Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Convergencia

Por Lizbeth Fernández Villegas

$ \textit{ MATERIAL EN REVISIÓN}$

Introducción

Ante el modelado de situaciones, resulta útil identificar qué tan lejos está un objeto de convertirse en otro. Si se identifica una secuencia o patrón entre una situación y la siguiente, posiblemente se pueda comprobar que, tras varios cambios, nos aproximaremos a algún resultado específico. El Análisis Matemático ofrece herramientas que formalizan este estudio. En la sección que a continuación presentamos trabajaremos más con la noción de cercanía a través de distancias que van tendiendo a cero. Esta vez lo haremos con una sucesión que toma elementos del espacio métrico. Se verá bajo qué condiciones estos puntos se acercan cada vez más a cierto punto en el espacio métrico. Comencemos con la siguiente:

Definición. Sucesión. Sea $(X,d)$ un espacio métrico. Decimos que una función $x: \mathbb{N} \to X$ es una sucesión en $X$.

Podemos pensar entonces que una sucesión elige, para cada número natural $n$, un elemento $x_n$ del conjunto $X$. Vamos a denotar una sucesión como $(x_n)_{n \in \mathbb{N}}.$

Representación de una sucesión en $(X,d)$

¿Bajo qué condiciones podemos decir que la sucesión se aproxima cada vez más a cierto punto $x$ en $(X,d)$? Para que esto ocurra se espera que, siempre que se fije una distancia $\varepsilon >0$ como referencia, se pueda asegurar que los últimos elementos de la sucesión, tengan una distancia al punto $x$ menor que $\varepsilon$, es decir, que exista un número natural $N \,$ de modo que todos los puntos asignados por la sucesión a partir de la posición $N$, estén “dentro” de la bola de radio $\varepsilon$ con centro en $x$, el punto de convergencia. De manera formal, tenemos la:

Definición. Sucesión convergente. Vamos a decir que una sucesión $(x_n)_{n \in \mathbb{N}} \,$ es convergente en $(X,d)$ si existe $x \in X$ tal que para todo $\varepsilon >0$ existe $N \in \mathbb{N}$ tal que para todo $n \geq N$ ocurre que $d(x_n,x)<\varepsilon$.

Los últimos puntos de la sucesión están dentro de la bola de radio $\varepsilon$ con centro en $x$.

Si es así, diremos que $(x_n)_{n \in \mathbb{N}} \,$ converge a $x$ y se indicará en la notación como:
$$x_n \to x$$
o como:
$$\underset{n \to \infty}{lim} \, x_n =x$$
Nota: $x_n \to x \text{ en } X \iff d(x_n,x) \to 0 \text{ en } \mathbb{R}$.
Si la sucesión no es convergente decimos que es divergente.

Ahora veamos que una sucesión no puede converger a dos puntos diferentes:

Proposición. Si $(x_n)_{n \in \mathbb{N}} \,$ es una sucesión convergente en $X$ entonces el límite $\underset{n \to \infty}{lim} \, x_n$ es único.
Demostración:
Supongamos que $x_n \to x_a \,$ y $\, x_n \to x_b \,$ en $X$. Sea $\varepsilon>0$. Siguiendo la definición de convergencia se tiene que para todo $\frac{\varepsilon}{2} >0$ existen números naturales $N_a\, $ y $\, N_b\, $ tales que para todo $n\geq N_a, \, d(x_n,x_a)< \frac{\varepsilon}{2}$ y para todo $n\geq N_b, \, d(x_n,x_b)< \frac{\varepsilon}{2}$. Si elegimos $N = max\{N_a,N_b\}$ las dos condiciones anteriores se satisfacen. Entonces, para toda $n\geq N$,
$0 \leq d(x_a,x_b) \leq d(x_a,x_n)+d(x_n,x_b) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}= \varepsilon$
Nota entonces que $\forall \, \varepsilon >0,$ la distancia entre $x_a$ y $x_b$ queda acotada por $0 \leq d(x_a,x_b) \leq \varepsilon.$
En conclusión, $d(x_a,x_b)=0$, por lo tanto los puntos de convergencia son iguales.

Es importante mencionar que la convergencia de una sucesión depende tanto de la métrica como del conjunto a considerar. Una sucesión puede ser convergente en un espacio métrico pero no serlo en otro. Por ejemplo, la sucesión que a cada natural $n$ le asigna el número $\frac{1}{n}$ cumple que $(\frac{1}{n}) \to 0$ en $\mathbb{R}$ con la métrica euclideana, pero en el subespacio euclideano $(0,1]$ no es convergente, pues $0$ no está en el subespacio.

Definición. Subsucesión de $(x_n)_{n \in \mathbb{N}}.$. Una subsucesión $(x_{k(n)})_{n \in \mathbb{N}}$ es una composición de la sucesión $(x_n)_{n \in \mathbb{N}}$ con una función estrictamente creciente, $k:\mathbb{N} \to \mathbb{N}$.
Esto significa que una subsucesión tomará elementos en $X$ de la sucesión, en el mismo orden en que aparecen, aunque es posible que vaya descartando algunos.

Los puntos en verde señalan un ejemplo de subsucesión.

Hay una relación entre el límite de una sucesión y los de sus subsucesiones:

Proposición. Una sucesión $(x_n)_{n \in \mathbb{N}}$ converge a $x$ en $X$ si y solo si toda subsucesión $(x_{k(n)})_{n \in \mathbb{N}}$ converge a $x$ en $X$.

Tanto los últimos puntos de la sucesión como los de la subsucesión se aproximan al punto de convergencia.

Demostración:
Sea $(x_{k(n)})_{n \in \mathbb{N}}$ una subsucesión de $(x_n)_{n \in \mathbb{N}}$. Como $(x_n)_{n \in \mathbb{N}}$ converge entonces existe $N \in \mathbb{N}$ tal que para todo $n \geq N, \, d(x_n,x) < \varepsilon$. Ya que $k: \mathbb{N} \to \mathbb{N}$ es estrictamente creciente, tenemos que para todo $j \geq N, \, k(j) \geq k(N) \geq N$. Así, $d(x_k(j),x)< \varepsilon$, lo cual demuestra que $(x_{k(n)}) \to x$. El regreso es trivial, pues es posible definir una subsucesión como la sucesión misma.

Definición. Sucesión acotada. Diremos que una sucesión $(x_n)_{n \in \mathbb{N}}$ en $X$ es acotada si existe $M \in \mathbb{R}$ y $x \in X$ tales que $\forall \, n \in \mathbb{N}$ ocurre que $d(x,x_n) \leq M$.
Esto significa que una sucesión es acotada si todos los puntos $x_n,$ con $n \in \mathbb{N}$ están en una bola abierta con centro en algún punto $x$ del espacio métrico.

Representación de una sucesión acotada.

¿Es posible concluir que una sucesión es convergente si sabemos que es una sucesión acotada? Al final se te propondrá dar un ejemplo de una sucesión acotada que no sea convergente.
En contraparte, tenemos la siguiente:

Proposición. Toda sucesión convergente es acotada.
Demostración:
Sea $(x_n)_{n \in \mathbb{N}} \,$ una sucesión que converge a $x$ en $X$. Buscamos «encerrar» todos los puntos de la sucesión en una bola abierta. Si suponemos $\varepsilon = 1$, existe $N \in \mathbb{N}$ tal que para todo $n \geq N, \, d(x_n,x)<1$. Hasta aquí ya logramos «encerrar» todos los puntos de la sucesión a partir de $x_N$.

A partir de $x_N$, los puntos de la sucesión están en una bola abierta.

Para encerrar los elementos que van antes en la sucesión, considera las distancias entre $x$ y cada uno de esos puntos como $d_i = d(x_i,x), \, i=1,…,N-1$.

Si hacemos $M = máx\{d_i,1\}, \, i=1,…,N-1$, se consigue que para todo $n \in \mathbb{N}, \, d(x_n,x)<M$ con lo cual se demuestra que la sucesión es acotada.

Todos los puntos de la sucesión están en una bola abierta.

Los últimos resultados que expondremos en esta entrada son muy importantes, en el sentido en que suele acudirse a ellos para otras demostraciones. Te sugerimos tenerlos presentes.

Proposición. Si $x_n \to x$ en $X$ entonces $x$ es un punto de contacto del conjunto $\{x_n \,|n \in \mathbb{N}\}$.
Según la definición, basta con demostrar que toda bola abierta de radio $\varepsilon >0$ con centro en $x$ interseca al conjunto $\{x_n\}$. La demostración se deja como ejercicio.

Toda bola abierta con centro en el punto de convergencia tiene elementos de la sucesión.

Proposición. Sea $A \subset X$ y $x \in X$. Entonces $x \in \overline{A}$ si y solo si existe una sucesión $(x_n)_{n \in \mathbb{N}}$ en $A$ tal que $x_n \to x$ en $X$.

Demostración:
El regreso se concluye a partir de la proposición anterior.
Si $x \in \overline{A}$ entonces todas las bolas abiertas con centro en $x$ intersecan al conjunto $A$. Así, para cada $n \in \mathbb{N}$, podemos elegir un punto $x_n \in B(x, \frac{1}{n}) \cap A$. Como $d(x,x_n)< \frac{1}{n} \to 0$ en $\mathbb{R}$, se concluye que $x_n \to x$ en $X$.

Todo punto de contacto de un conjunto tiene una sucesión en el conjunto, convergente.

Más adelante…

Tendremos un acercamiento a un espacio métrico cuyos elementos son los subconjuntos cerrados de otro espacio métrico. Al definir la distancia entre estos subconjuntos cerrados veremos que, si una sucesión de ellos converge, entonces lo hace en un subconjunto cerrado. Ya que eso significa que la distancia tiende a cero, y la distancia entre dos elementos es cero cuando son iguales, podemos esperar que los subconjuntos de la sucesión se parecerán cada vez más, al subconjunto al cual convergen.

Tarea moral

  1. Prueba que si $(x_n) \to x$ en $X$ entonces $x$ es un punto de contacto del conjunto $\{x_n \,|n \in \mathbb{N}\}$.
  2. Demuestra que una sucesión constante converge.
  3. ¿Puede una sucesión ser convergente en el espacio discreto? ¿Bajo qué condiciones?
  4. Da un ejemplo de una sucesión en $\mathbb{Q}$ que converge en $\mathbb{R}$ pero no en $\mathbb{Q}$.
  5. Sea $A \subset X$. Demuestra que $x$ es un punto interior de $A$ si y solo si para toda $(x_n)_{n \in \mathbb{N}}$ que converge a $x$ en $X$, existe $N>0$ tal que $\forall \, n \geq N, x_n \in A$.
  6. Demuestra que $x \in X$ es un punto frontera de $A \subset X$ si y solo si existen sucesiones $(a_n)_{n \in \mathbb{N}}$ en $A$ y $(b_n)_{n \in \mathbb{N}}$ en $X\setminus A$ que convergen a $x$.
  7. Demuestra que si la imagen de una sucesión es finita entonces la sucesión es convergente.
  8. Da un ejemplo de una sucesión acotada que no sea convergente.

Enlaces

Álgebra Superior I: Producto de matrices con vectores

Por Eduardo García Caballero

Introducción

Anteriormente conocimos dos operaciones que podemos realizar utilizando vectores o matrices: la suma entre vectores/matrices y el producto escalar. Como recordarás, estas operaciones involucran exclusivamente vectores o exclusivamente matrices. En esta entrada veremos una operación que involucra a ambos objetos matemáticos a la vez: el producto de una matriz por un vector.

Definición de producto de matrices con vectores

Una condición indispensable para poder realizar el producto matriz-vector es que la cantidad de columnas de la matriz sea la misma que la cantidad de entradas del vector. Basándonos en esto, podríamos multiplicar
\[
\begin{pmatrix}
3 & \tfrac{1}{2} \\
2 & 5
\end{pmatrix}
\begin{pmatrix}
\pi \\
4
\end{pmatrix}
\qquad
\text{o}
\qquad
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
-3 \\
\tfrac{2}{3} \\
5
\end{pmatrix},
\]
pero no podríamos realizar la operación
\[
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
\pi \\
4
\end{pmatrix}.
\]

Como te habrás podido dar cuenta, en este tipo de producto es usual representar los vectores en su forma de “vector vertical” o “vector columna”.

El resultado de multiplicar una matriz por un vector será un nuevo vector, cuyo tamaño corresponde a la cantidad de filas de la matriz original.

Para obtener este nuevo vector, se sigue un algoritmo especial, el cual conocerás en entradas futuras. Sin embargo, a continuación te presentamos las fórmulas que definen a algunos casos especiales de esta operación, lo cual te permitirá obtener el producto en casos con una cantidad pequeña de entradas.

  • Producto de una matriz de tamaño $2 \times 2$ por un vector de tamaño $2$:

\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 \\
a_{21}u_1 + a_{22}u_2
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $3 \times 2$ por un vector de tamaño $2$:

\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 \\
a_{21}u_1 + a_{22}u_2 \\
a_{31}u_1 + a_{32}u_2
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $2 \times 3$ por un vector de tamaño $3$:

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $3 \times 3$ por un vector de tamaño $3$:

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3 \\
a_{31}u_1 + a_{32}u_2 + a_{33}u_3
\end{pmatrix}.
\]

¿Observas algún patrón en estas fórmulas?

Veamos algunos ejemplos numéricos de cómo usar estas fórmulas:

\(
\bullet
\begin{pmatrix}
3 & \tfrac{1}{2} \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
-\tfrac{1}{3} \\
4
\end{pmatrix}
=
\begin{pmatrix}
(3)(-\tfrac{1}{3}) + (\tfrac{1}{2})(4) \\
(2)(-\tfrac{1}{3}) + (1)(4)
\end{pmatrix}
=
\begin{pmatrix}
-1 + 2 \\
-\tfrac{2}{3} + 4
\end{pmatrix}
=
\begin{pmatrix}
1 \\
\tfrac{10}{3}
\end{pmatrix}
\)

\(
\bullet
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
-3 \\
\tfrac{2}{3} \\
5
\end{pmatrix}
=
\begin{pmatrix}
(1)(-3) + (7)(\tfrac{2}{3}) + (\sqrt{2})(5) \\
(9)(-3) + (\tfrac{1}{3})(\tfrac{2}{3}) + (-2)(5)
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{5+15\sqrt{2}}{3} \\
-\tfrac{331}{3}
\end{pmatrix}.
\)

Breve exploración geométrica

Como probablemente hayas visto en tu curso de Geometría Analítica I, el producto de matrices por vectores se puede emplear para representar distintas transformaciones de vectores en el plano y en el espacio.

Si multiplicamos una matriz diagonal por un vector, entonces el resultado corresponderá a “redimensionar” el vector en sus distintas direcciones. Por ejemplo, observamos que el producto
\[
\begin{pmatrix}
3 & 0 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
3 \\
3
\end{pmatrix}
=
\begin{pmatrix}
9 \\
6
\end{pmatrix}
\]
corresponde a redimensionar el vector original al triple de manera horizontal y al doble de manera vertical.

Por otra parte, multiplicar por una matriz de la forma
\[
\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}
\]
ocasiona que el vector rote un ángulo $\theta$ en sentido contrario a las manecillas del reloj; por ejemplo,
\[
\begin{pmatrix}
\cos(30º) & -\sin(30º) \\
\sin(30º) & \cos(30º)
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{\sqrt{3}}{2} & -\tfrac{1}{2} \\
\tfrac{1}{2} & \tfrac{\sqrt{3}}{2}
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
=
\begin{pmatrix}
(\tfrac{\sqrt{3}}{2})(5) + (-\tfrac{1}{2})(4) \\
(\tfrac{1}{2})(5) + (\tfrac{\sqrt{3}}{2})(4)
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{5\sqrt{3}-4}{2} \\
\tfrac{5+4\sqrt{3}}{2}
\end{pmatrix}.
\]

Propiedades algebraicas del producto de una matriz por un vector

A continuación, exploraremos algunas de las propiedades que cumple el producto matriz-vector. Estas propiedades las deduciremos para matrices de $2 \times 3$ por vectores de tamaño $3$, pero la deducción para otros tamaños de matrices y vectores se realiza de manera análoga.

Primeramente, observemos que para matrices $A$ y $B$ de tamaño $2\times 3$, y para un vector $u$, se cumple que
\begin{align*}
(A+B)u
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
\right)
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13}\\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}+b_{11})u_1 + (a_{12}+b_{12})u_2+(a_{13}+b_{13})u_3 \\
(a_{21}+b_{21})u_1 + (a_{22}+b_{22})u_2+(a_{23}+b_{23})u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}u_1+b_{11}u_1 + a_{12}u_2+b_{12}u_2 + a_{13}u_3+b_{13}u_3 \\
a_{21}u_1+b_{21}u_1 + a_{22}u_2+b_{22}u_2 + a_{23}u_3+b_{23}u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}u_1+a_{12}u_2+a_{13}u_3 \\
a_{21}u_1+a_{22}u_2+a_{23}u_3
\end{pmatrix}
+
\begin{pmatrix}
b_{11}u_1+b_{12}u_2+b_{13}u_3 \\
b_{21}u_1+b_{22}u_2+b_{23}u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
Au + Bu,
\end{align*}
es decir, el producto matriz-vector se distribuye sobre la suma de matrices (esto también se conoce como que el producto matriz-vector abre sumas).

Por otra parte, podemos probar que el producto matriz-vector se distribuye sobre la suma de vectores; es decir, si $A$ es una matriz de $2 \times 3$, y $u$ y $v$ son vectores de tamaño $3$, entonces
\[
A(u+v) = Au + Av.
\]

Además, veamos que si $A$ es una matriz de $2 \times 3$, $r$ es un escalar, y $u$ un vector de tamaño $3$, entonces
\begin{align*}
A(ru)
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\left(
r
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
ru_1 \\
ru_2 \\
ru_3 \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}ru_1 + a_{12}ru_2 + a_{13}ru_3 \\
a_{21}ru_1 + a_{22}ru_2 + a_{23}ru_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
r(a_{11}u_1) + r(a_{12}u_2) + r(a_{13}u_3) \\
r(a_{21}u_1) + r(a_{22}u_2) + r(a_{23}u_3)
\end{pmatrix}
\\[5pt]
&=
r
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3
\end{pmatrix}
\\[5pt]
&=
r
\left(
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
r(Au)
\end{align*}
y, más aún,
\begin{align*}
A(ru)
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\left(
r
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
ru_1 \\
ru_2 \\
ru_3 \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}ru_1 + a_{12}ru_2 + a_{13}ru_3 \\
a_{21}ru_1 + a_{22}ru_2 + a_{23}ru_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(ra_{11})u_1 + (ra_{12})u_2 + (ra_{13})u_3 \\
(ra_{21})u_1 + (ra_{22})u_2 + (ra_{23})u_3
\end{pmatrix}
\\[5pt]
&=
\left(
\begin{pmatrix}
ra_{11} & ra_{12} & ra_{13} \\
ra_{21} & ra_{22} & ra_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\left(
r
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\right)
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
(rA)u.
\end{align*}

Por lo tanto $A(ru) = r(Au) = (rA)u$. Esta propiedad se conoce como que el producto matriz-vector saca escalares.

Como el producto de matrices por vectores abre sumas y saca escalares, se dice que es lineal. Un hecho bastante interesante, cuya demostración se dejará hasta los cursos de álgebra lineal, es que el regreso de esta afirmación también se cumple: ¡A cualquier transformación lineal se le puede asociar una matriz $A$ de modo que aplicar la transformación a un vector $v$ es lo mismo que hacer el producto $Av$!

Otras propiedades de este producto

En entradas anteriores definimos algunos vectores y matrices especiales.

Como recordarás, definimos la matriz identidad de tamaño $3 \times 3$ como
\[
\mathcal{I}_3
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Observemos que al multiplicar $\mathcal{I}_3$ por el vector
\[
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\]
obtendremos
\[
\mathcal{I}_3 u
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
1u_1 + 0u_2 + 0u_3 \\
0u_1 + 1u_2 + 0u_3 \\
0u_1 + 0u_2 + 1u_3
\end{pmatrix}
=
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
u.
\]
Como su nombre lo sugiere, la matriz $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarlo por un vector de tamaño $n$ (de hecho, como veremos en la siguiente entrada, ¡la matriz $I_n$ también cumple esta propiedad en otras operaciones!).

Por otra parte, recordemos que definimos el vector canónico $\mathrm{e}_i$ de tamaño $n$ como el vector en el que su $i$-ésima entrada es $1$ y sus demás entradas son $0$. Como ejemplo, veamos que
\begin{align*}
A\mathrm{e}_1
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} +0a_{12} +0a_{13} \\
1a_{21} +0a_{22} +0a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} \\
a_{21}
\end{pmatrix},
\end{align*}
donde este resultado corresponde a al primera columna de la matriz.

De manera análoga, podemos ver que
\[
A\mathrm{e}_2 =
\begin{pmatrix}
a_{12} \\
a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
A\mathrm{e}_3 =
\begin{pmatrix}
a_{13} \\
a_{23}
\end{pmatrix}
\]
corresponden a la segunda y tercera columna de la matriz, respectivamente.

En general, para matrices de tamaño $m \times n$ y el vector $\mathrm{e}_i$ de tamaño $n$, el resultado de $A\mathrm{e}_i$ corresponde al vector cuyas entradas son las que aparecen en la $i$-ésima columna de la matriz.

Más adelante…

En esta entrada conocimos el producto de matrices con vectores, exploramos su interpretación geométrica y revisamos algunas de las propiedades algebraicas que cumple. Esta operación se añade a las que aprendimos en entradas anteriores, ampliando nuestra colección de herramientas.

En la siguiente entrada descubriremos una operación que nos permitirá sacar aún más poder a las operaciones que hemos conocido hasta ahora: el producto de matrices.

Tarea moral

  1. Obtén el resultado de las siguientes multipicaciones:

\(
\begin{pmatrix}
1 & -2 & 3 \\
1 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
4 \\
5 \\
6
\end{pmatrix},
\)

\(
\begin{pmatrix}
2 & 5 \\
3 & \tfrac{1}{2}
\end{pmatrix}
\begin{pmatrix}
4 \\
2
\end{pmatrix}.
\)

  1. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza la siguiente operación: $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
  2. ¿Cuál matriz permite rotar un vector en el plano 45º? ¿Cuál 60º?
  3. Deduce las propiedades del producto matriz-vector para matrices de $3 \times 2$ y vectores de tamaño $2$.
  4. Una matriz desconocida $A$ de $3\times 3$ cumple que $Ae_1=\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, que $Ae_2=\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ y que $Ae_3=\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$. ¿Cuánto es $A\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$?

Entradas relacionadas

Álgebra Superior I: Transposición de matrices, matrices simétricas y antisimétricas

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido operaciones involucran a dos objetos a la vez, entre los que pueden estar escalares, vectores, o matrices. En esta entrada, exploraremos una operación que se aplica a una matriz a la vez: la transposición de matrices. Esta operación preserva el contenido de la matriz, pero modifica sus dimensiones y el orden de sus entradas de una manera particular. Además, exploraremos algunas matrices que cumplen propiedades especiales bajo esta operación.

Definición de transposición de matrices

Una forma intuitiva de comprender en concepto de transposición de una matriz es como aquella operación que refleja a una matriz por su diagonal. Por ejemplo, consideremos la matriz
\[
A=
\begin{pmatrix}
\fbox{7} & \sqrt{2} \\
-\tfrac{1}{2} & \fbox{3}
\end{pmatrix}
\]
en la cual hemos destacado los elementos de su diagonal. Su matriz transpuesta, la cual denotaremos como $A^T$, será
\[
A^T =
\begin{pmatrix}
\fbox{7} & -\tfrac{1}{2} \\
\sqrt{2} & \fbox{3}
\end{pmatrix}.
\]

En el caso de una matriz que no sea cuadrada, la transposición también intercambia el número de filas y el de columnas. Por ejemplo,
\[
B=
\begin{pmatrix}
\fbox{3} & 4 & \pi \\
0 & \fbox{-1} & 6
\end{pmatrix}
\]
es una matriz de $2 \times 3$, mientras que su matriz transpuesta
\[
B^T=
\begin{pmatrix}
\fbox{3} & 0 \\
4 & \fbox{-1} \\
\pi & 6
\end{pmatrix}
\]
es de tamaño $3 \times 2$.

Para dar una definición formal de la propiedad de transposición, consideremos a la matriz $A$ de tamaño $m \times n$. Diremos que la matriz traspuesta de $A$ es la matriz $A^T$ de tamaño $n \times m$, donde la entrada de $A^T$ en la posición $(i,j)$ es
\[
(A^T)_{ij} = a_{ji},
\]
para todo $1 \le i \le n$ y $1 \le j \le m$.

Por ejemplo, para el caso de
\[
C =
\begin{pmatrix}
\fbox{$c_{11}$} & c_{12} \\
c_{21} & \fbox{$c_{22}$} \\
c_{31} & c_{32}
\end{pmatrix},
\]
su matriz traspuesta es
\[
C^T =
\begin{pmatrix}
(C^T)_{11} & (C^T)_{12} & (C^T)_{13} \\
(C^T)_{21} & (C^T)_{22} & (C^T)_{23} \\
\end{pmatrix}
=
\begin{pmatrix}
\fbox{$c_{11}$} & c_{21} & c_{31} \\
c_{12} & \fbox{$c_{22}$} & c_{32}
\end{pmatrix},
\]
mientras que la matriz transpuesta de
\[
D =
\begin{pmatrix}
\fbox{$d_{11}$} & d_{12} & d_{13} \\
d_{21} & \fbox{$d_{22}$} & d_{23} \\
d_{31} & d_{32} & \fbox{$d_{33}$}
\end{pmatrix}
\]
es
\[
D^T =
\begin{pmatrix}
(D^T)_{11} & (D^T)_{12} & (D^T)_{13} \\
(D^T)_{21} & (D^T)_{22} & (D^T)_{23} \\
(D^T)_{31} & (D^T)_{32} & (D^T)_{33}
\end{pmatrix}
=
\begin{pmatrix}
\fbox{$d_{11}$} & d_{21} & d_{31} \\
d_{12} & \fbox{$d_{22}$} & d_{32} \\
d_{13} & d_{23} & \fbox{$d_{33}$}
\end{pmatrix}.
\]

Como puedes observar, empleando la definición de matriz traspuesta, se sigue cumpliendo que la transposición se puede ver como la operación de reflejar una matriz con respecto a su diagonal.

Propiedades de transposición de matrices

A continuación, demostraremos algunas propiedades que cumplen las matrices
\[
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]
(Las demostraciones para cualesquiera otros tamaños de matrices se desarrollan de manera análoga).

Veamos qué sucede al realizar dos veces seguidas la trasposición de $A$. Observamos que
\[
A^T =
\begin{pmatrix}
(A^T)_{11} & (A^T)_{12} & (A^T)_{13} \\
(A^T)_{11} & (A^T)_{22} & (A^T)_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32}
\end{pmatrix},
\]
y, entonces,
\[
(A^T)^T
=
\begin{pmatrix}
((A^T)^T)_{11} & ((A^T)^T)_{12} \\
((A^T)^T)_{21} & ((A^T)^T)_{22} \\
((A^T)^T)_{31} & ((A^T)^T)_{32}
\end{pmatrix}
=
\begin{pmatrix}
(A^T)_{11} & (A^T)_{21} \\
(A^T)_{12} & (A^T)_{22} \\
(A^T)_{13} & (A^T)_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
=
A.
\]

En general, al transponer dos veces seguidas una matriz obtendremos como resultado la matriz original: $(A^T)^T = A$.

Por otra parte, observemos que
\[
AB
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix},
\]
de modo que
\[
(AB)^T =
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{21}b_{11} + a_{22}b_{21} & a_{31}b_{11} + a_{32}b_{21} \\
a_{11}b_{12} + a_{12}b_{22} & a_{21}b_{12} + a_{22}b_{22} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\]
Por su parte, veamos que
\begin{align*}
B^T A^T
&=
\begin{pmatrix}
b_{11} & b_{21} \\
b_{12} & b_{22}
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
b_{11}a_{11} + b_{21}a_{12} & b_{11}a_{21} + b_{21}a_{22} & b_{11}a_{31} + b_{21}a_{32} \\
b_{12}a_{11} + b_{22}a_{12} & b_{12}a_{21} + b_{22}a_{22} & b_{12}a_{31} + b_{22}a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{21}b_{11} + a_{22}b_{21} & a_{31}b_{11} + a_{32}b_{21} \\
a_{11}b_{12} + a_{12}b_{22} & a_{21}b_{12} + a_{22}b_{22} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\end{align*}
Por lo tanto,
\[
(AB)^T = B^T A^T.
\]

Finalmente, supongamos que $C = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible. Entonces se cumple que $ad – bc \ne 0$, y $C$ tiene como inversa a
\[
C^{-1} =
\begin{pmatrix}
\tfrac{d}{ad – bc} & \tfrac{-b}{ad – bc} \\
\tfrac{-c}{ad – bc} & \tfrac{a}{ad – bc}
\end{pmatrix},
\]
Por lo tanto,
\[
(C^{-1})^T =
\begin{pmatrix}
\tfrac{d}{ad – bc} & \tfrac{-c}{ad – bc} \\
\tfrac{-b}{ad – bc} & \tfrac{a}{ad – bc}
\end{pmatrix}.
\]

Por su parte, observemos que $C^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ cumple que $ad – cb = ad – bc \ne 0$, con lo cual garantizamos que es también invertible —la transpuesta de una matriz invertible es también invertible—. Más aún, veamos que
\begin{align*}
(C^T)^{-1}&= \frac{1}{ad-bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \\[5pt]
&= \begin{pmatrix}
\tfrac{d}{ad – bc} & \tfrac{-c}{ad – bc} \\
\tfrac{-b}{ad – bc} & \tfrac{a}{ad – bc}
\end{pmatrix}.
\end{align*}
Por lo tanto, $(C^{-1})^T = (C^T)^{-1}$ —la inversa de una matriz traspuesta corresponde a la traspuesta de la inversa de la orginal—.

Matrices simétricas y antisimétricas

Ahora que conocemos la definición de matriz transpuesta y algunas de sus propiedades, observemos que existen matrices que se comportan de manera especial bajo esta operación.

Por ejemplo, veamos que si
\[
A =
\begin{pmatrix}
4 & 9 & 0 \\
9 & \frac{1}{2} & -1 \\
0 & -1 & \sqrt{2}
\end{pmatrix},
\]
entonces,
\[
A^T=
\begin{pmatrix}
4 & 9 & 0 \\
9 & \frac{1}{2} & -1 \\
0 & -1 & \sqrt{2}
\end{pmatrix}
= A.
\]

A una matriz $A$ que cumple que $A^T = A$ se le denomina matriz simétrica. Otros ejemplos de matrices simétricas son
\[
\begin{pmatrix}
4 & 0 \\
0 & -5
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
-8 & 1 & 2 \\
1 & 0 & 3 \\
2 & 3 & -\pi
\end{pmatrix}.
\]
Una observación importante es que las matrices simétricas únicamente pueden ser cuadradas.

Por otra parte, veamos que la matriz
\[
B=
\begin{pmatrix}
0 & 5 & 5 \\
-5 & 0 & 5 \\
-5 & -5 & 0
\end{pmatrix}
\]
tiene como transpuesta a
\[
B^T =
\begin{pmatrix}
0 & -5 & -5 \\
5 & 0 & -5 \\
5 & 5 & 0
\end{pmatrix}
=
-B.
\]

A una matriz $A$ que cumple que $A^T = -A$ se le denomina matriz antisimétrica. Otros ejemplos de matrices antisimétricas son
\[
\begin{pmatrix}
0 & -2 \\
2 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 1 & -2 \\
-1 & 0 & 3 \\
2 & -3 & 0
\end{pmatrix}.
\]
Al igual que sucede con las matrices simétricas, las matrices antisimétricas sólo pueden ser cuadradas.

Otra propiedad importante de las matrices antisimétricas es que todos los elementos de su diagonal tienen valor 0. ¿Puedes probar por qué sucede esto?

Más adelante…

Con las operaciones entre vectores y matrices que hemos visto hasta ahora podemos obtener varios resultados aplicables a distintas áreas de las matemáticas. En la siguiente entrada abordaremos un tema que, a primera vista, parece no relacionarse mucho con los conceptos que hemos aprendido hasta ahora, pero que, en realidad, resulta ser uno de los temas con mayor aplicación de los conceptos de vectores y matrices: los sistemas de ecuaciones lineales.

Tarea moral

  1. Sea $A$ una matriz de $2\times 2$ con entradas reales. Muestra $AA^T$ siempre es una matriz simétrica y que las entradas en la diagonal de $AA^T$ siempre son números mayores o iguales a cero.
  2. Prueba que los elementos de la diagonal de una matriz antisimétrica tienen valor 0.
  3. Muestra que si una matriz es simétrica e invertible, entonces su inversa también es simétrica. ¿Es cierto lo mismo para las antisimétricas?
  4. ¿Existe alguna matriz que sea al mismo tiempo simétrica y antisimétrica?
  5. Prueba que cualquier matriz $A$ se puede escribir como $A = B+C$, con $B$ simétrica y $C$ antisimétrica.

Entradas relacionadas

Álgebra Superior I: Matrices invertibles

Por Eduardo García Caballero

Introducción

En la entrada anterior definimos el producto de matrices con matrices y exploramos algunas de sus propiedades, siendo varias de estas familiares: el producto de matrices es asociativo, conmutativo y tiene elemento neutro. En esta entrada exploraremos una pregunta que quedó abierta: ¿el producto de matrices cumple con tener inversos?

Definición de matrices invertibles

Diremos que una matriz cuadrada $A$ es invertible si y sólo si tiene inverso multiplicativo; es decir, si existe una matriz $B$ tal que $AB = BA = \mathcal{I}$.

Observemos para que la definción anterior tenga sentido, es indispensable que $A$ sea cuadrada, pues veamos que si $A$ es de tamaño $m \times n$, entonces para que los productos $AB$ y $BA$ estén definidos, $B$ tendrá que ser de tamaño $n \times m$. Así, $AB$ será de tamaño $m\times n$ y $BA$ de tamaño $n\times n$, y como $AB = BA$, entonces $m = n$, y, por tanto, $AB = BA = \mathcal{I}_n$ (y con ello también observamos que $B$ tiene que ser cuadrada de tamaño $n \times n$).

Un ejemplo de una matriz de $2 \times 2$ que es invertible es
\[
A
=
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}
\]
que tiene como inversa a la matriz
\[
B
=
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix},
\]
pues
\begin{align*}
AB
&=
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix}\\
&=
\begin{pmatrix}
(1)(-5) + (-2)(-3) & (1)(-2) + (-2)(-1) \\
(-3)(-5) + (5)(-3) & (-3)(-2) + (5)(-1)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2
\end{align*}
y
\begin{align*}
BA
&=
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix}
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}\\
&=
\begin{pmatrix}
(-5)(1) + (-2)(-3) & (-5)(-2) + (-2)(5) \\
(-3)(1) + (-1)(-3) & (-3)(-2) + (-1)(5)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2.
\end{align*}
Por lo tanto,
\[
AB = BA = \mathcal{I}_2.
\]

Algo que seguramente te preguntarás es si cualquier matriz cuadrada tiene un inverso multiplicativo. A diferencia de otros tipos de operaciones con inversos, el producto de matrices no siempre cumple con tenerlos: un ejemplo de esto es la matriz
\[
A=
\begin{pmatrix}
2 & 1 \\
0 & 0
\end{pmatrix}
\]
la cual, al multiplicarla por cualquier matriz
\[
B
=
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
por la derecha, nos da como resultado
\[
AB
=
\begin{pmatrix}
2 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
=
\begin{pmatrix}
2a + c & 2b + ,d \\
0 & 0
\end{pmatrix},
\]
y como en cualquier caso obtenemos que su entrada en la posición $(2,2)$ es $0$, tenemos que $AB$ es distinta a $\mathcal{I}_2$, pues la entrada en la posición $(2,2)$ de esta última es $1$.

Propiedades de matrices invertibles

A continuación exploraremos algunas de las propiedades que cumplen las matrices invertibles.

Primeramente, veamos que si una matriz $A$ de $n \times n$ es invertible, entonces su inversa será única. Para demostrar esto, supongamos que $B$ y $C$ son ambas inversas multiplicativas de $A$; es decir, $AB = BA = \mathcal{I}_n$ y $AC = CA = \mathcal{I}_n$. Entonces,
\begin{align*}
AB &= AC \\[5pt]
B(AB) &= B(AC) \\[5pt]
(BA)B &= (BA)C \\[5pt]
\mathcal{I}_n B &= \mathcal{I}_n C \\[5pt]
B &= C.
\end{align*}

Como la matriz inversa de $A$ es única, usualmente la denotamos como $A^{-1}$.

Por otra parte, veamos que si $A$ y $B$ son matrices invertibles, con inversas $A^{-1}$ y $B^{-1}$, respectivamente, entonces, si podemos multiplicar $A$ y $B$ (es decir, si $A$ y $B$ son del mismo tamaño), entonces $AB$ es invertible, pues se cumple que
\[
(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A\mathcal{I}_nA^{-1} = AA^{-1} = \mathcal{I}_n,
\]
y también que
\[
(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}\mathcal{I}_nB = B^{-1}B = \mathcal{I}_n,
\]
es decir, $B^{-1}A^{-1}$ es la matriz inversa de $AB$, lo cual denotamos como $(AB)^{-1} = B^{-1}A^{-1}$.

Finalmente, recordando la interpretación geométrica que dimos a la multiplicación de matrices por vectores, y la propiedad de que $A(Bu) = (AB)u$, entonces notamos que
\[
A^{-1}(Au) = (A^{-1}A)u = \mathcal{I}u = u.
\]

Como la transformación correspondiente a $A$ envía el vector $u$ al vector $Au$, y como el resultado de aplicar $(A^{-1}A)u$ deja al vector $u$ en su lugar, esto nos dice que la transformación correspondiente a $A^{-1}$ es aquella que regresa el vector $Au$ a su posición original.

En la siguiente imagen se visualiza esta propiedad para el caso en el que
\[
A
=
\begin{pmatrix}
3 & 1 \\
4 & 2
\end{pmatrix}
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Formula para inversa de matrices de $2 \times 2$

Más arriba vimos que hay matrices que sí tienen inversa, mientras que otras no tienen. Para el caso de matrices de $2 \times 2$, tendremos que
\[
A
=
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
es invertible si y sólo si se cumple que $ad-bc \ne 0$.

En dado caso, la inversa de $A$ será la matriz
\[
A^{-1}
=
\frac{1}{ad-bc}
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
=
\begin{pmatrix}
\frac{d}{ad-bc} & \frac{-b}{ad-bc} \\
\frac{-c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.
\]

Por ejemplo, veamos que si
\[
A =
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix},
\]
entonces $ad – bc = (1)(3) – (2)(-2) = 3 – (-4) = 7 \ne 0$, por lo que podemos garantizar que $A$ tiene matriz inversa, la cual es
\[
A^{-1}
=
\frac{1}{ad-bc}
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
=
\frac{1}{7}
\begin{pmatrix}
3 & -2 \\
2 & 1
\end{pmatrix}
=
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}.
\]

Verificamos que
\begin{align*}
AA^{-1}
&=
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix}
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}\\
&=
\begin{pmatrix}
(1)(3/7) + (2)(2/7) & (1)(-2/7) + (2)(1/7) \\
(-2)(3/7) + (3)(2/7) & (-2)(-2/7) + (3)(1/7)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2
\end{align*}
y
\begin{align*}
A^{-1}A
&=
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix}\\
&=
\begin{pmatrix}
(3/7)(1) + (-2/7)(-2) & (3/7)(2) + (-2/7)(3) \\
(2/7)(1) + (1/7)(-2) & (2/7)(2) + (1/7)(3)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2.
\end{align*}

De manera similar, veamos que la matriz
\[
\begin{pmatrix}
3 & 4 \\
1 & 2
\end{pmatrix}
\]
es invertible pues $(3)(2) – (4)(1) = 2 \ne 0$. ¿Puedes calcular su inversa?

Por el contrario, veamos que en la matriz
\[
\begin{pmatrix}
6 & 4 \\
3 & 2
\end{pmatrix}
\]
tenemos que $(6)(2) – (4)(3) = 12 -12 = 0$, y, por tanto, no es invertible.

Para el caso de matrices de mayor tamaño, también existen condiciones y fórmulas para calcular sus inversas, sin embargo, estas no resultan tan sencillas. Será necesario que comprendamos más propiedades de las matrices para poder obtenerlas.

Más adelante…

En esta entrada conocimos una propiedad más que cumplen las matrices respecto a su producto, que es la de tener inverso multiplicativas; también vimos las condiciones bajo las cuales una matriz de $2 \times 2$ puede tener inverso, y revisamos su fórmula.

En la siguiente entrada, conoceremos una nueva operación, la cual se distinguirá de todas las que hemos visto hasta ahora, pues esta operación involucra a una única matriz a la vez.

Tarea moral

  1. ¿Para qué valores de $a$ se cumple que
    \[
    \begin{pmatrix}
    5 & a \\
    2 & 2-a
    \end{pmatrix}
    \]
    es invertible?
  2. Muestra que si $A$, $B$ y $C$ son matrices invertibles del mismo tamaño, entonces
    \[
    (ABC)^{-1} = C^{-1}B^{-1}A^{-1}.
    \]
  3. Muestra que si $A$ es una matriz invertible y $k$ es un entero positivo, entonces $A^k$ también es invertible y $(A^k)^{-1}=(A^{-1})^k$.
  4. ¿Por qué la matriz
    \[
    \begin{pmatrix}
    3 & 4 & 0 \\
    7 & 2 & 0 \\
    0 & 0 & 0
    \end{pmatrix}
    \]
    no es invertible?
  5. Muestra que en efecto el criterio que dimos para que una matriz $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tenga inversa es suficiente y necesario. Para la parte de que es suficiente, tendrás que ver que si $ad-bc\neq 0$, la matriz propuesta en la entrada siempre funciona como inversa. Para ver que es necesario, supón que $ad-bc=0$. En este caso, $ad=bc$ y podrás encontrar a partir de $a,b,c,d$ a dos vectores distintos $u$ y $v$ tales que $Au=Av$. Esto mostrará que la transformación asociada a $A$ no es inyectiva y por tanto no podrá tener inversa, así que $A$ tampoco tendrá inversa.

Entradas relacionadas

Álgebra Superior I: Producto de matrices con matrices

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido varias operaciones que involucran escalares, vectores y matrices. En esta entrada aprenderemos sobre una de las operaciones más importantes en el álgebra lineal: el producto de matrices con matrices.

Definición de producto de matrices

Para poder efectuar el producto de dos matrices, hay que asegurarnos de que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz.

El resultado de una matriz $A$ de tamaño $m \times n$ por una matriz $B$ de tamaño $n \times \ell$ será la matriz $C = AB$ de tamaño $m \times \ell$, donde la entrada $c_{ij}$ de $C$ está dada por la fórmula
\[
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.
\]

A primera vista esta fórmula puede parecer complicada, sin embargo, practicando con algunos ejemplos verás que es muy fácil de implementar.

  • Producto de matrices de tamaño $2 \times 2$:

Sean
\[
A
=
\begin{pmatrix}
1 & 3 \\
5 & 7
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & 4 \\
6 & 8
\end{pmatrix}.
\]

Como estamos multiplicando una matriz de tamaño $2 \times 2$ por una matriz de tamaño $2 \times 2$, sabemos que el resultado será otra matriz de tamaño $2 \times 2$. Ahora, iremos calculando una por una sus entradas.

Sea $C = AB$. Para calcular la entrada $c_{11}$ observamos la primera fila de $A$ y la primera columna de $B$, las cuales son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
de modo que $c_{11} = (1)(2)+(3)(6) = 20$:
\[
AB
=
\begin{pmatrix}
20 & \phantom{28} \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

Para la entrada $c_{12}$, nos fijamos en la primera columna de $A$ y en la segunda columna de $B$, que son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{12} = (1)(4) + (3)(8) = 28$:
\[
AB
=
\begin{pmatrix}
20 & 28 \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

De manera similar, observemos la segunda fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
obteniendo $c_{21} = (5)(2) + (7)(6) = 52$, mientras que la segunda fila de $A$ y la segunda columna de $B$ son
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{22} = (5)(4) + (7)(8) = 76$.

Por lo tanto,
\[
AB
=
\begin{pmatrix}
20 & 28 \\
52 & 76
\end{pmatrix}.
\]

En general, el resultado del producto de las matrices
\[
A
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]
es
\[
AB
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $3 \times 2$ por matriz de $2 \times 2$:

Supongamos que
\[
A
=
\begin{pmatrix}
3 & 5 \\
1 & 0 \\
4 & 3
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
7 & 8 \\
5 & 2
\end{pmatrix}.
\]

En este caso, como estamos multiplicando una matriz de tamaño $3 \times 2$ por una matriz de tamaño $2 \times 2$, la matriz resultante tendrá tamaño $3 \times 2$.

Podemos obtener sus entradas de manera similar al caso anterior. Si $C = AB$, entonces la entrada $c_{12}$ la podemos encontrar revisando la primera fila de $A$ y la segunda columna de $B$,
\[
A
=
\begin{pmatrix}
3 & 5 \\
\phantom{1} & \phantom{0} \\
\phantom{4} & \phantom{3}
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{7} & 8 \\
\phantom{5} & 2
\end{pmatrix}.
\]
de modo que $c_{12} = (3)(8) + (5)(2) = 34$. Por su parte, para obtener la entrada $c_{31}$ nos fijamos en la tercera fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{3} & \phantom{5} \\
\phantom{1} & \phantom{0} \\
4 & 3
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
7 & \phantom{8} \\
5 & \phantom{2}
\end{pmatrix}.
\]
obteniendo $c_{31} = (4)(7) + (3)(5) = 43$.

¿Podrías comprobar que
\[
AB
=
\begin{pmatrix}
46 & 34 \\
7 & 8 \\
43 & 38
\end{pmatrix}?
\]

Así, para el caso general de matrices de $3 \times 2$ por $2 \times 2$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $4 \times 2$ por matriz de $2 \times 3$:

¿Podrías verificar que la siguiente fórmula es correcta?
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\
a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23}
\end{pmatrix}.
\]

Propiedades del producto de matrices

A continuación revisaremos algunas de las propiedades que cumple la multiplicación de matrices. Para demostrar las siguientes propiedades, consideraremos la matriz $A$ de tamaño $3 \times 2$ y las matrices $B$ y $C$ de tamaño $2 \times 2$, aunque se pueden probar para matrices de cualesquier otro tamaño entre las cuales se puedan efectuar las operaciones.

Veamos que si efectuamos la multiplicación de una matriz de tamaño $m \times n$ por una matriz de tamaño $n \times 1$ siguiendo el algoritmo descrito anteriormente, el resultado coincide con el de multiplicar la matriz de tamaño $m \times n$ por un vector de tamaño $n$. Por ejemplo, si multiplicamos $A$ por una matriz $U$ de tamaño $2 \times 1$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_{11} \\
u_{12}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_{11} + a_{12}u_{21} \\
a_{21}u_{11} + a_{22}u_{21} \\
a_{31}u_{11} + a_{32}u_{21}
\end{pmatrix}.
\]

Esta es una observación importante pues todo lo que demostremos para el producto de matrices también lo tendremos para el producto de matriz por vector.

Veamos que la multiplicación de matrices es asociativa:

\begin{align*}
(AB)C
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \\
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}b_{11} + a_{12}b_{21})c_{11} + (a_{11}b_{12} + a_{12}b_{22})c_{21}
& (a_{11}b_{11} + a_{12}b_{21})c_{12} + (a_{11}b_{12} + a_{12}b_{22})c_{22} \\
(a_{21}b_{11} + a_{22}b_{21})c_{11} + (a_{21}b_{12} + a_{22}b_{22})c_{21}
& (a_{21}b_{11} + a_{22}b_{21})c_{12} + (a_{21}b_{12} + a_{22}b_{22})c_{22} \\
(a_{31}b_{11} + a_{32}b_{21})c_{11} + (a_{31}b_{12} + a_{32}b_{22})c_{21}
& (a_{31}b_{11} + a_{32}b_{21})c_{12} + (a_{31}b_{12} + a_{32}b_{22})c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}c_{11} + b_{12}c_{21}) + a_{12}(b_{21}c_{11} + b_{22}c_{21})
& a_{11}(b_{11}c_{12} + b_{12}c_{22}) + a_{12}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{21}(b_{11}c_{11} + b_{12}c_{21}) + a_{22}(b_{21}c_{11} + b_{22}c_{21})
& a_{21}(b_{11}c_{12} + b_{12}c_{22}) + a_{22}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{31}(b_{11}c_{11} + b_{12}c_{21}) + a_{32}(b_{21}c_{11} + b_{22}c_{21})
& a_{31}(b_{11}c_{12} + b_{12}c_{22}) + a_{32}(b_{21}c_{12} + b_{22}c_{22})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}c_{11} + b_{12}c_{21} & b_{11}c_{12} + b_{12}c_{22} \\
b_{21}c_{11} + b_{22}c_{21} & b_{21}c_{12} + b_{22}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
A(BC).
\end{align*}

De manera muy similar, si $u$ es un vector de tamaño 2, podemos ver que se cumple que $A(Bu) = (AB)u$. ¿Puedes demostrarlo? Hazlo por lo menos para matrices $A$ y $B$ ambas de $2\times 2$.

Quizás tengas la impresión de que hay que hacer demasiadas cuentas y que sería sumamente difícil demostrar estas propiedades para matrices más grandes. Sin embargo, en cursos posteriores verás cómo trabajar apropiadamente con la notación para poder hacer estas demostraciones más fácilmente.

El producto de matrices es asociativo. Sin embargo, no es conmutativo. Por ejemplo, consideremos las matrices
\[
E=
\begin{pmatrix}
5 & 7 \\
-3 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
F=
\begin{pmatrix}
1 & 2 \\
9 & -1
\end{pmatrix}.
\]


Veamos que
\[
EF =
\begin{pmatrix}
68 & 3 \\
-3 & -6
\end{pmatrix}
\ne
\begin{pmatrix}
-1 & 7 \\
48 & 63
\end{pmatrix}
=
FE.
\]

En términos de combinar el producto de matrices con otras operaciones, tenemos que el producto de matrices por la izquierda se distribuye sobre la suma de matrices:
\begin{align*}
A(B+C)
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}+c_{11} & b_{12}+c_{12} \\
b_{21}+c_{21} & b_{22}+c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}+c_{11}) + a_{12}(b_{21}+c_{21})
& a_{11}(b_{12}+c_{21}) + a_{12}(b_{22}+c_{22}) \\
a_{21}(b_{11}+c_{11}) + a_{22}(b_{21}+c_{21})
& a_{21}(b_{12}+c_{21}) + a_{22}(b_{22}+c_{22}) \\
a_{31}(b_{11}+c_{11}) + a_{32}(b_{21}+c_{21})
& a_{31}(b_{12}+c_{21}) + a_{32}(b_{22}+c_{22}) \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11}+a_{11}c_{11} + a_{12}b_{21}+a_{12}c_{21}
& a_{11}b_{12}+a_{11}c_{11} + a_{12}b_{22}+a_{12}c_{22} \\
a_{21}b_{11}+a_{21}c_{11}+ a_{22}b_{21}+a_{22}c_{21}
& a_{21}b_{12}+a_{21}c_{12}+ a_{22}b_{22}+a_{22}c_{22} \\
a_{31}b_{11}+a_{31}c_{11} + a_{32}b_{21}+a_{32}c_{21}
& a_{31}b_{12}+a_{31}c_{12} + a_{32}b_{22}+a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\
a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \\
a_{31}c_{11} + a_{32}c_{21} & a_{31}c_{12} + a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
AB + AC.
\end{align*}

El producto también se distribuye sobre la suma cuando la suma aparece a la izquierda. ¿Podrías probar que si $D$ es una matriz de tamaño $3 \times 2$, entonces se cumple $(A+D)B = AB + DB$?

En entradas anteriores vimos que $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarla por un vector de tamaño $n$. Resulta que $\mathcal{I}_n$ también tiene esta propiedad al multiplicarla por la izquierda por una matriz de tamaño $n\times m$. Por ejemplo, veamos que al multiplicar $\mathcal{I}_3$ por la izquierda por $A$, obtenemos
\begin{align*}
\mathcal{I}_3 A
&=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} + 0a_{21} + 0a_{31} & 1a_{12} + 0a_{22} + 0a_{32} \\
0a_{11} + 1a_{21} + 0a_{31} & 0a_{12} + 1a_{22} + 0a_{32} \\
0a_{11} + 0a_{21} + 1a_{31} & 0a_{12} + 0a_{22} + 1a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
A.
\end{align*}

¿Podrías probar que $A\mathcal{I}_2 = A$ (es decir, que $\mathcal{I}_2$ es neutro por la derecha para $A$)?

Habiendo visto que el producto de matrices es asociativo, conmutativo y tiene neutros, probablemente te estarás preguntando si existen inversos en la multiplicación de matrices. Este cuestionamiento lo dejaremos para la siguiente entrada.

Relación con la composición de transformaciones

Como vimos en la entrada anterior, una forma de visualzar el producto de una matriz $A$ por un vector $u$ es como una transformación que envía el vector $u$ a un único vector $Au$.

Teniendo en mente esto, veamos que la propiedad de que $A(Bu) = (AB)u$ resulta aún más interesante. Para esto, veamos que el siguiente ejemplo: sean
\[
A
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix},
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Si multiplicamos $B$ por $u$, vemos que corresponde a la transformación que envía $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ al vector $Bu = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

Ahora, si multiplicamos $A$ por el vector $Bu$, vemos que corresponde a la transformación que envía $Bu$ al vector $A(Bu) = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$ (Acabamos de obtener el resultado de aplicar a $u$ la composición de las transformaciones $B$ y $A$).

Por otra parte, si realizamos la multiplicación
\[
AB
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix}
=
\begin{pmatrix}
6 & 0 \\
4 & 2
\end{pmatrix},
\]
la transformación asociada a $AB$ envía $u$ al vector $(AB)u = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$.

¡La composición de las transformaciones asociadas a $B$ y $A$ aplicada al vector $u$ coincide con la transformación asociada a la matriz $AB$ aplicada al mismo vector!

Si probamos esto para un vector arbitrario, nos daremos cuenta de que en todos los casos se cumple lo mismo. En realidad, esto no es una coincidencia: como aprenderás en tus cursos de álgebra lineal, la composición de transformaciones lineales está directamente asociada al producto de matrices.

Potencias de matrices

Podemos ver que si una matriz $A$ es cuadrada, al tener el mismo número de filas que de columnas, entonces podemos realizar la multiplicaciones $AA$, $AAA$, $AAAA$, etc., que por asociatividad no importa en qué orden multipliquemos. Esto nos sugiere que podemos cacular potencias de matrices.

Para una matriz cuadrada $A$, definiremos de manera recursiva la potencia $A^n$:

  • Definimos $A^0 = \mathcal{I}$.
  • Dada $A^n$, con $n$ un número natural, definimos $A^{n+1} = A^n A$.

Por ejemplo, si
\[
A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\]
calculemos $A^3$ empleando la definición recursiva. Para esto, iremos calculando una por una las potencias de $A$, hasta llegar a $A^3$:
\begin{align*}
A^0
&=
\mathcal{I}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\\[5pt]
A^1
&=
A^0A
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\\[5pt]
A^2
&=
A^1 A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(2)(2) + (1)(3) & (2)(1) + (1)(4) \\
(3)(2) + (4)(3) & (3)(1) + (4)(4)
\end{pmatrix}
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix},
\\[5pt]
A^3
&=
A^2A
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(7)(2) + (6)(3) & (7)(1) + (6)(4) \\
(18)(2) + (19)(3) & (18)(1) + (19)(4)
\end{pmatrix}
=
\begin{pmatrix}
32 & 31 \\
93 & 94
\end{pmatrix}.
\end{align*}

Prueba calcular algunas potencias de la matriz \(
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}.
\) ¿Notas algún patrón especial?

Más adelante…

En esta entrada aprendimos sobre el producto de matrices con matrices y conocimos algunas de sus propiedades. En la siguiente entrada abordaremos la pregunta sobre si existen los inversos en la multiplicación de matrices.

Tarea moral

  1. Realiza el producto de matrices $$\begin{pmatrix} -1 & -2 & -3 \\ 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$
  2. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza las siguientes operaciones por separado, sin usar la asociatividad del producto de matrices. ¿Cuál de las dos operaciones te resultó más fácil de hacer?
    • $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
    • $$(((AA)A)A)\begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$
  3. Completa las pruebas faltantes de las propiedades de la multiplicación de matrices.
  4. Demuestra la siguiente ley de exponentes para matrices: $A^mA^n=A^{m+n}$.
  5. Prueba que si
    \[
    A =
    \begin{pmatrix}
    a_{11} & 0 \\
    0 & a_{22}
    \end{pmatrix},
    \]
    y $k$ es un entero mayor o igual que $0$, entonces
    \[
    A^k
    =
    \begin{pmatrix}
    {a_{11}}^k & 0 \\
    0 & {a_{22}}^k
    \end{pmatrix}
    \]
    (Sugerencia: realizarlo por inducción sobre $k$, utilizando la definición recursiva).
  6. Encuentra matrices $A$ y $B$ de $2\times 2$ para las cuales $A^2-B^2\neq (A+B)(A-B)$.

Entradas relacionadas