Archivo del Autor: Omar González Franco

Ecuaciones Diferenciales I: Sistemas lineales homogéneos con coeficientes constantes – Valores propios repetidos

Por Omar González Franco

La matemática es la ciencia del orden y la medida, de bellas
cadenas de razonamientos, todos sencillos y fáciles.
– Descartes

Introducción

El método de valores y vectores propios nos ha permitido obtener las soluciones generales de sistemas lineales homogéneos. Ya vimos los casos en los que los valores propios son reales y distintos y cuando son complejos, en esta entrada presentaremos el caso en el que algunos de los valores propios son repetidos.

En este caso se presenta un problema y es que nosotros sabemos que si una matriz $\mathbf{A}$ de $n \times n$ con componentes constantes tiene $n$ valores propios distintos, entonces tendremos $n$ vectores propios que son linealmente independientes y por tanto tendremos $n$ soluciones linealmente independientes del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$. Si se presenta el caso en el que algunos valores propios son repetidos, entonces tendremos $k < n$ valores propios que son distintos y por tanto $k$ vectores propios linealmente independientes, lo que significa que nos faltarán $n -k$ soluciones linealmente independientes del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$. El problema aquí es ¿cómo obtener las soluciones linealmente independientes que nos faltan?, para así determinar la solución general del sistema lineal. Recordemos que la solución general corresponde a la combinación lineal de las $n$ soluciones linealmente independientes del sistema.

En esta entrada resolveremos este problema y lo interesante es que el concepto de exponencial de una matriz es lo que nos ayudará.

Vectores propios generalizados

De la primera unidad recordemos que la función $y(t) = ce^{at}$ es una solución de la ecuación diferencial escalar $y^{\prime}(t) = ay$ para cualesquiera constantes $a$ y $c$. De manera análoga, se desearía que la función vectorial

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{K} \label{1} \tag{1}$$

fuera una solución del sistema lineal

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{2} \tag{2}$$

para cualquier vector constante $\mathbf{K}$.

En la entrada en la que definimos la exponencial de una matriz demostramos que la función $\mathbf{Y}(t) = e^{\mathbf{A} t}$ no sólo es solución del sistema lineal (\ref{2}), sino que incluso es una matriz fundamental de soluciones. También vimos que la derivada de $\mathbf{Y}(t) = e^{\mathbf{A} t}$ es

$$\dfrac{d}{dt} e^{\mathbf{A}t} = \mathbf{A} e^{\mathbf{A}t} \label{3} \tag{3}$$

Usando este resultado mostremos lo siguiente.

$$\dfrac{d}{dt} (e^{\mathbf{A}t} \mathbf{K}) = (\mathbf{A} e^{\mathbf{A}t}) \mathbf{K} = \mathbf{A} (e^{\mathbf{A}t} \mathbf{K}) \label{4} \tag{4}$$

Esto muestra que la función $\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{K}$ efectivamente es solución del sistema lineal (\ref{2}).

Ahora que sabemos que (\ref{1}) es solución del sistema lineal (\ref{2}) veamos cómo esto puede ayudarnos a encontrar $n$ vectores $\mathbf{K}$ linealmente independientes. Notemos lo siguiente.

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{K} = e^{\mathbf{A} t} e^{(\lambda \mathbf{I} -\lambda \mathbf{I})t} \mathbf{K} = e^{(\mathbf{A} -\lambda \mathbf{I})t}e^{\lambda \mathbf{I}t} \mathbf{K} \label{5} \tag{5}$$

para cualquier constante $\lambda$ y en donde hemos usado el hecho de que

$$(\mathbf{A} -\lambda \mathbf{I})(\lambda \mathbf{I}) = (\lambda \mathbf{I})(\mathbf{A} -\lambda \mathbf{I}) \label{6} \tag{6}$$

De acuerdo a la definición de exponencial de una matriz observemos lo siguiente.

$$e^{\lambda \mathbf{I} t} = \sum_{k = 0}^{\infty} \dfrac{(\lambda \mathbf{I} t)^{k}}{k!} = \sum_{k = 0}^{\infty} \dfrac{ \lambda^{k} \mathbf{I}^{k} t^{k}}{k!} = \sum_{k = 0}^{\infty} \dfrac{ \lambda^{k} \mathbf{I} t^{k}}{k!} = \left( \sum_{k = 0}^{\infty} \dfrac{ (\lambda t)^{k}}{k!} \right) \mathbf{I} = e^{\lambda t} \mathbf{I} = e^{\lambda t}$$

Por lo tanto, (\ref{5}) se puede escribir como

$$\mathbf{Y}(t) = e^{\mathbf{A}t} \mathbf{K} = e^{\lambda t} e^{(\mathbf{A} -\lambda \mathbf{I})t} \mathbf{K} \label{7} \tag{7}$$

Concentrémonos un momento en el término $e^{(\mathbf{A} -\lambda \mathbf{I})t}$ de la solución anterior. Recordando que la exponencial $e^{\mathbf{A} t}$ es

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^{2} \dfrac{t^{2}}{2!} + \cdots + \mathbf{A}^{k} \dfrac{t^{k}}{k!} + \cdots = \sum_{k = 0}^{\infty}\mathbf{A}^{k} \dfrac{t^{k}}{k!} \label{8} \tag{8}$$

entonces la exponencial $e^{(\mathbf{A} -\lambda \mathbf{I})t}$ es

$$e^{(\mathbf{A} -\lambda \mathbf{I})t} = \mathbf{I} + (\mathbf{A} -\lambda \mathbf{I}) t + (\mathbf{A} -\lambda \mathbf{I})^{2} \dfrac{t^{2}}{2!} + \cdots + (\mathbf{A} -\lambda \mathbf{I})^{k} \dfrac{t^{k}}{k!} + \cdots = \sum_{k = 0}^{\infty} (\mathbf{A} -\lambda \mathbf{I})^{k} \dfrac{t^{k}}{k!}$$

y, así mismo

$$e^{(\mathbf{A} -\lambda \mathbf{I})t} \mathbf{K} = \left( \sum_{k = 0}^{\infty} (\mathbf{A} -\lambda \mathbf{I})^{k} \dfrac{t^{k}}{k!} \right) \mathbf{K} \label{9} \tag{9}$$

Supongamos que existe un entero $m$, tal que

$$(\mathbf{A} -\lambda \mathbf{I})^{m} \mathbf{K} = \mathbf{0} \label{10} \tag{10}$$

Entonces la serie infinita (\ref{9}) terminará después de $m$ términos, pues si se satisface (\ref{10}), entonces se cumple

$$(\mathbf{A} -\lambda \mathbf{I})^{m + l} \mathbf{K} = \mathbf{0} \label{11} \tag{11}$$

Para $l > 0$ entero. Esto es claro debido a que

$$(\mathbf{A} -\lambda \mathbf{I})^{m + l} \mathbf{K} = (\mathbf{A} -\lambda \mathbf{I})^{l} \left[ (\mathbf{A} -\lambda \mathbf{I})^{m} \mathbf{K} \right] = \mathbf{0}$$

Por lo tanto,

$$e^{(\mathbf{A} -\lambda \mathbf{I})t} \mathbf{K} = \mathbf{K} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} + \cdots + \dfrac{t^{m -1}}{(m -1)!}(\mathbf{A} -\lambda \mathbf{I})^{m -1} \mathbf{K} \label{12} \tag{12}$$

Así, la solución (\ref{7}) se puede escribir como

\begin{align*}
\mathbf{Y}(t) &= e^{\lambda t} \left[ \mathbf{K} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} + \cdots + \dfrac{t^{m -1}}{(m -1)!}(\mathbf{A} -\lambda \mathbf{I})^{m -1} \mathbf{K} \right] \\
&= e^{\lambda t} \left( \sum_{k = 0}^{m -1} (\mathbf{A} -\lambda \mathbf{I})^{k} \dfrac{t^{k}}{k!} \right) \mathbf{K} \label{13} \tag{13}
\end{align*}

No es casualidad que estemos usando la notación $\lambda$ y $\mathbf{K}$, estas cantidades corresponden a los valores y vectores propios de la matriz de coeficientes $\mathbf{A}$ del sistema lineal (\ref{2}), respectivamente.

El vector propio $\mathbf{K}$ que satisface (\ref{10}) recibe un nombre particular.

El resultado que nos interesa es la solución (\ref{13}). En el método de valores y vectores propios lo que hacemos es determinar los valores propios de la matriz $\mathbf{A}$ y con ellos posteriormente determinamos los vectores propios. Los vectores propios se determinan con la ecuación vectorial

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0} \label{14} \tag{14}$$

Observemos que si se satisface (\ref{14}), entonces la serie (\ref{13}) se reduce a $\mathbf{Y}(t) = e^{\lambda t} \mathbf{K}$ que es la solución que ya conocíamos. Si los valores y vectores propios son complejos simplemente se aplica la teoría de la entrada anterior sobre la misma solución $\mathbf{Y}(t) = e^{\lambda t} \mathbf{K}$.

A continuación presentamos el algoritmo para encontrar $n$ soluciones linealmente independientes del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$.

Algoritmo para encontrar $n$ soluciones linealmente independientes

  • Primero determinamos todos los valores y vectores propios de $\mathbf{A}$. Si $\mathbf{A}$ tiene $n$ vectores linealmente independientes, entonces el sistema lineal (\ref{2}) tiene $n$ soluciones linealmente independientes de la forma $e^{\lambda t} \mathbf{K}$. Esto es lo que siempre hemos hecho.
  • Supongamos que $\mathbf{A}$ tiene únicamente $k < n$ vectores propios linealmente independientes, entonces se tendrá sólo $k$ soluciones linealmente independientes de la forma $e^{\lambda t} \mathbf{K}$. Para determinar soluciones adicionales tomamos un valor propio $\lambda $ de $\mathbf{A}$ y buscamos todos los vectores $\mathbf{K}$ para los cuales se cumple simultáneamente
    $$(\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} = \mathbf{0} \hspace{1cm} y \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} \neq \mathbf{0} \label{15} \tag{15}$$
    Para cada uno de los vectores propios generalizados $\mathbf{K}$ encontrados, una solución del sistema lineal (\ref{2}) es
    $$\mathbf{Y}(t) = e^{\lambda t} \left[ \mathbf{K} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} \right]\label{16} \tag{16}$$
    Esto se obtiene de la solución (\ref{13}). Hacemos esto para todos los valores propios distintos $\lambda $ de $\mathbf{A}$.
  • Si aún no se tienen suficientes soluciones, entonces se buscan todos los vectores propios generalizados $\mathbf{K}$ para los cuales
    $$(\mathbf{A} -\lambda \mathbf{I})^{3} \mathbf{K} = \mathbf{0} \hspace{1cm} y \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} \neq \mathbf{0}, \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} \neq \mathbf{0} \label{17} \tag{17}$$
    Para cada uno de tales vectores $\mathbf{K}$, una solución del sistema lineal (\ref{2}) es
    $$\mathbf{Y}(t) = e^{\lambda t} \left[ \mathbf{K} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} + \dfrac{t^{2}}{2!}(\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} \right] \label{18} \tag{18}$$
    Nuevamente, este resultado se obtiene de considerar (\ref{17}) en (\ref{13}).
  • Este procedimiento se puede continuar hasta encontrar $n$ soluciones linealmente independientes.

Los puntos antes establecidos son los pasos a seguir para obtener $n$ soluciones linealmente independientes del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$.

Realicemos un ejemplo en el que apliquemos el algoritmo anterior para que todo quede más claro.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2
\end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
1 \\ 2 \\ 1
\end{pmatrix}$$

Solución: El primer paso es determinar todos los valores y vectores propios de la matriz $\mathbf{A}$. La ecuación característica de $\mathbf{A}$ se obtiene de calcular el siguiente determinante.

$$\begin{vmatrix}
2 -\lambda & 1 & 3 \\ 0 & 2 -\lambda & -1 \\ 0 & 0 & 2 -\lambda
\end{vmatrix} = 0$$

Es sencillo notar que el polinomio característico es

$$P(\lambda) = (2 -\lambda )^{3}$$

y la ecuación característica es

$$(2 -\lambda )^{3} = 0$$

Vemos que la única raíz que se obtiene es $\lambda = 2$, éste es el único valor propio de $\mathbf{A}$ con multiplicidad tres ($r$ = 3). Un vector propio $\mathbf{K} \neq \mathbf{0}$ lo obtenemos de resolver la ecuación vectorial

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

De este sistema se deduce que $k_{2} = k_{3} = 0$ y $k_{1}$ al ser arbitrario lo elegimos como $k_{1} = 1$. Por lo tanto, un vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

Entonces,

$$\mathbf{Y}_{1}(t) = e^{2t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

es una solución del sistema lineal dado. Esta es la única solución linealmente independiente que pudimos encontrar con el método tradicional. La matriz del sistema es de $3 \times 3$, así que nos hacen faltan 2 soluciones linealmente independientes para poder formar un conjunto fundamental de soluciones y, por tanto, formar la solución general.

Pasemos al segundo punto del algoritmo.

Ahora buscamos todos los vectores $\mathbf{K} \neq \mathbf{0}$, tal que se satisface (\ref{15}), es decir

$$(\mathbf{A} -2\mathbf{I})^{2} \mathbf{K} = \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

De este sistema deducimos que $k_{3} = 0$ y tanto $k_{1}$ como $k_{2}$ son arbitrarios, nosotros les podemos asignar algún valor, pero cuidado, recordemos que una condición adicional que tenemos es que este nuevo vector también satisfaga que

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} \neq \mathbf{0}$$

Un vector que satisface (\ref{15}) simultáneamente es

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}$$

En este caso una solución del sistema lineal esta dada por (\ref{16}).

\begin{align*}
\mathbf{Y}_{2}(t) &= e^{2t} \left[ \mathbf{I} + t(\mathbf{A} -2 \mathbf{I}) \right] \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \\
&= e^{2t} \left[ \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} + t \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \right] \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \\
&= e^{2t} \left[ \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + t \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \right] \\
&= e^{2t} \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + t \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} \right]
\end{align*}

Esto es,

$$\mathbf{Y}_{2}(t) = e^{2t} \begin{pmatrix}
t \\ 1 \\ 0
\end{pmatrix}$$

En este proceso hemos encontrado dos vectores linealmente independientes, a saber

$$\mathbf{C}_{1} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{C}_{2} = \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

Ahora procedemos a buscar un vector propio generalizado más que satisfaga (\ref{17}) y tal que la solución sea de la forma (\ref{18}).

\begin{align*}
(\mathbf{A} -2 \mathbf{I})^{3} \mathbf{K} &= \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix}^{3} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} \\
&= \begin{pmatrix}
0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}
\end{align*}

Es claro que cualquier vector es solución de esta ecuación, sin embargo también se debe satisfacer que

$$(\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} \neq 0 \hspace{1cm} y \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} \neq 0$$

Un vector que satisface lo anterior es

$$\mathbf{K}_{3} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}$$

De acuerdo a (\ref{18}) una solución del sistema lineal es

\begin{align*}
\mathbf{Y}_{3}(t) &= e^{2t} \left[ \mathbf{I} + t(\mathbf{A} -2 \mathbf{I}) + \dfrac{t^{2}}{2}(\mathbf{A} -2 \mathbf{I})^{2} \right] \mathbf{K}_{3} \\
&= e^{2t} \left[ \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} + t \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} + \dfrac{t^{2}}{2} \begin{pmatrix}
0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \right] \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \\
&= e^{2t} \left[ \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + t \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + \dfrac{t^{2}}{2} \begin{pmatrix}
0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] \\
&= e^{2t} \left[ \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + t \begin{pmatrix}
3 \\ -1 \\ 0
\end{pmatrix} + \dfrac{t^{2}}{2} \begin{pmatrix}
-1 \\ 0 \\ 0
\end{pmatrix} \right] \\
\end{align*}

En este caso los vectores linealmente encontrados son

$$\mathbf{C}_{1} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}, \hspace{1cm} \mathbf{C}_{2} = \begin{pmatrix}
3 \\ -1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{C}_{3} = \begin{pmatrix}
-1 \\ 0 \\ 0
\end{pmatrix}$$

Y la tercer solución linealmente independiente es

$$\mathbf{Y}_{3}(t) = e^{2t} \begin{pmatrix}
3t -\dfrac{1}{2}t^{2} \\ -t \\ 1
\end{pmatrix}$$

Ahora que tenemos las tres soluciones linealmente independientes del sistema lineal dado podemos concluir que la solución general del sistema es

$$\mathbf{Y}(t) = e^{2t} \left[ c_{1} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
t \\ 1 \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
3t -\dfrac{1}{2}t^{2} \\ -t \\ 1
\end{pmatrix} \right]$$

Las constantes $c_{1}$, $c_{2}$ y $c_{3}$ se determinan a partir de los valores iniciales.

$$\mathbf{Y}(0) = \begin{pmatrix}
1 \\ 2 \\ 1
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}+ c_{3} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ c_{2} \\ c_{3}
\end{pmatrix} $$

Esto implica que $c_{1} = 1$, $c_{2} = 2$ y $c_{3} = 1$. Por lo tanto, la solución particular del sistema lineal es

$$\mathbf{Y}(t) = e^{2t} \left[ \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + 2 \begin{pmatrix}
t \\ 1 \\ 0
\end{pmatrix} + \begin{pmatrix}
3t -\dfrac{1}{2}t^{2} \\ -t \\ 1
\end{pmatrix} \right] = e^{2t} \begin{pmatrix}
1+ 5t -\dfrac{1}{2}t^{2} \\ 2 -t \\ 1
\end{pmatrix}$$

$\square$

Para concluir con el método de valores y vectores propios enunciaremos un importante teorema que es bueno tener en cuenta cuando trabajamos con valores y vectores propios. Este resultado es conocido como teorema de Cayley – Hamilton, la demostración no la haremos ya que se requiere de teoría de álgebra lineal que no veremos en este curso, pero que por supuesto puedes revisar en entradas de la materia correspondiente.

Teorema de Cayley – Hamilton

En el ejemplo anterior obtuvimos que la ecuación característica de la matriz $\mathbf{A}$ es

$$P(\lambda) = (2 -\lambda)^{3} = 0 \label{19} \tag{19}$$

Observemos que si sustituimos $\lambda$ por la matriz $\mathbf{A}$ obtenemos lo siguiente.

\begin{align*}
P(\mathbf{A}) &= (2 \mathbf{I} -\mathbf{A})^{3} \\
&= \left[ \begin{pmatrix}
2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2
\end{pmatrix} – \begin{pmatrix}
2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2
\end{pmatrix} \right]^{3} \\
&= \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix}^{3} \\
&= \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \\
&= \begin{pmatrix}
0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix}
\end{align*}

Vemos que se cumple

$$P(\mathbf{A}) = (2 \mathbf{I} -\mathbf{A})^{3} = \mathbf{0} \label{20} \tag{20}$$

Esto no es casualidad, resulta que cualquier matriz $\mathbf{A}$ de $n \times n$ ¡satisface su propia ecuación característica!. El teorema de Cayley – Hamilton establece este hecho.

Con esto concluimos esta entrada y el estudio de los sistemas lineales homogéneos. En la siguiente entrada aprenderemos a resolver sistemas lineales no homogéneos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & 3 \\ -3 & 5
    \end{pmatrix}\mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 0 & -1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -1 & 2
    \end{pmatrix} \mathbf{Y}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & 1 & 2 \\ -1 & 1 & 1 \\ -2 & 1 & 3
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 0 \\ 1
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -4 & -4 & 0 \\ 10 & 9 & 1 \\ -4 & -3 & 1
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    2 \\ 1 \\ -1
    \end{pmatrix}$

Más adelante…

Hemos concluido con los tres casos del método de valores y vectores propios para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas.

En la siguiente entrada comenzaremos a resolver sistemas lineales no homogéneos, el método que se utiliza es nuevamente el método de variación de parámetros. Veremos cómo es que este método se adapta a los sistemas lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos

Por Omar González Franco

Un matemático que no es también algo de poeta
nunca será un matemático completo.
– Karl Weierstrass

Introducción

Ya vimos cómo obtener la solución general de sistemas lineales homogéneos con coeficientes constantes en el caso en el que los valores propios son todos reales y distintos. En esta entrada desarrollaremos el caso en el que los valores propios son complejos.

Valores propios complejos

Vimos que para un sistema lineal

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{1} \tag{1}$$

con $\mathbf{A}$ una matriz de $n \times n$ con componentes reales

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

siempre se puede encontrar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{3} \tag{3}$$

Ahora sabemos que $\lambda$ y $\mathbf{K}$ corresponden a un valor y vector propio respectivamente. Como los valores propios se obtienen de encontrar las raíces del polinomio característico, entonces es posible que los valores propios sean números complejos, digamos de la forma

$$\lambda = \alpha + i \beta \label{4} \tag{4}$$

Con $\alpha$ y $\beta$ reales. Veremos más adelante que este tipo de valores propios generarán también vectores propios con componentes complejos que podremos escribir como

$$\mathbf{K} = \mathbf{U} + i \mathbf{V} \label{5} \tag{5}$$

Con estos resultados la solución (\ref{3}) se puede escribir como

$$\mathbf{Y}(t) = \begin{pmatrix}
u_{1} + i v_{1} \\ u_{2} + i v_{2} \\ \vdots \\ u_{n} + i v_{n}
\end{pmatrix}e^{(\alpha + i \beta)t} = (\mathbf{U} + i \mathbf{V}) e^{(\alpha + i \beta)t} \label{6} \tag{6}$$

Un resultado interesante es que los valores y vectores propios conjugados de (\ref{4}) y (\ref{5}) también son valores y vectores propios de la misma matriz $\mathbf{A}$. Demostremos este hecho.

Recordemos que estamos denotando con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Demostración: Por hipótesis $\lambda$ es un valor propio de $\mathbf{A}$, lo que significa que se cumple la relación

$$\mathbf{AK} = \lambda \mathbf{K} \label{7} \tag{7}$$

Con $\mathbf{K}$ el vector propio asociado a $\lambda$. Si tomamos el conjugado de la ecuación anterior, tenemos

$$\overline{\mathbf{AK}} = \overline{\lambda \mathbf{K}}$$

o bien,

$$\mathbf{\bar{A}} \mathbf{\bar{K}} = \bar{\lambda} \mathbf{\bar{K}} \label{8} \tag{8}$$

Pero como $\mathbf{A} \in M_{n \times n}$, es decir, $\mathbf{A}$ es una matriz con componentes reales constantes, entonces $\mathbf{\overline{A}} = \mathbf{A}$. La ecuación (\ref{8}) queda como

$$\mathbf{A} \mathbf{\overline{K}} = \bar{\lambda} \mathbf{\overline{K}} \label{9} \tag{9}$$

Lo que muestra que $\overline{\lambda}$ es también un valor propio de $\mathbf{A}$ y el vector propio asociado es $\mathbf{\overline{K}}$.

$\square$

Como $\lambda$ y $\overline{\lambda}$ son valores propios, con vectores propios asociados $\mathbf{{K}}$ y $\mathbf{\overline{K}}$ respectivamente, de la misma matriz $\mathbf{A}$, por el último teorema de la entrada correspondiente podemos deducir que la solución conjugada de (\ref{6})

$$\mathbf{\overline{Y}}(t) = \begin{pmatrix}
u_{1} -i v_{1} \\ u_{2} -i v_{2} \\ \vdots \\ u_{n} -i v_{n}
\end{pmatrix}e^{(\alpha -i \beta)t} = (\mathbf{U} -i \mathbf{V}) e^{(\alpha -i \beta)t} \label{10} \tag{10}$$

es también una solución del sistema lineal (\ref{1}) y además las soluciones (\ref{6}) y (\ref{10}) son linealmente independientes por el mismo teorema.

A continuación enunciamos un teorema que establece que una solución como (\ref{6}) da lugar a dos soluciones con valores reales.

Demostración: Supongamos que la solución del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$ es de la forma

$$\mathbf{Y} = \mathbf{W}_{1} + i \mathbf{W}_{2} \label{11} \tag{11}$$

Donde $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son vectores con componentes reales.

Queremos probar que

$$\mathbf{W}_{1} = Re \{ \mathbf{Y} \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2} = Im \{ \mathbf{Y} \}$$

también son soluciones del sistema lineal.

Por una lado, como $\mathbf{Y}$ es solución, entonces

$$\mathbf{Y}^{\prime} = \mathbf{AY} = \mathbf{A} (\mathbf{W}_{1} + i \mathbf{W}_{2}) = \mathbf{AW}_{1} + i \mathbf{AW}_{2} \label{12} \tag{12}$$

Por otro lado, notemos que

$$\mathbf{Y}^{\prime} = (\mathbf{W}_{1} + i \mathbf{W}_{2})^{\prime} = \mathbf{W}_{1}^{\prime} + i \mathbf{W}_{2}^{\prime} \label{13} \tag{13}$$

De (\ref{12}) y (\ref{13}), se tiene que

$$\mathbf{W}_{1}^{\prime} + i \mathbf{W}_{2}^{\prime} = \mathbf{AW}_{1} + i \mathbf{AW}_{2} \label{14} \tag{14}$$

Igualando las partes reales e imaginarias de (\ref{14}), se obtiene

$$\mathbf{W}_{1}^{\prime} = \mathbf{AW}_{1} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}^{\prime} = \mathbf{AW}_{2}$$

Lo que muestra que las funciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son soluciones con valores reales del sistema lineal (\ref{1}).

$\square$

Ahora que conocemos este resultado veamos que forma tienen las funciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$.

Demostración: Sabemos que una solución del sistema lineal (\ref{1}), en el caso en el que el valor y el vector propio son complejos, es

$$\mathbf{Y}(t) = e^{(\alpha + i \beta)t} (\mathbf{U} + i \mathbf{V})$$

Esta función la podemos escribir como

$$\mathbf{Y}(t) = e^{\alpha t} e^{i \beta t} \mathbf{U} + i e^{\alpha t} e^{i \beta t} \mathbf{V} \label{17} \tag{17}$$

Usando la identidad de Euler

$$e^{i \beta t} = \cos(\beta t) + i \sin(\beta t) \label{18} \tag{18}$$

podemos escribir la función (\ref{17}) como

\begin{align*}
\mathbf{Y} &= e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)] \mathbf{U} + i e^{\alpha t}[\cos(\beta t) + i \sin(\beta t)] \mathbf{V} \\
&= e^{\alpha t} [\mathbf{U} \cos(\beta t) + i \mathbf{U} \sin(\beta t)] + i e^{\alpha t}[\mathbf{V} \cos(\beta t) + i \mathbf{V} \sin(\beta t)]
\end{align*}

Si reescribimos este resultado en una parte real y una imaginaria se tiene lo siguiente.

$$\mathbf{Y} = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)] + i e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)] \label{19} \tag{19}$$

En esta forma podemos definir

$$\mathbf{W}_{1} = Re \{ \mathbf{Y} \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2} = Im \{ \mathbf{Y} \}$$

entonces,

$$\mathbf{W}_{1}(t) = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)]$$

y

$$\mathbf{W}_{2}(t) = e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)]$$

Por el teorema anterior concluimos que ambas son soluciones del sistema lineal (\ref{1}). Para mostrar que son soluciones linealmente independientes probemos que se cumple

$$c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) = 0 \label{20} \tag{20}$$

sólo si $c_{1} = c_{2} = 0$. Para ello consideremos la solución

$$\mathbf{Y} = \mathbf{W}_{1} + i \mathbf{W}_{2}$$

Por el primer teorema visto sabemos que el conjugado de la función anterior es también una solución del sistema.

$$\mathbf{\overline{Y}} = \mathbf{W}_{1} -i \mathbf{W}_{2} \label{21} \tag{21}$$

Y además ambas soluciones son linealmente independientes, lo que significa que si se satisface la ecuación

$$C_{1} \mathbf{Y} + C_{2} \mathbf{\overline{Y}} = 0 \label{22} \tag{22}$$

es porque $C_{1} = C_{2} = 0$.

Sustituyamos $\mathbf{Y}$ y $\mathbf{\overline{Y}}$ en (\ref{22}).

$$C_{1} [\mathbf{W}_{1} + i \mathbf{W}_{2}] + C_{2} [\mathbf{W}_{1} -i \mathbf{W}_{2}] = 0$$

Factorizando $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$, se tiene

$$(C_{1} + C_{2}) \mathbf{W}_{1} + i(C_{1} -C_{2}) \mathbf{W}_{2} = 0 \label{23} \tag{23}$$

Si definimos

$$c_{1} = C_{1} + C_{2} \hspace{1cm} y \hspace{1cm} c_{2} = i(C_{1} -C_{2})$$

podemos escribir

$$c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) = 0$$

Pero como $C_{1} = C_{2} = 0$, entonces

$$C_{1} + C_{2} = 0 \hspace{1cm} y \hspace{1cm} C_{1} -C_{2} = 0$$

es decir, $c_{1} = c_{2} = 0$, lo que muestra que las soluciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son linealmente independientes.

$\square$

Solución general de un sistema lineal con valores propios complejos

Nosotros ya sabemos que todos los vectores propios de una matriz $\mathbf{A}$, reales o complejos, son linealmente independientes, entonces un conjunto fundamental de soluciones de (\ref{1}) consiste de soluciones de la forma (\ref{15}) y (\ref{16}) en el caso en el que se obtienen valores propios complejos y soluciones de la forma (\ref{3}) cuando los valores propios son reales.

Por ejemplo, supongamos que $\lambda_{1} = \alpha + i \beta$, $\lambda_{2} = \alpha -i \beta$ son valores propios complejos de un sistema lineal y que $\lambda_{3}, \lambda_{4}, \cdots, \lambda_{n}$ son valores propios reales distintos del mismo sistema lineal. Los correspondientes vectores propios serían $\mathbf{K}_{1} = \mathbf{U} + i \mathbf{V}$, $\mathbf{K}_{2} = \mathbf{U} -i \mathbf{V}$, $\mathbf{K}_{3}, \mathbf{K}_{4}, \cdots, \mathbf{K}_{n}$. Entonces la solución general del sistema lineal será

$$\mathbf{Y}(t) = c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) + c_{3} e^{\lambda_{3} t} \mathbf{K}_{3} + c_{4} e^{\lambda_{4} t} \mathbf{K}_{4} + \cdots + c_{n} e^{\lambda_{n} t} \mathbf{K}_{n} \label{24} \tag{24}$$

Donde $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$ son los vectores dados en (\ref{15}) y (\ref{16}), respectivamente.

Es importante mencionar que esta teoría se aplica sólo para el caso en que la matriz (\ref{2}) es una matriz con componentes reales.

Para concluir con esta entrada realicemos un ejemplo.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1
\end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
1 \\ 1 \\ 1
\end{pmatrix}$$

Solución: En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1
\end{pmatrix}$$

La ecuación característica la obtenemos de calcular el determinante

$$\begin{vmatrix}
1 -\lambda & 0 & 0 \\ 0 & 1- \lambda & -1 \\ 0 & 1 & 1 -\lambda
\end{vmatrix} = 0$$

De donde se obtiene que

$$(1 -\lambda)^{3} + (1 -\lambda) = (1 -\lambda)(\lambda^{2} -2 \lambda + 2) = 0$$

Al resolver para $\lambda$ se obtienen las siguientes tres raíces.

$$\lambda_{1} = 1, \hspace{1cm} \lambda_{2} = 1 + i \hspace{1cm} y \hspace{1cm} \lambda_{3} = 1 -i$$

Estos valores corresponden a los valores propios de la matriz del sistema. Determinemos los vectores correspondientes.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K}_{1} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -1 \mathbf{I}) \mathbf{K}_{1} = \mathbf{0}$$

$$\begin{pmatrix}
1 -1 & 0 & 0 \\ 0 & 1 -1 & -1 \\ 0 & 1 & 1 -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

Es claro que $k_{2} = k_{3} = 0$ y $k_{1}$ al ser libre lo elegimos como $k_{1} = 1$, entonces el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 1 + i$.

Buscamos un vector $\mathbf{K}_{2}$ no nulo, tal que

$$(\mathbf{A} -(1 + i) \mathbf{I}) \mathbf{K}_{2} = \mathbf{0}$$

$$\begin{pmatrix}
1 -(1 + i) & 0 & 0 \\ 0 & 1 -(1 + i) & -1 \\ 0 & 1 & 1 -(1 + i)
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
-i & 0 & 0 \\ 0 & -i & -1 \\ 0 & 1 & -i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
-i k_{1} &= 0 \\
-i k_{2} -k_{3} &= 0 \\
k_{2} -i k_{3} &= 0
\end{align*}

De la primera ecuación se obtiene que $k_{1} = 0$, y de la segunda o tercera se obtiene que $k_{2} = i k_{3}$. Elegimos $k_{3} = 1$, así $k_{2} = i$, entonces el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix}$$

Este vector al ser complejo lo podemos escribir como

$$\mathbf{K}_{2} = \mathbf{U} + i \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \label{25} \tag{25}$$

Caso 3: $\lambda_{3} = 1 -i$.

Este caso, como ya vimos en la teoría, corresponde al conjugado del caso anterior, así que el vector propio para este caso es

$$\mathbf{K}_{3} = \begin{pmatrix}
0 \\ -i \\ 1
\end{pmatrix}$$

que también se puede escribir como

$$\mathbf{K}_{3} = \mathbf{U} -i \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} -i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \label{26} \tag{26}$$

Por lo tanto, una forma de la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix} + c_{3} e^{(1 -i)t} \begin{pmatrix}
0 \\ -i \\ 1
\end{pmatrix} \label{27} \tag{27}$$

Sin embargo, es conveniente tener la solución real dada en (\ref{24}). De los resultados (\ref{25}) y (\ref{26}) sabemos que

$$\mathbf{U} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{V} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}$$

Si sustituimos en (\ref{15}) y (\ref{16}) con $\alpha = \beta = 1$, obtenemos lo siguiente.

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} \label{28} \tag{28}$$

Por su puesto, lo ideal es no memorizar las ecuaciones (\ref{15}) y (\ref{16}). Lo que se debe de hacer es tomar el caso en el que el vector propio es complejo, en este caso $\lambda_{2} = 1 + i$ y el vector propio correspondiente $\mathbf{K}_{2} = \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}$, tal que una solución del sistema es

$$\mathbf{Y}_{2}(t) = e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix}$$

y usamos la identidad de Euler (\ref{18}).

\begin{align*}
e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix} &= e^{t} [\cos(t) + i \sin(t)] \left[ \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \right] \\
&= e^{t} \left[ \cos(t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} -\sin(t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + i \sin(t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \cos(t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \right] \\
&= e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + i e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix}
\end{align*}

De donde podemos definir las funciones anteriores (\ref{28}).

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix}$$

Por lo tanto, de acuerdo a (\ref{24}), la solución general $\mathbf{Y}(t)$ del sistema lineal homogéneo dado debe tener la forma

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + c_{3} e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} \label{29} \tag{29}$$

Apliquemos los valores iniciales. Tomando $t = 0$, se ve que

$$\mathbf{Y}(0) = \begin{pmatrix}
1 \\ 1 \\ 1
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ c_{3} \\ c_{2}
\end{pmatrix}$$

De modo que, $c_{1} = c_{2} = c_{3} = 1$. Por lo tanto, la solución particular del problema de valores iniciales es

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} = e^{t} \begin{pmatrix}
1 \\ \cos(t) -\sin(t) \\ \cos(t) + \sin(t)
\end{pmatrix} \label{30} \tag{30}$$

$\square$

Hemos concluido esta entrada. En la siguiente revisaremos el último caso que corresponde a la situación en la que tenemos valores propios que se repiten, es decir, que tienen multiplicidad $r > 1$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 2 \\ -1 & -1
    \end{pmatrix}\mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -7 & 6 & -6 \\ -9 & 5 & -9 \\ 0 & -1 & -1
    \end{pmatrix} \mathbf{Y}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ -1 \\ -2
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 3 & 0
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 1 \\ 1 \\ 0
    \end{pmatrix}$

Más adelante…

Ya conocemos la forma de las soluciones generales de sistemas lineales homogéneos en los que los valores propios de la matriz del sistema son reales y distintos y en los que son números complejos. El caso en el que son repetidos se presentará en la siguiente entrada.

Cuando los valores propios son repetidos el método se puede complicar un poco, sin embargo existe una alternativa bastante ingeniosa que nos permite obtener $n$ soluciones linealmente independientes de un sistema lineal de $n$ ecuaciones. ¡Dicha alternativa involucra la utilidad de la exponencial de una matriz $e^{\mathbf{A} t}$!.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Sistemas lineales homogéneos con coeficientes constantes – Valores propios distintos

Por Omar González Franco

No debería haber algo como matemáticas aburridas.
– Edsger Dijkstra

Introducción

En la entrada anterior presentamos un breve repaso sobre valores y vectores propios de matrices y vimos cómo es que estas herramientas nos pueden ayudar a resolver sistemas de ecuaciones diferenciales de primer orden homogéneas con coeficientes constantes.

En dicha entrada vimos que para obtener los valores propios es necesario determinar la ecuación característica de la matriz, ésta ecuación resulta ser un polinomio de grado igual al número de ecuaciones que conformen al sistema lineal, así que si se trata de un sistema de $n$ ecuaciones, entonces el polinomio característico sera un polinomio de grado $n$, lo que significa que al resolver para la incógnita obtendremos $n$ raíces, es decir, $n$ valores propios. Ahora bien, sabemos que existen al menos tres casos que pueden ocurrir con dichas raíces y es que pueden ser reales y todas diferentes, pueden ser algunas repetidas o pueden ser incluso números complejos, para cada caso tendremos una forma particular de la solución general a tal sistema lineal.

Lo que desarrollaremos en las siguientes entradas será justamente estos tres casos. En esta entrada comenzaremos con el caso en el que los valores propios del sistema lineal son todos reales y distintos.

Recordemos que estamos intentando resolver un sistema lineal homogéneo con coeficientes constantes.

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

Entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

Valores propios reales distintos

Con lo visto en la entrada anterior sabemos que si una matriz $\mathbf{A}$ de $n \times n$ tiene $n$ valores propios reales y distintos $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, entonces siempre se puede encontrar un conjunto de $n$ vectores propios linealmente independientes $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.

Por otro lado, con el último teorema visto en la entrada anterior sabemos que si

$$\mathbf{Y}_{1} = \mathbf{K}_{1}e^{\lambda_{1}t}, \hspace{1cm} \mathbf{Y}_{2} = \mathbf{K}_{2}e^{\lambda_{2}t}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n} = \mathbf{K}_{n}e^{\lambda_{n}t}$$

es un conjunto fundamental de soluciones de (\ref{3}) en el intervalo $(-\infty, \infty)$, entonces la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} e^{\lambda_{1}t} + c_{2} \mathbf{K}_{2} e^{\lambda_{2}t} + \cdots + c_{n} \mathbf{K}_{n} e^{\lambda_{n}t} \label{4} \tag{4}$$

Donde $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son los valores propios y $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son los vectores propios asociados a cada valor propio. Notemos que en este teorema no se incluye la hipótesis de que los valores propios sean distintos. En esta entrada estamos interesados en resolver sistemas lineales en donde las raíces del polinomio característico sean todos reales y distintos, es decir, el caso en el que los valores propios del sistemas son distintos entre sí.

El siguiente resultado muestra cómo debe ser la solución general de un sistema lineal (\ref{3}) en el caso en el que los valores propios son reales y distintos.

La demostración es inmediata aplicando los resultados antes mencionados que son parte de dos teoremas vistos en la entrada anterior. De tarea moral Intenta escribir la demostración formalmente.

La diferencia entre (\ref{4}) y (\ref{5}) es que en ésta última solución ocurre que $\lambda_{i} \neq \lambda_{j}$ para $i \neq j$.

Este primer caso en realidad es muy sencillo así que concluiremos la entrada con tres ejemplos.

En la entrada en la que desarrollamos el método de eliminación de variables vimos que la solución general del sistema

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
t +1 \\ t + 1
\end{pmatrix} \label{6} \tag{6}$$

es

$$\mathbf{Y} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} -\begin{pmatrix}
\dfrac{1}{3} \\ \dfrac{1}{3}
\end{pmatrix}t + \begin{pmatrix}
\dfrac{1}{9} \\ \dfrac{16}{9}
\end{pmatrix} \label{7} \tag{7}$$

Lo que significa que la solución del caso homogéneo de (\ref{6})

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y} \label{8} \tag{8}$$

es

$$\mathbf{Y} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} \label{9} \tag{9}$$

Veamos si aplicando este método obtenemos el mismo resultado.

Recordemos que el polinomio característico se obtiene de calcular el determinante

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{10} \tag{10}$$

Una vez obtenido el polinomio se buscan las raíces para determinar los valores propios. Para cada valor propio se busca un vector $\mathbf{K} \neq \mathbf{0}$, tal que satisfaga la relación

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0} \label{11} \tag{11}$$

Los vectores obtenidos corresponderán a los vectores propios del sistema.

Finalmente se sustituyen estos resultados en la solución (\ref{5}), siempre y cuando los valores propios sean reales y distintos.

Ejemplo: Resolver el sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

Solución: En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix}$$

Determinemos la ecuación característica de acuerdo a (\ref{10}).

$$\begin{vmatrix}
4 -\lambda & -1 \\ 2 & 1 -2
\end{vmatrix} = (4 -\lambda)(1 -\lambda) + 2 = 0$$

El polinomio característico es

$$\lambda^{2} -5 \lambda + 6 = 0$$

Resolviendo para $\lambda$ se obtiene que las raíces son $\lambda_{1} = 2$ y $\lambda_{2} = 3$, son reales y distintas. Para cada valor propio determinemos los vectores propios de acuerdo a (\ref{11}).

Caso 1: $\lambda_{1} = 2$.

$$\begin{pmatrix}
4 -2 & -1 \\ 2 & 1 -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
2 & -1 \\ 2 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
2k_{1} -k_{2} &= 0 \\
2k_{1} &= k_{2}
\end{align*}

Elegimos $k_{1} = 1$, entonces $k_{2} = 2$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 2
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
4 -3 & -1 \\ 2 & 1 -3
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
1 & -1 \\ 2 & -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
k_{1} -k_{2} &= 0 \\
k_{1} &= k_{2}
\end{align*}

Elegimos $k_{1} = 1$, entonces $k_{2} = 1$, así el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

De acuerdo a (\ref{5}), la solución general es

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1}e^{\lambda_{1}t} + c_{2} \mathbf{K}_{2}e^{\lambda_{2}t} $$

Sustituyendo los valores obtenidos tenemos que la solución general del sistema lineal homogéneo es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Vemos que efectivamente corresponde a la solución (\ref{9}) obtenida con el método de eliminación de variables.

$\square$

Resolvamos ahora un problema con valores iniciales.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 12 \\ 3 & 1
\end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Solución: La matriz $\mathbf{A}$ está dada por

$$\mathbf{A} = \begin{pmatrix}
1 & 12 \\ 3 & 1
\end{pmatrix}$$

La ecuación característica es

$$\begin{vmatrix}
1 -\lambda & 12 \\ 3 & 1 -\lambda
\end{vmatrix} = (1 -\lambda)^{2} -36 = 0$$

El polinomio característico es

\begin{align*}
\lambda^{2} -2 \lambda -35 &= 0 \\
(\lambda -7) (\lambda + 5) &= 0
\end{align*}

De donde es claro que $\lambda_{1} = 7$ y $\lambda_{2} = -5$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = 7$.

$$\begin{pmatrix}
1 -7 & 12 \\ 3 & 1 -7
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
-6 & 12 \\ 3 & -6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
-6 k_{1} + 12 k_{2} &= 0 \\
3 k_{1} -6 k_{2} &= 0
\end{align*}

De donde $k_{1} = 2k_{2}$. Elegimos $k_{2} = 1$, de manera que $k_{1} = 2$. Así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ 1
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -5$.

$$\begin{pmatrix}
1 + 5 & 12 \\ 3 & 1 + 5
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
6 & 12 \\ 3 & 6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
6 k_{1} + 12 k_{2} &= 0 \\
3 k_{1} + 6 k_{2} &= 0
\end{align*}

De donde $k_{1} = -2k_{2}$. Elegimos $k_{2} = 1$, de manera que $k_{1} = -2$. Así el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
-2 \\ 1
\end{pmatrix}$$

Sustituyendo estos resultados en la solución general (\ref{5}), se obtiene

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{7t} + c_{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{-5t}$$

Apliquemos los valores iniciales para determinar el valor de las constantes $c_{1}$ y $c_{2}$.

$$\mathbf{Y}(0) = c_{1} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{0} + c_{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{0}$$

Reescribiendo.

$$\begin{pmatrix}
0 \\ 1
\end{pmatrix} = \begin{pmatrix}
2c_{1} \\ c_{1}
\end{pmatrix} + \begin{pmatrix}
-2c_{2} \\ c_{2}
\end{pmatrix} = \begin{pmatrix}
2c_{1} -2c_{2} \\ c_{1} + c_{2}
\end{pmatrix} $$

Las ecuaciones que se obtienen son

\begin{align*}
2c_{1} -2c_{2} &= 0 \\
c_{1} + c_{2} &= 1
\end{align*}

Resolviendo el sistema se obtiene que $c_{1} = \dfrac{1}{2}$ y $c_{2} = \dfrac{1}{2}$. Por lo tanto, la solución particular del sistema lineal es

$$\mathbf{Y}(t) = \dfrac{1}{2} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{7t} + \dfrac{1}{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{-5t} = \begin{pmatrix}
e^{7t} -e^{-5t} \\ \dfrac{1}{2}e^{7t} + \dfrac{1}{2}e^{-5t}
\end{pmatrix}$$

$\square$

Para concluir con esta entrada, resolvamos un sistema lineal en el que la matriz $\mathbf{A}$ es de $4 \times 4$.

Ejemplo: Determinar la solución general del siguiente sistema lineal homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-1 & -1 & 1 & 1 \\
-3 & -4 & -3 & 6 \\
0 & -3 & -2 & 3 \\
-3 & -5 & -3 & 7
\end{pmatrix} \mathbf{Y}$$

Solución: La ecuación característica se obtiene de hacer el siguiente determinante.

$$\begin{vmatrix}
-1 -\lambda & -1 & 1 & 1 \\
-3 & -4 -\lambda & -3 & 6 \\
0 & -3 & -2 -\lambda & 3 \\
-3 & -5 & -3 & 7 -\lambda
\end{vmatrix} = 0$$

No es de nuestro interés mostrar todos los pasos del determinante, incluso es conveniente hacer uso de algún método computacional para resolverlo. El resultado que se obtiene de calcular el determinante es

$$\lambda^{4} -5 \lambda^{2} + 4 = 0$$

Muestra que el polinomio característico se puede descomponer de la siguiente forma.

$$(\lambda + 2)(\lambda + 1)(\lambda -1)(\lambda -2) = 0$$

En esta forma es claro que los valores propios del sistema son

$$\lambda_{1} = -2, \hspace{1cm} \lambda_{2} = -1, \hspace{1cm} \lambda_{3} = 1, \hspace{1cm} y \hspace{1cm} \lambda_{4} = 2$$

Todos reales y distintos. Determinemos los vectores propios para cada valor propio.

Caso 1: $\lambda_{1} = -2$.

Buscamos un vector $\mathbf{K}_{1} \neq \mathbf{0}$, tal que

$$(\mathbf{A} + 2 \mathbf{I}) \mathbf{K}_{1} = \mathbf{0}$$

Sustituimos.

$$\begin{pmatrix}
-1 + 2 & -1 & 1 & 1 \\
-3 & -4 + 2 & -3 & 6 \\
0 & -3 & -2 + 2 & 3 \\
-3 & -5 & -3 & 7 + 2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 1 & 1 \\
-3 & -2 & -3 & 6 \\
0 & -3 & 0 & 3 \\
-3 & -5 & -3 & 9
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

Nuevamente es conveniente resolver el sistema usando algún método computacional, al hacerlo obtendremos que los valores correspondientes de las incógnitas son

$$k_{1} = 1, \hspace{1cm} k_{2} = 0, \hspace{1cm} k_{3} = -1, \hspace{1cm} y \hspace{1cm} k_{4} = 0$$

De manera que el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -1$

Sustituimos en la ecuación vectorial

$$(\mathbf{A} + 1 \mathbf{I}) \mathbf{K}_{2} = \mathbf{0}$$

$$\begin{pmatrix}
-1 + 1 & -1 & 1 & 1 \\
-3 & -4 + 1 & -3 & 6 \\
0 & -3 & -2 + 1 & 3 \\
-3 & -5 & -3 & 7 + 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 & -1 & 1 & 1 \\
-3 & -3 & -3 & 6 \\
0 & -3 & -1 & 3 \\
-3 & -5 & -3 & 8
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

Resolviendo el sistema obtenemos que el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix}$$

Caso 3: $\lambda_{3} = 1$

Sustituimos en la ecuación

$$(\mathbf{A} -1 \mathbf{I}) \mathbf{K}_{3} = \mathbf{0}$$

$$\begin{pmatrix}
-1 -1 & -1 & 1 & 1 \\
-3 & -4 -1 & -3 & 6 \\
0 & -3 & -2 -1 & 3 \\
-3 & -5 & -3 & 7 -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
-2 & -1 & 1 & 1 \\
-3 & -5 & -3 & 6 \\
0 & -3 & -3 & 3 \\
-3 & -5 & -3 & 6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

El resultado de resolver el sistema corresponde al tercer vector propio

$$\mathbf{K}_{3} = \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix}$$

Caso 4: $\lambda_{4} = 2$

Para concluir sustituimos en la ecuación

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K}_{4} = \mathbf{0}$$

$$\begin{pmatrix}
-1 -2 & -1 & 1 & 1 \\
-3 & -4 -2 & -3 & 6 \\
0 & -3 & -2 -2 & 3 \\
-3 & -5 & -3 & 7 -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
-3 & -1 & 1 & 1 \\
-3 & -6 & -3 & 6 \\
0 & -3 & -4 & 3 \\
-3 & -5 & -3 & 5
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

El cuarto y último vector propio es

$$\mathbf{K}_{4} = \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix}$$

Con estos resultados obtenemos que el conjunto fundamental de soluciones esta conformado por los siguientes vectores linealmente independientes.

$$S = \left\{ e^{-2t} \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix}, e^{-t} \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix}, e^{t} \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix}, 2^{2t} \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix} \right\}$$

Y por lo tanto, la solución general del sistema lineal es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix} e^{-2t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix} e^{-t} + c_{3} \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix} e^{t} + c_{4} \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix}e^{2t}$$

$\square$

Con esto hemos concluido esta entrada. Nos falta ver el caso en el que los valores propios son números complejos y el caso en el que hay valores propios repetidos, ambos casos resultan ser un poco más complicados e interesantes que este.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Demostrar formalmente el Teorema enunciado en esta entrada.
  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    6 & -3 \\ 2 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3
    \end{pmatrix} \mathbf{Y}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -3 \\ -2 & 2
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ 5
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & 1 & -2 \\ -1 & 2 & 1 \\ 4 & 1 & -3
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 4 \\ -7
    \end{pmatrix}$
  1. Considerar el siguiente sistema lineal homogéneo.

    $\mathbf{Y}^{\prime} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{Y} = \mathbf{AY}$
  • Demostrar que la solución general del sistema lineal es

    $\mathbf{Y}(t) = c_{1} e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
  • Determinar la matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$ del sistema lineal.
  • Una vez obtenida la matriz fundamental de soluciones determinar la exponencial de la matriz $\mathbf{A} t$ usando la expresión

    $e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0)$

    Comparar el resultado con el obtenido usando la definición. ¿Notas alguna diferencia?.

Más adelante…

En esta entrada desarrollamos el método de valores y vectores propios para resolver sistemas lineales homogéneos en el caso en el que los valores propios son todos reales y distintos.

En la siguiente entrada continuaremos con la segunda situación correspondiente al caso en el que los valores propios del sistema son números complejos. En este caso la forma de las soluciones serán distintas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Valores y vectores propios para resolver sistemas lineales

Por Omar González Franco

En la vida real, te lo aseguro, no hay algo como el álgebra.
– Fran Lebowitz

Introducción

Ya hemos dado inicio con el desarrollo de métodos de resolución de sistemas lineales de primer orden. En la entrada anterior desarrollamos el método de eliminación de variables que, a pesar de ser muy limitado, es un método sencillo y práctico para resolver sistemas con dos ecuaciones diferenciales lineales de primer orden.

Debido a que un sistema lineal puede ser visto como una ecuación matricial los resultados de álgebra lineal sobre valores y vectores propios de matrices pueden ser aplicados aquí. En esta entrada daremos un breve repaso sobre estos conceptos y veremos cómo es que estos resultados nos pueden ayudar a determinar la solución general de algunos sistemas de ecuaciones diferenciales.

La teoría que desarrollaremos a continuación es aplicable a sistemas lineales homogéneos con coeficientes constantes.

Sistemas lineales homogéneos

Un sistema lineal homogéneo con coeficientes constantes es de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

En la segunda entrada de esta unidad vimos que la solución general del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}e^{0t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0
\end{pmatrix}e^{2t} + c_{3} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}e^{3t}$$

Y en la entrada anterior vimos que la solución del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Aunque para el primer caso aún no sabemos cómo obtener esa solución lo que sabemos es que efectivamente corresponde a la solución general del sistema homogéneo. Notemos que cada vector solución es de la forma

$$\mathbf{Y}_{i} = \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix}e^{\lambda_{i}t}, \hspace{1cm} i = 1, 2 ,3$$

donde $k_{i}$ y $\lambda_{i}$, $i = 1, 2, 3$, son constantes. Lo mismo para el segundo caso, con $k_{i}$, $\lambda_{i}$, $i = 1, 2$, constantes. Esta particularidad nos hace preguntarnos si siempre es posible hallar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{4} \tag{4}$$

como solución general del sistema lineal (\ref{3}).

La respuesta es que sí, pero antes de continuar con nuestro desarrollo nos parece pertinente repasar brevemente algunos conceptos de Álgebra Lineal, en particular el de valores y vectores propios.

Valores y vectores propios

Sea $T: V \rightarrow W$ una transformación lineal, en álgebra lineal muchas veces resulta útil encontrar un vector $v$ en el espacio vectorial $V$ tal que $T\mathbf{v}$ y $\mathbf{v}$ sean paralelos, es decir, se busca un vector $\mathbf{v}$ y un escalar $\lambda$, tal que

$$T\mathbf{v} = \lambda \mathbf{v} \label{5} \tag{5}$$

Recordemos que si $\mathbf{v} \neq \mathbf{0}$ y $\lambda$ satisfacen la ecuación (\ref{5}), entonces $\lambda$ se denomina un valor característico o valor propio de $T$ y $\mathbf{v}$ un vector característico o vector propio de $T$ correspondiente al valor propio $\lambda$.

También recordemos que si $V$ tiene dimensión finita, entonces la transformación $T$ se puede representar por una matriz $\mathbf{A}_{T}$, de manera que se pueden definir los valores y vectores propios de esta matriz.

Denotaremos con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Como nota interesante, los valores y vectores propios también son conocidos como valores y vectores característicos o eigenvalores y eigenvectores, donde el término eigen es un término alemán que significa propio. En este curso los llamaremos valores y vectores propios.

Recordemos nuevamente el concepto de matriz inversa.

Para el caso especial $\mathbf{A} = \mathbf{I}$, con $\mathbf{I}$ la matriz identidad, se tiene que para cualquier vector $\mathbf{v} \in V$

$$\mathbf{Av} = \mathbf{Iv} = \mathbf{v} \label{8} \tag{8}$$

Así, el único valor propio de $\mathbf{A}$ es $1$ y todo $\mathbf{v} \neq \mathbf{0} \in V$ es un vector propio de $\mathbf{I}$.

Otra observación interesante es que cualquier múltiplo de un vector propio de $\mathbf{A}$ es también un vector propio de $\mathbf{A}$, con el mismo valor propio.

$$\mathbf{A}(c \mathbf{v}) = c \mathbf{Av} = c \lambda \mathbf{v} = \lambda (c \mathbf{v}) \label{9} \tag{9}$$

Ecuación característica

Supongamos que $\lambda $ es un valor propio de $A$, entonces existe un vector diferente de cero

$$\mathbf{v} = \begin{pmatrix}
v_{1} \\ v_{2} \\ \vdots \\ v_{n}
\end{pmatrix} \neq \mathbf{0}$$

tal que

$$\mathbf{Av} = \lambda \mathbf{v} = \lambda \mathbf{Iv} \label{10} \tag{10}$$

Reescribiendo esto, se tiene

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{v} = \mathbf{0} \label{11} \tag{11}$$

Si $A$ es una matriz de $n \times n$, la ecuación anterior corresponde a un sistema homogéneo de $n$ ecuaciones con las incógnitas $v_{1}, v_{2}, \cdots, v_{n}$. Como se ha supuesto que $ \mathbf{v} \neq \mathbf{0}$, entonces el sistema no tiene solución trivial y por tanto el determinante de (\ref{11}) debe ser cero.

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{12} \tag{12}$$

De manera equivalente, si ocurre que $|\mathbf{A} -\lambda \mathbf{I}| \neq 0$, entonces la única solución a (\ref{11}) es la trivial $\mathbf{v} = \mathbf{0}$, lo que significa que $\lambda$ no es un valor propio de $A$.

Estos resultados quedan establecidos en el siguiente teorema.

La relación (\ref{13}) es muy importante, tanto que merece nombres particulares.

El polinomio $P(\lambda )$ es del mismo grado que el número de filas y columnas de la matriz $\mathbf{A}$. Si $\mathbf{A} \in M_{n \times n}$, entonces $P(\lambda)$ es un polinomio de grado $n$ en $\lambda$. Por ejemplo, si

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{14} \tag{14}$$

entonces,

$$\mathbf{A} -\lambda \mathbf{I} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} -\begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} = \begin{pmatrix}
a -\lambda & b \\ c & d -\lambda
\end{pmatrix} \label{15} \tag{15}$$

y

\begin{align*}
P(\lambda ) &= |\mathbf{A} -\lambda \mathbf{I}| \\
&= (a -\lambda)(d -\lambda) -bc \\
&= \lambda^{2} -(a + d) \lambda + (ad -bc) \label{16} \tag{16}
\end{align*}

La matriz es de $2 \times 2$ y el polinomio característico es un polinomio de grado $2$.

El teorema fundamental del álgebra nos dice que cualquier polinomio de grado $n$ con coeficientes reales o complejos tiene exactamente $n$ raíces contando multiplicidades y dado que cualquier valor propio de $\mathbf{A}$ es una raíz de la ecuación característica de $\mathbf{A}$, se concluye que, contando multiplicidades, toda matriz $\mathbf{A} \in M_{n \times n}$ tiene exactamente $n$ valores propios.

Realicemos dos ejemplos sencillos en donde determinemos los valores y vectores propios de una matriz. Uno en donde los valores propios sean distintos (con multiplicidad $1$) y uno en donde los valores propios sean números complejos.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
-81 & 16 \\ -420 & 83
\end{pmatrix}$$

Solución: De acuerdo a (\ref{13}), determinemos la ecuación característica.

$$\begin{vmatrix}
-81 -\lambda & 16 \\ -420 & 83 -\lambda
\end{vmatrix} = (-81 -\lambda)(83 -\lambda) -16(-420) = 0$$

Reordenando obtenemos que la ecuación característica es

$$\lambda^{2} -2 \lambda -3 = 0$$

y el polinomio característico es

$$P(\lambda) = \lambda^{2} -2 \lambda -3$$

Resolviendo para $\lambda$ se obtienen las raíces $\lambda_{1} = -1$ y $\lambda_{2} = 3$. Para obtener los vectores propios buscamos un vector $\mathbf{v} \neq 0$, tal que se cumpla (\ref{11}) para cada valor propio $\lambda$. Comencemos con $\lambda_{1}$.

Caso 1: $\lambda_{1} = -1$.

$$\begin{pmatrix}
-81 -(-1) & 16 \\ -420 & 83 -(-1)
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-80 & 16 \\ -420 & 84
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Este resultado lo podemos escribir como las siguientes dos ecuaciones.

\begin{align*}
-80 v_{1} + 16 v_{2} &= 0 \\
-420 v_{1} + 84 v_{2} &= 0
\end{align*}

Que en realidad corresponden a una sola.

\begin{align*}
-5v_{1} + v_{2} &= 0 \\
v_{2} &= 5v_{1}
\end{align*}

Si elegimos $v_{1} = 1$, entonces $v_{2} = 5$, así el primer vector propio es

$$\mathbf{v}_{1} = \begin{pmatrix}
1 \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
-81 -3 & 16 \\ -420 & 83-3
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-84 & 16 \\ -420 & 80
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
-21v_{1} + 4v_{2} &= 0 \\
v_{2} &= \dfrac{21}{4}v_{1}
\end{align*}

Por conveniencia elegimos $v_{1} = 4$, entonces $v_{2} = 21$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
4 \\ 21
\end{pmatrix}$$

En conclusión, los valores y vectores propios de la matriz $\mathbf{A}$ son $\lambda_{1} = -1$, $\lambda_{2} = 3$, $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ y $\mathbf{v}_{2} = \begin{pmatrix} 4 \\ 21 \end{pmatrix}$, respectivamente.

$\square$

Realicemos el segundo ejemplo.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
2 & -1 \\ 5 & -2
\end{pmatrix}$$

Solución: Determinemos la ecuación característica.

$$\begin{vmatrix}
2 -\lambda & -1 \\ 5 & -2 -\lambda
\end{vmatrix} = (2 -\lambda)(-2 -\lambda) + 5 = 0$$

La ecuación característica es

$$\lambda^{2} + 1 = 0$$

De donde $\lambda_{1} = i$ y $\lambda_{2} = -i$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = i$.

$$\begin{pmatrix}
2 -i & -1 \\ 5 & -2 -i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 -i)v_{1} -v_{2} &= 0 \\
5v_{1} -(2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 + i$ y $v_{2} = 5$, así

$$\mathbf{v}_{1} = \begin{pmatrix}
2 + i \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -i$

$$\begin{pmatrix}
2 + i & -1 \\ 5 & -2 + i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 + i) v_{1} -v_{2} &= 0 \\
5v_{1} + (-2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 -i$ y $v_{2} = 5$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
2 -i \\ 5
\end{pmatrix}$$

$\square$

En caso de requerir conocer más a fondo sobre el algoritmo que llevamos a cabo para obtener los valores y vectores propios de una matriz se recomienda revisar directamente en el curso de Álgebra Lineal I. Recordemos que aquí sólo estamos haciendo un breve repaso.

Para concluir con nuestro repaso, enunciemos un teorema de suma importancia que nos será de utilidad mas adelante. Haremos la demostración por inducción.

Demostración: Como el caso $m = 1$ se trata de un solo vector es evidente que se satisface el teorema, hagamos el caso $m = 2$, para ello consideremos la combinación lineal

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} = \mathbf{0} \label{17} \tag{17}$$

Multipliquemos ambos lados de la ecuación por la matriz $\mathbf{A}$.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} = \mathbf{0} \label{18} \tag{18}$$

Como $\mathbf{Av}_{i} = \lambda_{i}\mathbf{v}_{i}$, para $i = 1, 2$, entonces

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} = \mathbf{0} \label{19} \tag{19}$$

A la ecuación (\ref{17}) la multiplicamos por $\lambda_{1}$ y la restamos de la ecuación (\ref{19}).

$$(c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2}) -(c_{1} \lambda_{1} \mathbf{v}_{1} -c_{2} \lambda_{1} \mathbf{v}_{2}) = \mathbf{0}$$

que se reduce a

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} = \mathbf{0} \label{20} \tag{20}$$

Como $\mathbf{v}_{2} \neq \mathbf{0}$ por definición de vector característico y por hipótesis $\lambda_{1} \neq \lambda_{2}$, entonces se concluye que $c_{2} = 0$, sustituyendo en (\ref{17}) se ve que $c_{1} = 0$, por tanto se cumple el teorema para $m = 2$, es decir, $\mathbf{v}_{1}$ y $\mathbf{v}_{2}$ son linealmente independientes.

Ahora supongamos que el teorema es cierto para $m = n$, es decir, cualquier conjunto de $n$ vectores propios de $\mathbf{A}$ con valores propios diferentes es linealmente independiente. Hay que demostrar que cualquier conjunto de $n + 1$ vectores propios de $\mathbf{A}$ con valores propios diferentes es también linealmente independiente. La demostración sigue el mismo procedimiento que como lo hicimos para $m = 2$, consideremos la siguiente combinación lineal.

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{21} \tag{21}$$

Multipliquemos por $\mathbf{A}$ en ambos lados.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} + \cdots + c_{n + 1} \mathbf{Av}_{n + 1} = \mathbf{0} \label{22} \tag{22}$$

Aplicando $\mathbf{Av}_{i} = \lambda_{i} \mathbf{v}_{1}$ para $i = 1, 2, 3, \cdots, n + 1$, se tiene

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \lambda_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{23} \tag{23}$$

Si se multiplica ambos lados de la ecuación (\ref{21}) por $\lambda_{1}$ y se resta de (\ref{23}), se obtiene

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} + c_{3}(\lambda_{3} -\lambda_{1}) \mathbf{v}_{3} + \cdots + c_{n + 1}(\lambda_{n + 1} -\lambda_{1})\mathbf{v}_{n + 1} = \mathbf{0} \label{24} \tag{24}$$

Pero $\mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son vectores propios de $\mathbf{A}$ con valores propios distintos $\lambda_{2}, \lambda_{3}, \cdots, \lambda_{n + 1}$, respectivamente. Por hipótesis de inducción, los vectores son linealmente independientes, así que

$$c_{2}(\lambda_{2} -\lambda_{1}) = 0, \hspace{1cm} c_{3}(\lambda_{3} -\lambda_{1}) = 0, \hspace{1cm} \cdots, \hspace{1cm} c_{n + 1}(\lambda_{n + 1} -\lambda_{1}) = 0$$

Como los valores propios son distintos entre sí, entonces necesariamente

$$c_{2} = c_{3} = \cdots = c_{n + 1} = 0$$

Con este resultado la ecuación (\ref{21}) obliga a que $c_{1}$ sea cero. Por lo tanto, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son linealmente independientes. De esta manera queda demostrado el teorema.

$\square$

En conclusión, vectores propios correspondientes a valores propios distintos son linealmente independientes.

Con este breve repaso en mente regresemos a los sistemas de ecuaciones diferenciales.

Valores y vectores propios en sistemas de ecuaciones diferenciales

Ahora que hemos recordado las definiciones de valores y vectores propios y algunas propiedades veamos cómo es que estos conceptos son útiles para resolver sistemas lineales de primer orden homogéneos.

Al inicio de la entrada decíamos que es posible encontrar soluciones de la forma (\ref{4}).

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t}$$

Si derivamos este vector, se obtiene

$$\mathbf{Y}^{\prime} = \mathbf{K} \lambda e^{\lambda t} \label{25} \tag{25}$$

Sustituyamos en el sistema homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$.

$$\mathbf{K} \lambda e^{\lambda t} = \mathbf{AK}e^{\lambda t} \label{26} \tag{26}$$

Si dividimos entre $e^{\lambda t}$ y reordenamos, se tiene

$$\mathbf{AK} = \lambda \mathbf{K}$$

o bien,

$$\mathbf{AK} -\lambda \mathbf{K} = \mathbf{0}$$

Debido a que $\mathbf{K} = \mathbf{IK}$, con $\mathbf{I}$ la matriz identidad, la última expresión se puede escribir como

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0}\label{27} \tag{27}$$

Si $\mathbf{A}$ es la matriz dada en (\ref{2}), entonces la ecuación matricial (\ref{27}) es equivalente a las $n$ ecuaciones algebraicas simultáneas

\begin{align*}
(a_{11} -\lambda)k_{1} + \hspace{1.2cm} a_{12}k_{2} + \cdots + \hspace{1.2cm} a_{1n}k_{n} &= 0 \\
a_{21}k_{1} + (a_{22} -\lambda)k_{2} + \cdots + \hspace{1.2cm} a_{2n}k_{n} &= 0 \\
\vdots \\
a_{n1}k_{1} + \hspace{1.2cm} a_{n2}k_{2} + \cdots + (a_{nn} -\lambda)k_{n} &= 0 \label{28} \tag{28}
\end{align*}

Si queremos encontrar soluciones $\mathbf{Y}(t)$ como (\ref{4}), necesitamos primero encontrar una solución no trivial del sistema (\ref{28}), de lo visto en nuestro repaso de valores y vectores propios, si la solución debe ser la no trivial, entonces se requiere que el determinante sea igual a cero, esto es

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{29} \tag{29}$$

Esta ecuación polinomial corresponde a la ecuación característica de la matriz $\mathbf{A}$. Sus soluciones son los valores propios de $\mathbf{A}$. Una solución $\mathbf{K} \neq 0$ de (\ref{27}) correspondiente a un valor propio $\lambda$ es el vector propio de $\mathbf{A}$.

La ecuación (\ref{29}) al tratarse de una ecuación polinomial existen tres casos posibles, cuando los valores propios son reales y distintos, cuando son repetidos y cuando son complejos. Para cada caso existe una forma particular de la solución de (\ref{3}).

Para concluir con esta entrada demostremos un resultado que establece la forma de la solución general del sistema lineal (\ref{3}).

Demostración: Definamos las funciones

$$\mathbf{Y}_{1}(t) = e^{\lambda_{1}t}\mathbf{K}_{1}, \hspace{1cm} \mathbf{Y}_{2}(t) = e^{\lambda_{2}t}\mathbf{K}_{2}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n}(t) = e^{\lambda_{n}t} \mathbf{K}_{n}$$

Notemos que para la $i$-ésima función $\mathbf{Y}_{i}(t) = e^{\lambda_{i}t} \mathbf{K}_{i}$ se cumple lo siguiente.

$$\mathbf{Y}^{\prime}_{i} = e^{\lambda_{i}t} (\lambda_{i} \mathbf{K}_{i}) = e^{\lambda_{i}t} (\mathbf{AK}_{i}) = \mathbf{AY}_{i} \label{32} \tag{32}$$

En donde se hecho uso de la relación (\ref{6}). Esto nos muestra que $\mathbf{Y}_{i}(t)$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ para cada $i = 1, 2, \cdots, n$. Basta mostrar que el Wronskiano es distinto de cero para probar que las funciones definidas forman un conjunto fundamental de soluciones. El Wronskiano está dado por

\begin{align*}
W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots,\mathbf{Y}_{n}) &= \begin{vmatrix} e^{\lambda_{1}t} \mathbf{K}_{1} & e^{\lambda_{2}t} \mathbf{K}_{2} & \cdots & e^{\lambda_{n}t} \mathbf{K}_{n} \end{vmatrix} \\
&= e^{(\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n})t} \begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \label{33} \tag{33}
\end{align*}

Como la exponencial nunca se hace cero y por hipótesis los vectores $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son linealmente independientes, es decir, el determinante nunca es cero

$$\begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \neq 0 \label{34} \tag{34}$$

entonces el Wronskiano es distinto de cero. Por el teorema de solución general de un sistema homogéneo concluimos que el conjunto

$$S = \{e^{\lambda_{1}t} \mathbf{K}_{1}, e^{\lambda_{2}t} \mathbf{K}_{2}, \cdots, e^{\lambda_{n}t} \mathbf{K}_{n}\}$$

es un conjunto fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ y la solución general es

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1}t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2}t} \mathbf{K}_{2} + \cdots + c_{n} e^{\lambda_{n}t} \mathbf{K}_{n}$$

con $c_{1}, c_{2}, \cdots, c_{n}$ constantes arbitrarias.

$\square$

En la siguiente entrada aplicaremos todo esto en el desarrollo de un nuevo método de resolución de sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener los valores y vectores propios de las siguientes matrices.
  • $\mathbf{A} = \begin{pmatrix}
    -62 & -20 \\ 192 & 62
    \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix}
    -2 & 5 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1
    \end{pmatrix}$
  1. Demostrar que para cualesquiera números reales $\alpha$ y $\beta$, la matriz $$\mathbf{A} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$ tiene valores propios $\alpha \pm i\beta$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar lo siguiente:
  • Demostrar que $\mathbf{A}^{-1}$ (la matriz inversa de $\mathbf{A}$) existe si y sólo si $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son todos distintos de cero.
  • Si $\mathbf{A}^{-1}$ existe, demostrar que los valores propios de $\mathbf{A}^{-1}$ son $\dfrac{1}{\lambda_{1}}, \dfrac{1}{\lambda_{2}}, \cdots, \dfrac{1}{\lambda_{n}}$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que la matriz $\mathbf{A} -\alpha \mathbf{I}$ tiene valores propios $\lambda_{1} -\alpha, \lambda_{2} -\alpha, \cdots, \lambda_{n} -\alpha$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que los valores propios de $\mathbf{A}^{m}$ son $\lambda^{m}_{1}, \lambda^{m}_{2}, \cdots, \lambda^{m}_{n}$ para $m = 1, 2, 3, \cdots$.

    Recuerda que para calcular la potencia de una matriz, debemos multiplicar la matriz por ella misma tantas veces como indique el exponente, por ejemplo
    $$\mathbf{A}^{5} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$$

Más adelante…

Un nuevo método para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas con coeficientes constantes es el que estamos por desarrollar. Dicho método involucra obtener los valores y vectores propios de la matriz que conforma al sistema lineal, es por ello que hemos dedicado esta entrada en hacer un breve repaso sobre estos conceptos y hemos visto cómo es que se ven involucrados en la resolución de estos sistemas.

Como vimos, los valores propios se obtienen de encontrar las raíces del polinomio característico lo que significa que se pueden tener raíces reales y distintas, raíces con multiplicidad mayor a uno, es decir, que se repiten o raíces complejas, para cada caso existe una forma distinta de obtener la solución de los sistemas lineales homogéneos $\mathbf{Y}^{\prime} = \mathbf{AY}$.

En las próximas tres entradas estudiaremos cada caso. Comenzaremos con el caso en el que los valores propios del sistema son todos reales y distintos entre sí.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Exponencial de una matriz y matriz fundamental de soluciones

Por Omar González Franco

Las matemáticas son el arte de dar el mismo nombre a diferentes cosas.
– Henri Poincare

Introducción

Ya conocemos las propiedades de los sistemas de ecuaciones diferenciales lineales de primer orden, así como las de sus soluciones. Mucho de lo que vimos en las dos entradas anteriores es bastante similar a lo que desarrollamos en las dos primeras entradas de la unidad 2, sin embargo en esta entrada aprenderemos algo completamente nuevo, definiremos una herramienta matemática que nos será de bastante utilidad. ¡Se trata de la exponencial de una matriz!.

En esta entrada definiremos lo que significa $e^{\mathbf{A}t}$, donde $\mathbf{A}$ es una matriz de $n \times n$ con componentes reales constantes.

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{1} \tag{1}$$

Así mismo, estudiaremos algunas de sus propiedades y su utilidad en la resolución de sistemas lineales.

Operaciones sobre componentes de matrices

Muchas de las operaciones que se pueden hacer hacía una matriz son aplicables sobre cada una de las componentes que conforman a dicha matriz. Para comprender este hecho es conveniente definir lo que significa la derivada e integral de una matriz, esto nos permitirá ganar intuición.

Consideremos por un momento una matriz de $n \times n$ compuesta de funciones.

$$\mathbf{A}(t) = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \label{2} \tag{2}$$

donde $a_{i, j}(t)$, $i, j \in \{1, 2, 3, \cdots, n \}$ son funciones sobre algún intervalo común $\delta$. Comencemos por definir la derivada de una matriz.

Algunas reglas de derivación se enuncian a continuación.

De manera equivalente se puede definir la integral de una matriz.

Ejemplo: Calcular la derivada de la matriz

$$\mathbf{A}(t) = \begin{pmatrix}
\cos(t) & \sin(t) \\ \sin^{2}(t) & \cos^{2}(t)
\end{pmatrix}$$

Solución: Aplicamos la derivada sobre cada componente de la matriz.

$$\dfrac{d}{dt} \mathbf{A}(t) = \begin{pmatrix}
\dfrac{d}{dt} \cos(t) & \dfrac{d}{dt} \sin(t) \\ \dfrac{d}{dt} \sin^{2}(t) & \dfrac{d}{dt} \cos^{2}(t)
\end{pmatrix} = \begin{pmatrix}
-\sin(t) & \cos(t) \\ 2 \sin(t) \cos(t) & -2 \cos(t) \sin(t)
\end{pmatrix}$$

$\square$

De manera similar se puede hacer la integral de una matriz.

Definamos lo que es una serie de matrices. En este caso consideremos matrices constantes.

Si tenemos series de matrices es claro que algunas pueden o no converger. A continuación definimos la convergencia en matrices.

Con esto en mente puede resultar más comprensible la definición de la exponencial de una matriz.

Exponencial de una matriz

Recordemos que la función escalar de la exponencial se define como

$$e^{\alpha t} = 1 + \alpha t + \alpha^{2} \dfrac{t^{2}}{2!} + \cdots + \alpha^{k} \dfrac{t^{k}}{k!} = \sum_{k = 0}^{\infty} \alpha^{k} \dfrac{t^{k}}{k!} \label{9} \tag{9}$$

Con las definiciones anteriores podemos extender la serie de la exponencial anterior a una serie de matrices.

Se puede demostrar que la serie (\ref{10}) converge, sin embargo se requiere de un poco más de teoría que queda fuera de nuestro interés.

Veamos un ejemplo en el que determinemos la exponencial de una matriz.

Ejemplo: Determinar la matriz $e^{\mathbf{A}}$, en donde

$$\mathbf{A} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}$$

Solución: Para determinar la matriz $e^{\mathbf{A}}$ usemos directamente la definición (\ref{10}). Sabemos que

$$\mathbf{A}^{0} = \begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix} = \mathbf{I} \hspace{1cm} y \hspace{1cm} \mathbf{A}^{1} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} = \begin{pmatrix}
2^{0} & 2^{0} \\ 2^{0} & 2^{0}
\end{pmatrix}$$

Ahora bien,

$$\mathbf{A}^{2} = \mathbf{AA} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} = \begin{pmatrix}
2 & 2 \\ 2 & 2
\end{pmatrix} = \begin{pmatrix}
2^{1} & 2^{1} \\ 2^{1} & 2^{1}
\end{pmatrix}$$

$$\mathbf{A}^{3} = \mathbf{AA}^{2} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
2 & 2 \\ 2 & 2
\end{pmatrix} = \begin{pmatrix}
4 & 4 \\ 4 & 4
\end{pmatrix} = \begin{pmatrix}
2^{2} & 2^{2} \\ 2^{2} & 2^{2}
\end{pmatrix}$$

$$\mathbf{A}^{4} = \mathbf{AA}^{3} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
4 & 4 \\ 4 & 4
\end{pmatrix} = \begin{pmatrix}
8 & 8 \\ 8 & 8
\end{pmatrix} = \begin{pmatrix}
2^{3} & 2^{3} \\ 2^{3} & 2^{3}
\end{pmatrix}$$

$$\vdots$$

$$\mathbf{A}^{k} = \mathbf{AA}^{k -1} = \begin{pmatrix}
2^{k -1} & 2^{k -1} \\ 2^{k -1} & 2^{k -1}
\end{pmatrix}$$

$$\mathbf{A}^{k + 1} = \mathbf{AA}^{k} = \begin{pmatrix}
2^{k} & 2^{k} \\ 2^{k} & 2^{k}
\end{pmatrix}$$

$$\vdots$$

Sustituimos en (\ref{10}).

\begin{align*} e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} &= \dfrac{1}{0!} \mathbf{A}^{0} + \dfrac{1}{1!} \mathbf{A}^{1} + \dfrac{1}{2!} \mathbf{A}^{2} + \dfrac{1}{3!} \mathbf{A}^{3} + \dfrac{1}{4!} \mathbf{A}^{4} + \cdots + \dfrac{1}{k!} \mathbf{A}^{k} + \cdots \\
&= \dfrac{1}{0!} \begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix} + \dfrac{1}{1!} \begin{pmatrix}
2^{0} & 2^{0} \\ 2^{0} & 2^{0}
\end{pmatrix} + \dfrac{1}{2!} \begin{pmatrix}
2^{1} & 2^{1} \\ 2^{1} & 2^{1}
\end{pmatrix} + \dfrac{1}{3!} \begin{pmatrix}
2^{2} & 2^{2} \\ 2^{2} & 2^{2}
\end{pmatrix} + \dfrac{1}{4!} \begin{pmatrix}
2^{3} & 2^{3} \\ 2^{3} & 2^{3}
\end{pmatrix} + \cdots + \dfrac{1}{k!} \begin{pmatrix}
2^{k -1} & 2^{k -1} \\ 2^{k -1} & 2^{k -1}
\end{pmatrix} \\
&= \begin{pmatrix}
\dfrac{1}{0!}(1) & \dfrac{1}{0!}(0) \\ \dfrac{1}{0!}(0) & \dfrac{1}{0!}(1)
\end{pmatrix} + \begin{pmatrix}
\dfrac{1}{1!}(2^{0}) & \dfrac{1}{1!}(2^{0}) \\ \dfrac{1}{1!}(2^{0}) & \dfrac{1}{1!}(2^{0})
\end{pmatrix} + \begin{pmatrix}
\dfrac{1}{2!}(2^{1}) & \dfrac{1}{2!}(2^{1}) \\ \dfrac{1}{2!}(2^{1}) & \dfrac{1}{2!}(2^{1})
\end{pmatrix} + \begin{pmatrix}
\dfrac{1}{3!}(2^{2}) & \dfrac{1}{3!}(2^{2}) \\ \dfrac{1}{3!}(2^{2}) & \dfrac{1}{3!}(2^{2})
\end{pmatrix} + \cdots + \begin{pmatrix}
\dfrac{1}{k!}(2^{k -1}) & \dfrac{1}{k!}(2^{k -1}) \\ \dfrac{1}{k!}(2^{k -1}) & \dfrac{1}{k!}(2^{k -1})
\end{pmatrix} \\
&= \begin{pmatrix}
\dfrac{1}{0!}(1) + \dfrac{1}{1!}(2^{0}) + \dfrac{1}{2!}(2^{1}) + \dfrac{1}{3!}(2^{2}) + \cdots + \dfrac{1}{k!}(2^{k -1}) & \dfrac{1}{0!}(0) + \dfrac{1}{1!}(2^{0}) + \dfrac{1}{2!}(2^{1}) + \dfrac{1}{3!}(2^{2}) + \cdots + \dfrac{1}{k!}(2^{k -1}) \\ \dfrac{1}{0!}(0) + \dfrac{1}{1!}(2^{0}) + \dfrac{1}{2!}(2^{1}) + \dfrac{1}{3!}(2^{2}) + \cdots + \dfrac{1}{k!}(2^{k -1}) & \dfrac{1}{0!}(1) + \dfrac{1}{1!}(2^{0}) + \dfrac{1}{2!}(2^{1}) + \dfrac{1}{3!}(2^{2}) + \cdots + \dfrac{1}{k!}(2^{k -1})
\end{pmatrix} \\
&= \dfrac{1}{2}\begin{pmatrix}
\dfrac{1}{0!}(2) + \dfrac{1}{1!}(2^{1}) + \dfrac{1}{2!}(2^{2}) + \dfrac{1}{3!}(2^{3}) + \cdots + \dfrac{1}{k!}(2^{k}) & \dfrac{1}{0!}(0) + \dfrac{1}{1!}(2^{1}) + \dfrac{1}{2!}(2^{2}) + \dfrac{1}{3!}(2^{3}) + \cdots + \dfrac{1}{k!}(2^{k}) \\ \dfrac{1}{0!}(0) + \dfrac{1}{1!}(2^{1}) + \dfrac{1}{2!}(2^{2}) + \dfrac{1}{3!}(2^{3}) + \cdots + \dfrac{1}{k!}(2^{k}) & \dfrac{1}{0!}(2) + \dfrac{1}{1!}(2^{1}) + \dfrac{1}{2!}(2^{2}) + \dfrac{1}{3!}(2^{3}) + \cdots + \dfrac{1}{k!}(2^{k})
\end{pmatrix}
\end{align*}

¡Uff!. En la última igualdad lo que hicimos fue multiplicar por un uno en la forma $1 = \dfrac{2}{2}$, esto nos permitió hacer que la potencia de los $2$ sea la misma que en el factorial.

Escribamos la última matriz como series infinitas.

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \dfrac{1}{2} \begin{pmatrix}
\dfrac{1}{0!}(2) + \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} & \dfrac{1}{0!}(0) + \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} \\ \dfrac{1}{0!}(0) + \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} & \dfrac{1}{0!}(2) + \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!}
\end{pmatrix}$$

Nos gustaría hacer que las series comiencen en $k = 0$. Notemos que, de acuerdo a la forma de la serie, el termino $k = 0$ daría como resultado un $1$, considerando esto la expresión anterior la podemos escribir como

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \dfrac{1}{2} \begin{pmatrix}
1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} & \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} \\ \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} & 1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!}
\end{pmatrix}$$

Para las componentes de la matriz en las que la serie aún no comienza en $k = 0$ sumamos y restamos un $1$, así el $+1$ puede ser incluido en la serie.

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \dfrac{1}{2} \begin{pmatrix}
1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} & -1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} \\ -1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} & 1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!}
\end{pmatrix}$$

Ahora todas las series comienzan en $k = 0$. Sabemos que la serie converge a un número.

$$\sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} = e^{2}$$

Por definición de convergencia en matrices, se tiene

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \dfrac{1}{2} \begin{pmatrix}
1 + e^{2} & -1 + e^{2} \\ -1 + e^{2} & 1 + e^{2}
\end{pmatrix}$$

Por lo tanto, la matriz que buscamos es

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \begin{pmatrix}
\dfrac{e^{2} + 1}{2} & \dfrac{e^{2} -1}{2} \\ \dfrac{e^{2} -1}{2} & \dfrac{e^{2} + 1}{2}
\end{pmatrix}$$

$\square$

Como se puede notar, calcular la exponencial de una matriz usando la definición puede ser una tarea bastante tediosa. Por su puesto existen métodos que nos permiten calcular este tipo de matrices de forma más sencilla, más adelante revisaremos uno de ellos.

Algunas propiedades de la exponencial de una matriz se enuncian a continuación.

No demostraremos este teorema ya que nuestro principal interés está en conocer como estos conceptos y propiedades se pueden aplicar en nuestro estudio sobre sistemas lineales.

A continuación mostraremos un resultado importante e interesante y es que la función (\ref{11}) ¡es solución del sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$!.

La exponencial de una matriz y los sistemas lineales

Demostración: Consideremos la función $\mathbf{Y}(t) = e^{\mathbf{A} t}$. Apliquemos la derivada término a término de la definición (\ref{11}).

\begin{align*}
\dfrac{d}{dt} e^{\mathbf{A}t} &= \dfrac{d}{dt} \left[ \mathbf{I} + \mathbf{A}t + \mathbf{A}^{2} \dfrac{t^{2}}{2!} + \cdots + \mathbf{A}^{k}\dfrac{t^{k}}{k!} + \cdots \right] \\
&= \dfrac{d}{dt} \mathbf{I} + \dfrac{d}{dt} \left( \mathbf{A}t \right) + \dfrac{d}{dt} \left( \mathbf{A}^{2} \dfrac{t^{2}}{2!} \right) + \cdots + \dfrac{d}{dt} \left( \mathbf{A}^{k}\dfrac{t^{k}}{k!} \right) + \cdots
\end{align*}

Como las matrices $\mathbf{I}$ y $\mathbf{A}$ son constantes, entonces se tiene lo siguiente.

\begin{align*}
\dfrac{d}{dt} e^{\mathbf{A}t} &= \mathbf{0} + \mathbf{A} + \mathbf{A}^{2}t + \dfrac{1}{2!}\mathbf{A}^{3}t^{2} + \cdots + \mathbf{A}^{k} \dfrac{t^{k -1}}{(k -1)!} + \mathbf{A}^{k + 1}\dfrac{t^{k}}{k!} + \cdots \\
&= \mathbf{A} \left[ \mathbf{I} + \mathbf{A}t + \mathbf{A}^{2} \dfrac{t^{2}}{2!} + \cdots + \mathbf{A}^{k}\dfrac{t^{k}}{k!} + \cdots \right] \\
&= \mathbf{A} e^{\mathbf{A}t}
\end{align*}

Con esto hemos mostrado que

$$\dfrac{d}{dt} e^{\mathbf{A}t} = \mathbf{A} e^{\mathbf{A}t} \label{12} \tag{12}$$

Es decir,

$$\mathbf{Y}^{\prime} = \mathbf{AY}$$

$\square$

La ecuación (\ref{12}) no sólo prueba que es solución del sistema lineal, sino que además muestra cuál es la derivada de la matriz $e^{\mathbf{A} t}$.

Veamos un problema de valores iniciales.

Demostración: Consideremos la función

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0}$$

con $\mathbf{Y}_{0}$ un vector constante, si la derivamos obtenemos lo siguiente.

$$\mathbf{Y}^{\prime} = \dfrac{d}{dt}(e^{\mathbf{A}t} \mathbf{Y}_{0}) = \left( \mathbf{A} e^{\mathbf{A}t} \right) \mathbf{Y}_{0} = \mathbf{A} \left( e^{\mathbf{A}t} \mathbf{Y}_{0} \right) = \mathbf{AY}$$

En donde se ha hecho uso del resultado (\ref{12}). Esto muestra que la función $\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0}$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$.

Si tomamos $t = 0$ y considerando que $e^{\mathbf{A}0} = e^{\mathbf{0}} = \mathbf{I}$, se tiene

$$\mathbf{Y}(0) = e^{\mathbf{A}0} \mathbf{Y}_{0} = \mathbf{IY}_{0} = \mathbf{Y}_{0}$$

Es decir, se satisface la condición inicial $\mathbf{Y}(0) = \mathbf{Y}_{0}$.

$\square$

Nota: Es claro que la matriz $e^{\mathbf{A} t}$ es una matriz de $n \times n$, mientras que el vector constante $\mathbf{Y}_{0}$ es un vector de $n \times 1$, así que es importante el orden de las matrices, la función del teorema anterior es $\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0}$ la cual esta bien definida y el resultado es una matriz de $n \times n$, mientras que la operación $\mathbf{Y}_{0} e^{\mathbf{A} t}$ no está definida de acuerdo al algoritmo de multiplicación de matrices. Cuidado con ello.

Para concluir esta entrada retomaremos el concepto de matriz fundamental de soluciones visto en la entrada anterior.

Matriz fundamental de soluciones

Retomemos la definición de matriz fundamental de soluciones.

En esta sección denotaremos por $\hat{\mathbf{Y}}(t)$ a una matriz fundamental de soluciones.

El objetivo de esta sección es mostrar que se puede determinar directamente la matriz $e^{\mathbf{A}t}$ a partir de cualquier matriz fundamental de soluciones. Antes de llegar a este resultado veamos unos resultados previos.

Demostración:

$\Rightarrow$) Por demostrar: $\hat{\mathbf{Y}}(t)$ satisface al sistema y se cumple que $W(0) \neq 0$.

Supongamos que $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ conformada por los vectores solución $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$, es decir,

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix} \mathbf{Y}_{1} & \mathbf{Y}_{2} & \cdots & \mathbf{Y}_{n} \end{pmatrix} = \begin{pmatrix}
y_{11}(t) & y_{12}(t) & \cdots & y_{1n}(t) \\
y_{21}(t) & y_{22}(t) & \cdots & y_{2n}(t) \\
\vdots & & & \vdots \\
y_{n1}(t) & y_{n2}(t) & \cdots & y_{nn}(t)
\end{pmatrix}$$

Si $\mathbf{A}$ es la matriz de coeficientes (\ref{1}), entonces

$$\mathbf{A} \hat{\mathbf{Y}} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \begin{pmatrix}
y_{11}(t) & y_{12}(t) & \cdots & y_{1n}(t) \\
y_{21}(t) & y_{22}(t) & \cdots & y_{2n}(t) \\
\vdots & & & \vdots \\
y_{n1}(t) & y_{n2}(t) & \cdots & y_{nn}(t)
\end{pmatrix} \label{15} \tag{15}$$

La $i$-ésima columna del resultado de multiplicar estas matrices es

$$\mathbf{A} \mathbf{Y}_{i} = \begin{pmatrix}
a_{11}y_{1i}(t) + a_{12}y_{2i}(t) + \cdots + a_{1n}y_{ni}(t) \\
a_{21}y_{1i}(t) + a_{22}y_{2i}(t) + \cdots + a_{2n}y_{ni}(t) \\
\vdots \\
a_{n1}y_{1i}(t) + a_{n2}y_{2i}(t) + \cdots + a_{nn}y_{ni}(t)
\end{pmatrix} \label{16} \tag{16}$$

Identificamos que esta matriz corresponde a la derivada $\mathbf{Y}^{\prime}_{i}$ ya que cada $\mathbf{Y}_{i}$ es solución del sistema, es decir,

$$\mathbf{Y}^{\prime}_{i} =\mathbf{AY}_{i}, \hspace{1cm} i = 1, 2, \cdots, n \label{17} \tag{17}$$

Entonces $\mathbf{A\hat{Y}}(t)$ tiene por columnas a los vectores $\mathbf{Y}^{\prime}_{1}, \mathbf{Y}^{\prime}_{2}, \cdots, \mathbf{Y}^{\prime}_{n}$. Por lo tanto

$$\hat{\mathbf{Y}}^{\prime} = \mathbf{A\hat{Y}}$$

es decir, la matriz fundamental $\hat{\mathbf{Y}}(t)$ satisface al sistema.

Como $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones, entonces los vectores que la componen $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes, de manera que $\forall$ $t \in \mathbb{R}$ el Wronskiano es distinto de cero.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(t) \neq 0 \label{18} \tag{18}$$

en particular se cumple para $t = 0$, es decir,

$$W( \mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(0) \neq 0$$

Demostremos el regreso.

$\Leftarrow$) Por demostrar: $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones.

Sea $\hat{\mathbf{Y}}(t)$ una matriz compuesta por los vectores $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$ y cuya derivada es

$$\hat{\mathbf{Y}}^{\prime} = \mathbf{A \hat{Y}}$$

entonces las columnas satisfacen

$$\mathbf{AY}_{i} = \mathbf{Y}^{\prime}_{i}$$

así $\mathbf{Y}_{i}(t)$ es solución del sistema

$$\mathbf{Y}^{\prime} = \mathbf{AY}$$

para $i = 1, 2, \cdots, n$.

Por otro lado, por hipótesis

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(0) \neq 0$$

Como es distinto de cero en un punto, entonces lo debe ser en todo el dominio, es decir, $\forall$ $t \in \mathbb{R}$ se cumple que

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(t) \neq 0$$

lo que significa que $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes.

De ambos resultados concluimos que la matriz $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones.

$\square$

Veamos un resultado interesante. Ya vimos que la matriz $e^{\mathbf{A} t}$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$, pero no solo resulta ser solución, sino que además ¡es una matriz fundamental de soluciones!.

Demostración: Anteriormente mostramos que

$$\dfrac{d}{dt} e^{\mathbf{A}t} = \mathbf{A} e^{\mathbf{A}t}$$

lo que prueba que $\mathbf{Y}(t) = e^{\mathbf{A} t}$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$.

Supongamos que $e^{\mathbf{A} t}$ está compuesta por la matriz de vectores $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$. Si $t = 0$, se tiene que

$$e^{\mathbf{A} 0} = e^{\mathbf{0}} = \mathbf{I}$$

y además el determinante es distinto de cero.

$$|e^{\mathbf{A} 0}| = |\mathbf{I}| = 1 \neq 0 \label{19} \tag{19}$$

o bien,

$$|e^{\mathbf{A} 0}| = W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(0) \neq 0 \label{20} \tag{20}$$

Por el teorema anterior concluimos que $\mathbf{Y}(t) = e^{\mathbf{A} t}$ es una matriz fundamental de soluciones del sistema lineal.

$\square$

Veamos un resultado más antes de llegar a nuestro objetivo.

Demostración: Sean $\hat{\mathbf{Y}}(t)$ y $\hat{\mathbf{Z}}(t)$ matrices fundamentales del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$. Supongamos que

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix} \mathbf{Y}_{1} & \mathbf{Y}_{2} & \cdots & \mathbf{Y}_{n} \end{pmatrix} \label{22} \tag{22}$$

y

$$\hat{\mathbf{Z}}(t) = \begin{pmatrix} \mathbf{Z}_{1} & \mathbf{Z}_{2} & \cdots & \mathbf{Z}_{n} \end{pmatrix} \label{23} \tag{23}$$

Donde la $i$-ésima columna de las matrices anteriores son

$$\mathbf{Y}_{i} = \begin{pmatrix}
y_{1i} \\ y_{2i} \\ \vdots \\ y_{ni}
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{Z}_{i} = \begin{pmatrix}
z_{1i} \\ z_{2i} \\ \vdots \\ z_{ni}
\end{pmatrix} \label{24} \tag{24}$$

Como ambas matrices son matrices fundamentales de soluciones, entonces cada $\mathbf{Y}_{i}$ y cada $\mathbf{Z}_{i}$ $i = 1, 2, 3, \cdots, n$ son linealmente independientes. Esto nos permite escribir cualquier columna de $\hat{\mathbf{Y}}(t)$ como combinación lineal de las columnas de $\hat{\mathbf{Z}}(t)$, es decir, existen constantes $c_{1i}, c_{2i}, \cdots, c_{ni}$, tales que

$$\mathbf{Y}_{i}(t) = c_{1i} \mathbf{Z}_{1}(t) + c_{2i} \mathbf{Z}_{2}(t) + \cdots + c_{ni} \mathbf{Z}_{n}(t) \label{25} \tag{25}$$

Donde el índice $i$ de las constantes indica el número de columna de la matriz $\hat{\mathbf{Y}}(t)$, es decir, si definimos el vector

$$\mathbf{c}_{i} = \begin{pmatrix}
c_{1i} \\ c_{2i} \\ \vdots \\ c_{ni}
\end{pmatrix} \label{26} \tag{26}$$

podemos escribir la combinación lineal (\ref{25}) como

$$\mathbf{Y}_{i}(t) = \begin{pmatrix} \mathbf{Z}_{1} & \mathbf{Z}_{2} & \cdots & \mathbf{Z}_{n} \end{pmatrix} \begin{pmatrix}
c_{1i} \\ c_{2i} \\ \vdots \\ c_{ni}
\end{pmatrix} = \begin{pmatrix}
c_{1i}z_{11} + c_{2i}z_{12} + \cdots + c_{ni}z_{1n} \\
c_{1i}z_{21} + c_{2i}z_{22} + \cdots + c_{ni}z_{2n} \\
\vdots \\
c_{1i}z_{n1} + c_{2i}z_{n2} + \cdots + c_{ni}z_{nn}
\end{pmatrix} \label{27} \tag{27}$$

Definamos la matriz constante $\mathbf{C}$ como

$$\mathbf{C} = \begin{pmatrix} \mathbf{c_{1}} & \mathbf{c_{2}} & \cdots & \mathbf{c_{n}} \end{pmatrix} = \begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & & & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix} \label{28} \tag{28}$$

En forma matricial la operación $\hat{\mathbf{Z}}(t) \mathbf{C}$ corresponde al producto de las siguientes matrices de $n \times n$.

$$\hat{\mathbf{Z}}(t) \mathbf{C} = \begin{pmatrix}
z_{11} & z_{12} & \cdots & z_{1n} \\
z_{21} & z_{22} & \cdots & z_{2n} \\
\vdots & & & \vdots\\
z_{n1} & z_{n2} & \cdots & z_{nn}
\end{pmatrix} \begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & & & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix} \label{29} \tag{29}$$

Observemos con cuidado que el resultado (\ref{27}) corresponde a la $i$-ésima columna de hacer el producto $\hat{\mathbf{Z}}(t) \mathbf{C}$. Por lo tanto, las $n$ ecuaciones (\ref{25}) son equivalentes al sistema

$$\hat{\mathbf{Y}}(t) = \hat{\mathbf{Z}}(t) \mathbf{C}$$

$\square$

Hemos llegado al resultado final. Dicho resultado involucra el concepto de matriz inversa, recordemos este concepto de álgebra lineal.

La ecuación anterior queda como

$$\mathbf{AA}^{-1} = \mathbf{A}^{-1} \mathbf{A} = \mathbf{I} \label{31} \tag{31}$$

Demostremos el resultado que nos muestra cómo obtener la matriz $e^{\mathbf{A}t}$ a partir de una matriz fundamental de soluciones.

Demostración: Sabemos que $e^{\mathbf{A} t}$ y $\hat{\mathbf{Y}}(t)$ son matrices fundamentales de soluciones de $\mathbf{Y}^{\prime} = \mathbf{AY}$, de acuerdo al teorema anterior ambas funciones se relacionan de la siguiente forma.

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \mathbf{C} \label{33} \tag{33}$$

para alguna matriz constante $\mathbf{C}$.

Tomemos $t = 0$, por un lado

$$e^{\mathbf{A} 0} = e^{\mathbf{0}} = \mathbf{I}$$

Por otro lado, de (\ref{33})

$$e^{\mathbf{A} 0} = \hat{\mathbf{Y}}(0) \mathbf{C}$$

De ambas ecuaciones tenemos que

$$\hat{\mathbf{Y}}(0) \mathbf{C} = \mathbf{I} \label{34} \tag{34}$$

Esta ecuación obliga que

$$\mathbf{C} = \hat{\mathbf{Y}}^{-1}(0) \label{35} \tag{35}$$

Sustituyendo en (\ref{33}) concluimos que

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0)$$

$\square$

Finalicemos con un ejemplo.

Ejemplo: Determinar la matriz $e^{\mathbf{A} t}$, donde

$$\mathbf{A} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix}$$

Solución: Imagina lo complicado que sería este problema si lo intentáramos resolver usando la definición (\ref{11}).

En la entrada anterior vimos que una matriz fundamental de soluciones del sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

es

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix}$$

Determinemos la matriz $e^{\mathbf{A} t}$ usando la expresión (\ref{32}).

Calcular la matriz inversa puede ser una tarea larga y debido a que no es el objetivo llevar a cabo estas operaciones se puede comprobar que la matriz inversa de $\hat{\mathbf{Y}}(t)$ es

$$\hat{\mathbf{Y}}^{-1}(t) = \begin{pmatrix}
\dfrac{1}{2} & -\dfrac{1}{2} & 0 \\ \dfrac{1}{2 e^{2t}} & \dfrac{1}{2 e^{2t}} & 0 \\ 0 & 0 & \dfrac{1}{e^{3t}}
\end{pmatrix}$$

Basta probar que $\hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(t) = \mathbf{I}$. Para calcular la inversa se puede hacer uso de algún programa computacional. Si en la matriz inversa evaluamos en $t = 0$, se tiene

$$\hat{\mathbf{Y}}^{-1}(0) = \begin{pmatrix}
\dfrac{1}{2} & -\dfrac{1}{2} & 0 \\ \dfrac{1}{2} & \dfrac{1}{2} & 0 \\ 0 & 0 & 1
\end{pmatrix}$$

Por lo tanto,

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0) = \begin{pmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix} \begin{pmatrix}
\dfrac{1}{2} & -\dfrac{1}{2} & 0 \\ \dfrac{1}{2} & \dfrac{1}{2} & 0 \\ 0 & 0 & 1
\end{pmatrix}$$

Haciendo la multiplicación de matrices correspondiente obtenemos finalmente que

$$e^{\mathbf{A} t} = \begin{pmatrix}
\dfrac{e^{2t} + 1}{2} & \dfrac{e^{2t} -1}{2} & 0 \\ \dfrac{e^{2t} -1}{2} & \dfrac{e^{2t} + 1}{2} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix}$$

$\square$

Existen otras formas de calcular la exponencial de una matriz, una de ellas es usando la transformada de Laplace y otra puede ser diagonalizando matrices. Si lo deseas puedes investigar sobre estos métodos en la literatura, por nuestra parte serán temas que no revisaremos ya que, más que obtener exponenciales de matrices, estamos interesados en obtener soluciones de sistemas de ecuaciones diferenciales, aunque como vimos, están estrechamente relacionados.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Sea

    $\mathbf{A}(t) = \begin{pmatrix} \sin(2t) \\ e^{3t} \\ 8t -1 \end{pmatrix}$
  • Demostrar que la derivada de la matriz $\mathbf{A}$ es

    $\dfrac{d}{dt} \mathbf{A}(t) = \begin{pmatrix} 2 \cos(2t) \\ 3e^{3t} \\ 8 \end{pmatrix}$
  • Demostrar que la integral de $0$ a $t$ de la matriz $\mathbf{A}$ es

    $\int_{0}^{t} \mathbf{A}(s) ds = \begin{pmatrix} -\dfrac{1}{2} \cos(2t) + \dfrac{1}{2} \\ \dfrac{1}{3} e^{3t} -\dfrac{1}{3} \\ 4t^{2} -t \end{pmatrix}$
  1. Demostrar que

    $\int{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} ds} = t \mathbf{I} + \mathbf{C}$

    Donde,

    $\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{C} = \begin{pmatrix} 0 & c & c \\ c & 0 & c \\ c & c & 0 \end{pmatrix}$

    con $c$ una constante.
  1. Obtener la matriz $e^{\mathbf{A}t}$ para los siguientes casos:
  • $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$
  1. Sea $\hat{\mathbf{Y}}(t)$ una matriz fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$. Demostrar que $$e^{\mathbf{A} (t -t_{0})} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(t_{0})$$
  1. Una matriz fundamental del sistema

    $\mathbf{Y}^{\prime} = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \mathbf{Y} = \mathbf{AY}$

    es

    $\hat{\mathbf{Y}}(t) = \begin{pmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -(1 + t) e^{2t} \end{pmatrix}$
  • Demostrar que la matriz anterior en efecto es una matriz fundamental de soluciones del sistema.
  • Demostrar que la matriz $e^{\mathbf{A} t}$ está dada por

    $e^{\mathbf{A} t} = \begin{pmatrix} (1 -t) e^{2t} & -te^{2t} \\ te^{2t} & (1 + t) e^{2t} \end{pmatrix}$

Más adelante…

En estas tres primeras entradas de la unidad 3 establecimos la teoría básica que debemos conocer sobre los sistemas lineales de primer orden compuestos por $n$ ecuaciones diferenciales lineales de primer orden. En particular, esta entrada es de interés, pues más adelante la exponencial de una matriz volverá a aparecer cuando estudiemos métodos de resolución y cuando justifiquemos los teoremas de existencia y unicidad.

En las siguientes entradas comenzaremos a desarrollar los distintos métodos de resolución de estos sistemas lineales. En particular, en la siguiente entrada desarrollaremos el método de eliminación de variables, éste método en realidad es muy sencillo, útil y práctico en muchas ocasiones, aunque también es un método muy limitado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»