordaremos axiomas de construcción: el axioma del par y el axioma de unión. Estos, junto con el esquema de comprensión nos proporcionarán las herramientas necesarias para construir nuevos conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»