Archivo del Autor: Gabriela Hernández Aguilar

Teoría de los Conjuntos I: Sucesor

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada hablaremos acerca del sucesor de un número natural. Este concepto nos permitirá definir un poco más adelante qué son los conjuntos inductivos, que simultáneamente nos dará un método de demostración muy versátil, y conectará nuestro estudio de los números naturales con el de los conjuntos infinitos.

Sucesor

La noción que estudiaremos ahora es la siguiente.

Definición. Sea $x$ un conjunto. Definimos al sucesor de $x$ como $s(x)=x\cup \set{x}$.

Ejemplos.

  • El sucesor de $\emptyset$ es $s(\emptyset)=\emptyset\cup \set{\emptyset}=\set{\emptyset}$.
  • El sucesor de $\set{\emptyset}$ es $s(\set{\emptyset})=\set{\emptyset}\cup \set{\set{\emptyset}}=\set{\emptyset, \set{\emptyset}}$.
  • Luego, el sucesor de $\set{\emptyset, \set{\emptyset}}$ es $s(\set{\emptyset, \set{\emptyset}})=\set{\emptyset,\set{\emptyset}}\cup \set{\set{\emptyset, \set{\emptyset}}}=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$.
  • El sucesor de $\set{\set{\emptyset}}$ es $s(\set{\set{\emptyset}})=\set{\set{\emptyset}}\cup \set{\set{\set{\emptyset}}}= \set{\set{\emptyset}, \set{\set{\emptyset}}}$.

$\square$

La noción de sucesor está definida para cualquier conjunto. Pero dado que en esta unidad únicamente estaremos trabajando con números naturales, prácticamente nos limitaremos a usar la definición de sucesor para conjuntos que son números naturales. En este caso sucede algo especial: si $n$ es un número natural, entonces $s(n)$ también lo es. Vamos a demostrar esto, pero antes demostraremos algunos lemas que nos serán de utilidad.

Unos lemas sobre la pertenencia

A continuación probaremos algunos resultados sobre la pertenencia de números naturales en sí mismos y de unos en otros. Cuando los leas, te darás cuenta de que ya habíamos demostrado resultados similares y más generales en la entrada del axioma de buena fundación. Sin embargo, nota que en las siguientes demostraciones no es necesario utilizar este axioma, pues la definición de número natural nos da todo lo que necesitamos.

Lema 1. Para cualquier número natural $n$, no es posible que $n\in n$.

Demostración.

Sea $n$ un número natural. Entonces $\in_n$ es un orden total estricto para $n$. Si sucediera que $n\in n$, entonces tendríamos una contradicción pues tendríamos $n\in_n n$ y $n\in_n n$, lo que contradice la asimetría de $\in_n$. Así, $n\not \in n$.

$\square$

Lema 2. Si $n$, $m$ son números naturales, entonces no es posible que $n\in m$ y $m\in n$ al mismo tiempo.

Demostración.

Sean $n$ y $m$ números naturales. Si $n\in m$ y $m\in n$, entonces $n\in n$ pues $n$ es conjunto transitivo. Esto contradice el lema anterior.

Por lo tanto, no es posible que $n\in m$ y $m\in n$ al mismo tiempo.

$\square$

Así, hemos logrado hacer estas demostraciones sin recurrir al axioma de buena fundación. Como comentario tangencial, en teoría de los conjuntos no sólo resulta de interés probar resultados que se deducen de los axiomas, sino que a veces también es interesante identificar realmente cuáles son los «axiomas suficientes» para tener algún resultado de la teoría. Nos encontraremos nuevamente con preguntas de este estilo cuando hablemos del axioma de elección.

El sucesor de un natural

Ahora que demostramos los lemas anteriores, estamos listos para probar que el sucesor de un número natural es un número natural.

Teorema. Si $n$ es un número natural, entonces $s(n)$ es un número natural.

Demostración.

Sea $n$ un número natural. Veamos que $s(n)$ es un número natural. Para ello tenemos que probar todo lo siguiente:

  • $s(n)$ es transitivo.
  • $\in_{s(n)}$ es un orden total estricto en $s(n)$.
  • Cualquier $B\subseteq s(n)$ no vacío tiene mínimo y máximo con respecto a $\in_{s(n)}$.

A continuación hacemos todo esto.

$s(n)$ es transitivo.

Sea $y\in s(n)=n\cup\set{n}$. Si $y\in n$, dado que $n$ es un número natural, entonces $n$ es transitivo y por lo tanto, $y\subseteq n$. Así, $y\subseteq n\cup\set{n}$. Si $y\in \set{n}$, entonces $y=n$ y en particular, $y\subseteq n$ y así, $y\subseteq n\cup\set{n}$. En cualquier caso, $y\subseteq s(n)$. Por lo tanto, $s(n)$ es un conjunto transitivo.

$\in_{s(n)}$ es un orden total estricto en $s(n)$.

Para esta parte debemos probar que $\in_{s(n)}$ es una relación asimétrica, transitiva y que cualquiera dos elementos de $s(n)$ son $\in_{s(n)}$ comparables.

Veamos que $\in_{s(n)}$ es asimétrica. Sean $y,z\in s(n)$. Como $y\in s(n)=n\cup \{n\}$, entonces o bien $y=n$, y entonces $y$ es natural, o bien $y\in n$, y entonces $y$ es natural por el teorema de la entrada anterior. De manera análoga, $z$ es natural. Por el Lema 2 de esta entrada, es imposible que $y \in_{s(n)} z$ y $z \in_{s(n)} y$ simultáneamente, por lo que $\in_{s(n)}$ es asimétrica.

Antes de ver que la relación es transitiva, veamos que cualesquiera dos elementos son comparables. Tomemos $y,z \in s(n)$ arbitrarios. Si ambos están en $n$, entonces como $\in_n$ es total, tenemos que o $y\in_n z$, o $y=z$, o $z\in_n y$. Respectivamente tendríamos que $y\in_{s(n)} z$, o $y=z$, o $z\in_{s(n)} y$. Si ambos están en $\{n\}$, entonces $y=n=z$ y así $y=z$. Si $y$ está en $n$ y $z$ está en $\{n\}$, entonces $z=n$ y por lo tanto $y\in z$, de donde $y\in_{s(n)} z$. Si $z$ está en $n$ y $y$ está en $\{n\}$, entonces $y=n$ y por lo tanto $z\in_{s(n)} y$, de donde $z\in_{s(n)} y$.

Para terminar de ver que $\in_{s(n)}$ es un orden total estricto, falta ver que es una relación transitiva. Para ello tomemos $w,y,z\in s(n)$ arbritarios tales que $w\in_{s(n)} y$ y $y\in_{s(n)} z$ y veamos que $w\in_{s(n)} z$. De acuerdo a en dónde están $w,y,z$ en $s(n)=n\cup \{n\}$, tenemos 8 casos. Pero podemos reducirlos a las siguientes tres posibilidades.

  • $w,y,z\in n$, en cuyo caso se da $w\in_n z$ por transitividad de $\in_n$, y así $w\in_{s(n)} z$.
  • Exactamente uno de $w,y,z$ es igual a $n$. No se puede $w=n$ pues llegamos a la contradicción $n=w\in y$ (por nuestra suposición) y $y\in n$ (pues exactamente hay uno igual a $n$). Análogamente, tampoco se puede $y=n$ pues llegamos a la contradicción $n\in z$ y $z\in n$. Así, sólo puede ser $z$, pero entonces $w\in n=z$, de donde $w\in_{s(n)} z$.
  • Al menos dos de $w,y,z$ es igual a $n$. Este caso es imposible pues lleva o bien a una contradicción del estilo $n\in n$ (cuando $w=n=y$ o $y=n=z$), o bien a la contradicción $n\in y \in n$.

Lo anterior cubre todos los casos para mostrar que la relación es transitiva. Hemos entonces mostrado que $\in_{s(n)}$ es un orden total y estricto para $s(n)$.

Cualquier $B\subseteq s(n)$ no vacío tiene mínimo y máximo con respecto a $\in_{s(n)}$.

Supongamos que $B$ conjunto no vacío es subconjunto de $s(n)$ y veamos que $B$ tiene máximo y mínimo.

Caso 1: Si $B\subseteq \set{n}$, como $B\not=\emptyset$ entonces $B=\set{n}$.

Luego, $n=\min (B)$ pues se satisface que para cualquier $y\in B\setminus \set{n}=\emptyset$, se tiene que $n\in y$ por vacuidad.

Finalmente, $n=\max (B)$ pues se satisface que para cualquier $y\in B\setminus \set{n}=\emptyset$, se tiene que $y\in n$ por vacuidad.

Caso 2: Si $B\subseteq n$, entonces $B$ es un subconjunto no vacío de $n$, así que tiene un mínimo $a$ y un máximo $b$ con respecto a $\in_n$, que son a la vez mínimo y máximo con respecto a $\in_{s(n)}$.

Caso 3: Si no pasa que $B\subseteq \set{n}$, ni $B\subseteq n$, entonces hay elementos de $B$ en $\set{n}$ y en $n$. Así, $n\in B$ y podemos definir $a$ como el mínimo de $B\cap n$. Afirmamos que $n=\max(B)$ y $a=\min(B)$.

En efecto, todo $y\in B\setminus\{n\}$ está en $n$ y por lo tanto $y\in_{s(n)} n$. Además, si tomamos $z\in B\setminus \{a\}$, entonces hay dos posibilidades. O bien $z=n$, que acabamos de ver que cumple $a\in_{s(n)} n$. O bien $z\in n$, pero entonces $z\in B\cap n$ y como $a$ es mínimo de $B\cap n$, tenemos entonces $a\in_n z$ y por lo tanto $a\in_{s(n)} z$.

Con esto terminamos de demostrar todo lo que necesitábamos para ver que $s(n)$ es un natural.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá aprender otras propiedades del sucesor de un número natural:

  1. Describe al sucesor del natural $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}, \set{\emptyset, \set{\emptyset},\set{\emptyset, \set{\emptyset}}}}$.
  2. Sean $x$ y $y$ conjuntos cualesquiera. Demuestra que si $s(x)=s(y)$, entonces $x=y$.
  3. Prueba que para cualquier natural $n$ se cumple que $\bigcup s(n)=n$.
  4. Sea $x$ un conjunto. Demuestra que $x$ y $s(x)$ son conjuntos distintos. ¿Será siempre cierto que $x$ y $s(s(x))$ son conjuntos disintos? En caso de que sí, da una prueba. En caso de que no, da un contraejemplo.

Más adelante…

En la siguiente entrada definiremos a los conjuntos inductivos. Tales conjuntos nos darán la base para definir al conjunto de los números naturales. Además hablaremos de un nuevo axioma: el axioma del infinito.

Entradas relacionadas

En los siguientes enlaces podrás repasar el contenido acerca de números naturales.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Números naturales

Por Gabriela Hernández Aguilar

Introducción

En esta entrada daremos la definición formal de qué es un número natural. Además probaremos algunos resultados sobre números naturales.

Número natural

Definición. Sea $n$ un conjunto. Decimos que $n$ es un número natural si satisface las siguientes tres condiciones:

  1. $n$ es un conjunto transitivo.
  2. $\in_n$ es un orden total estricto en $n$.
  3. Cualquier subconjunto no vacío $z$ de $n$ tiene elemento mínimo y máximo en el orden $\in_n$.

Ejemplo.

Afirmamos que el conjunto $0=\emptyset$ es un número natural. Veamos por qué. En la entrada anterior vimos que $\emptyset$ es un conjunto transitivo.

Además, $(\emptyset, \in_\emptyset)$ es un conjunto totalmente ordenado pues $\in_\emptyset= \emptyset$, por lo que se satisface por vacuidad (en $\emptyset$) que es una relación asimétrica y transitiva. Asimismo, los elementos de $\in_\emptyset$ son comparables por vacuidad (en $\emptyset$) y por lo tanto, $\in_\emptyset$ es un orden total.

Finalmente, se satisface por vacuidad que para cualquier $z\not=\emptyset$ (pues no hay tal) que cumple que $z\subseteq \emptyset$, se tiene que $z$ tiene elemento mínimo y máximo en el orden $\in_\emptyset$.

Por lo tanto, $\emptyset$ es un número natural.

$\square$

Elementos de números naturales son números naturales

En esta sección veremos que si $n$ es número natural y $z\in n$, entonces $z$ es número natural. Lo primero que es conveniente hacer es entender la relación $\in_z$ en términos de la relación $\in_n$.

Lema 1. Si $n$ es un conjunto transtivo, entonces para cualquier $z\in n$ se cumple que $\in_n\cap (z\times z)=\in_z$..

Demostración. En efecto, tenemos que

\begin{align*}
\in_n\cap(z\times z)&=\set{(x,y)\in n\times n:x\in y}\cap(z\times z)\\
&=\set{(x,y)\in z\times z:x\in y}\\
&=\in_z.
\end{align*}

$\square$

El siguiente lema será de ayuda para mostrar que cualquier elemento de un número natural resulta ser también un número natural.

Lema 2. Si $n$ es un conjunto transitivo, entonces, para cualquier $z\in n$ se satisface que $\in_z$ es un orden total estricto en $z$.

Demostración.

Veamos que $\in_z$ es una relación asimétrica, transitiva y sus elementos son $\in_z$-comparables.

  1. Asimetría.
    Procedamos por contradicción. Supongamos que $x,y\in z$ tales que $x\in_z y$ y $y\in_z x$. Por el Lema 1, tendríamos que $x\in_n y$ y $y\in_n x$, lo cual no puede ocurrir pues $\in_n$ es una relación asimétrica. Así, no hay tales $x$ y $y$. Esto muestra que $\in_z$ también es una relación asimétrica.
  2. Transitividad.
    Sean $x, y, w\in z$ tales que $x\in_z y$ y $y\in_z w$. Por el Lema 1, tenemos que $x\in_n y$ y $y\in_n w$, lo que implica que $x\in_n w$ con $x, w\in z$. De nuevo por el Lema 1, se tiene que $x\in_zw$. Por lo tanto, $\in_z$ es transitiva en $z$.
  3. $\in_z$-comparables.
    Sean $x,y\in z$. Dado que $z\in n$, entonces $x\in n$ y $y\in n$. Como $\in_n$ es total, tenemos que $x\in_n y$ o $y\in_n x$ o $y=x$. Por el Lema 1, estas posibilidades implican, respectivamente, que $x\in_z y$ o $y\in_z x$ o $y=x$, es decir, los elementos de $z$ son $\in_z$ comparables.

Por lo tanto, $\in_z$ es un orden total en $z$.

$\square$

Estamos listos para ver que elementos de naturales son naturales.

Teorema. Si $z\in n$ con $n$ número natural, entonces $z$ también es un número natural.

Demostración.

Supongamos que $n$ es un número natural y que $z\in n$. Veamos que en $z$ se verifican las condiciones 1, 2 y 3 de la definición de número natural.

  1. $z$ es un conjunto transitivo.
    En efecto, sea $y\in z$. Como $n$ es transitivo y $z\in n$, tenemos que $y\in n$. Si tomamos $w\in y$, se sigue nuevamente que $w\in n$ por la transitividad de $n$. Como $\in_n$ es transitiva, y $w,y,z$ están en $n$, tenemos entonces que $w\in z$. Así, $y\subseteq z$. Concluimos que para cualquier $y\in z$ se tiene que $y\subseteq z$ y, por lo tanto, $z$ es un conjunto transitivo.
  2. $\in_z$ es un orden total en $z$.
    Por el Lema 2 se tiene que $\in_z$ es un orden total estricto en $z$.
  3. Subconjuntos no vacíos de $z$ tienen máximo y mínimo con respecto a $\in_z$.
    Sea $B\subseteq z$ con $B$ no vacío. Dado que $n$ es un número natural y $z\in n$, tenemos que $z\subseteq n$. Así, por transitividad de la contención se sigue que $B\subseteq n$, por lo que $B$ tiene elemento mínimo y máximo con respecto a $\in_n$. Llamemos a estos elementos $b_1$ y $b_2$, respectivamente. Recordemos que $b_1,b_2$ son elementos de $B$ y, por lo tanto, de $z$ y de $n$.
    Veamos que $b_1$ y $b_2$ son los elementos mínimo y máximo de $B$ con respecto a $\in_z$. Tomemos $b\in B\setminus \{b_1\}$. Como $b\in B$, tenemos que $b\in z$ y por lo tanto $b\in n$. Como $b_1$ es mínimo de $\in_n$, tenemos que $b_1\in_n b$. Por el Lema 1, tenemos entonces que $b_1\in_z b$. Así, $b_1$ es mínimo de $\in_z$. Una demostración análoga muestra que $b_2$ es máximo de $\in_z$. Por lo tanto, $B$ tiene elemento mínimo y máximo con respecto a $\in_z$.

Todo lo anterior nos permite concluir que $z$ es número natural.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta entrada, además de seguir trabajando el concepto de conjuntos transitivos.

  1. Muestra que los conjuntos $1,2,3,4$ que hemos definido previamente en efecto son conjuntos transitivos.
  2. Este ejercicio consiste en probar una versión más general del Lema 2. Muestra que si $(x,\lt)$ es un conjunto estrictamente y totalmente ordenado, entonces para cualquier subconjunto $y$ de $x$ se tiene que $(y, \lt \cap (y\times y))$ también es un conjunto estrictamente y totalmente ordenado.
  3. Prueba que si $x\not=\emptyset$ es un conjunto transitivo, entonces $\bigcap x$ es un conjunto transitivo.
  4. Prueba que si $x$ es un conjunto transitivo, entonces $\bigcup x$ es un conjunto transitivo
  5. Demuestra que si $n$ es un número natural, entonces $n\notin n$. Haz esto de dos formas distintas: 1) Usando la definición de número natural para llegar a una contradicción y 2) Usando el axioma de de buena fundación.
  6. Demuestra que si $n$ y $m$ son números naturales, entonces no puede ocurrir que $n\in m$ y $m\in n$ al mismo tiempo. Haz esto de dos formas distintas: 1) Usando la definición de número natural para llegar a una contradicción y 2) Usando el axioma de buena fundación.

Más adelante…

En la siguiente entrada definiremos al sucesor de un número natural. A partir de este nuevo concepto, probaremos propiedades adicionales para los números naturales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Construcción de los números naturales

Por Gabriela Hernández Aguilar

Introducción

Hasta ahora solo hemos usado los conjuntos $0$, $1$, $2$, $3$ y $4$ que definimos en la entrada de axioma del par y axioma de unión, pero es momento de hablar de números naturales de manera más general y rigurosa. En esta entrada comenzaremos a hacer esto, enunciando algunas propiedades conjuntistas que esperamos que tengan los números naturales. Sin embargo, no dejaremos de lado la noción intuitiva que ya tenemos.

Construcción

Al principio del curso hablamos acerca de los primeros axiomas de la teoría de los conjuntos. A partir de ellos obtuvimos un conjunto $\emptyset$ que no tiene elementos, y además probamos que era el único conjunto con esta propiedad. Por comodidad, a este conjunto también le pusimos el «nombre» o «etiqueta» $0$. Después, aplicamos el axioma del par para a partir de $0$ conseguir al conjunto $\{\emptyset\}$ al que llamamos $1$. En los ejercicios, hablamos de cómo a partir de los axiomas se pueden construir también a $2:=1\cup \{1\}= \set{\emptyset, \set{\emptyset}}$, a $3:=2\cup \{2\}=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$, y también a $4:=3\cup \{3\}$.

Por supuesto, también se pueden construir otros conjuntos que no «siguien este patrón», por ejemplo, aplicando dos veces el axioma del par se puede construir al conjunto $\set{\set{\emptyset}}$.

Si nos fijamos en la cantidad de elementos que tienen los conjuntos $0,1,2,3,4$, notamos que las etiquetas son muy precisas y coinciden con nuestra intuición, pues por ejemplo el $0$ es el vacío que tiene cero elementos, el $1$ es $\{\emptyset\}$ que tiene un sólo elemento que es $\emptyset$, etc. De hecho, parte del ejercicio de la entrada mencionada pedía ver que $4=\{0,1,2,3\}$, que en efecto tiene cuatro elementos. Pero puede haber otros conjuntos distintos que también tengan la misma cantidad que estos conjuntos. Por ejemplo, el conjunto $\set{\set{\emptyset}}$ también tiene un elemento (tiene sólo a $\set{\emptyset}$), pero no es el mismo conjunto que $1$.

Parte de lo que queremos lograr al construir los números naturales formalmente es asociar a cada «número que usamos para contar» un conjunto con esa cantidad de elementos. Lo mencionado arriba debe dejarnos la idea de que puede haber muchas maneras de hacer esto. Por ejemplo, una posible manera sería formalizar la siguiente construcción:

\begin{align*}
0 &-\emptyset\\
1&-\set{\set{\emptyset}}\\
2&-\set{\emptyset, \set{\set{\emptyset}}}\\
3&-\set{\emptyset, \set{\set{\emptyset}}, \set{\emptyset, \set{\set{\emptyset}}}}\\
\vdots
\end{align*}

Otra posible manera sería formalizar la siguiente construcción, que se parece más a cómo hemos estado utilizando las etiquetas $0,1,2,3,4$:

\begin{align*}
0 &-\emptyset\\
1&-\set{\emptyset}\\
2&-\set{\emptyset, \set{\emptyset}}\\
3&-\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}\\
\vdots
\end{align*}

Debido a que hay muchas maneras de lograr nuestro objetivo, podemos poner algunas condiciones adicionales. Hablaremos de ellas en el transcurso de estas entradas. Estas propiedades adicionales que requeriremos nos llevarán a que la construcción apropiada es la segunda presentada aquí arriba.

Conjuntos transitivos

Para definir formalmente a los números naturales comenzaremos definiendo una de las características que tendrá cada uno de los números naturales.

Definición. Sea $x$ un conjunto. Decimos que $x$ es un conjunto transitivo si para cualquier $y\in x$ se cumple que $y\subseteq x$.

Observa que si $x$ es transitivo en la definición que acabamos de dar, entonces si $z\in y$ y $y\in x$, entonces $z\in x$.

Ejemplo.

Nos gustaría que cada número natural sea transitivo y nos gustaría que $0$, como lo definimos, sea número natural. En efecto lo es pues, en este caso, $0=\emptyset$ y entonces por vacuidad se cumple que si $y\in \emptyset$, se tiene que $y\subseteq \emptyset$.

$\square$

Ejemplo.

También el conjunto que definimos como $1$ es transitivo. Recordemos que $1=\set{\emptyset}$. El único elemento de $1$ es $y=\emptyset$, así que para ver que $x$ es transitivo basta ver que $\emptyset\subseteq \set{\emptyset}$, lo cuál sabemos que es cierto. Por lo tanto, $1$ es un conjunto transitivo.

$\square$

Ejemplo.

Sea $x=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $x$ no es transitivo. En efecto, se tiene que $\set{\set{\emptyset}}\in x$ pero $\set{\set{\emptyset}}\not\subseteq x$ dado que $\set{\emptyset}\in \set{\set{\emptyset}}$ pero $\set{\emptyset}\notin x$. Por lo tanto, $\set{\emptyset, \set{\set{\emptyset}}}$ no es un conjunto transitivo.

$\square$

Equivalencias de conjuntos transitivos

A continuación veremos algunas equivalencias para que conjunto sea transitivo.

Proposición. Sea $x$ un conjunto. Entonces, $x$ es un conjunto transitivo si y sólo si $x\subseteq \mathcal{P}(x)$.

Demostración.

Comencemos suponiendo que $x$ es transitivo. Veremos que $x\subseteq \mathcal{P}(x)$. Sea $y\in x$. Como $x$ es un conjunto transitivo, se tiene que $y\subseteq x$ y por lo tanto, $y\in \mathcal{P}(x)$. Así, $x\subseteq \mathcal{P}(x)$.

Ahora, supongamos que $x\subseteq \mathcal{P}(x)$ y veamos que $x$ es un conjunto transitivo. Sea $y\in x$. Tenemos que $y\in \mathcal{P}(x)$ y así, $y\subseteq x$. Por lo tanto, $x$ es un conjunto transitivo.

$\square$

Otra equivalencia que tendrás que demostrar como parte de los ejercicios es la siguiente.

Proposición. Un conjunto $x$ es transitivo si y sólo si $\bigcup x\subseteq x$.

Otros resultados para conjuntos transitivos

Para concluir esta entrada veremos algunos resultados para conjuntos transitivos, esta vez con respecto a la intersección y la unión.

Proposición. Si $x$ y $y$ son conjuntos transitivos, entonces $x\cap y$ es un conjunto transitivo.

Demostración.

Sean $x$ y $y$ conjuntos transitivos. Veamos que $x\cap y$ es un conjunto transitivo, es decir, para cada $z\in x\cap y$ se cumple que $z\subseteq x\cap y$.

  1. Como $x$ es un conjunto transitivo, entonces para cualquier $z\in x$ se cumple que $z\subseteq x$.
  2. Como $y$ es un conjunto transitivo, entonces para cualquier $z\in y$ se cumple que $z\subseteq y$.

De $1$ y $2$ podemos concluir que para cualquier $z\in x\cap y$ se satisface que $z\subseteq x\cap y$. Por lo tanto, $x\cap y$ es transitivo.

$\square$

Hay una segunda demostración de la proposición anterior, usando álgebra de conjuntos y la primera caracterización de la sección anterior.

Demostración. Como $x$ y $y$ son transitivos, tenemos que $x\subseteq \mathcal{P}(x)$ y $y\subseteq \mathcal{P}(y)$. Así, por propiedades que hemos demostrados de intersección, $$x\cap y \subseteq \mathcal{P}(x) \cap \mathcal{P}(y) \subseteq \mathcal{P}(x\cap y).$$

Así, $x\cap y \subseteq \mathcal{P}(x\cap y)$ y por lo tanto $x\cap y$ es transitivo.

$\square$

La transitividad también se preserva al unir conjuntos.

Proposición. Si $x$ y $y$ son conjuntos transitivos, entonces $x\cup y$ es un conjunto transitivo.

Demostración.

Sean $x$ y $y$ conjuntos transitivos. Veamos que $x\cup y$ es un conjunto transitivo, es decir, para cada $z\in x\cup y$ se cumple que $z\subseteq x\cup y$.

  1. Como $x$ es un conjunto transitivo, entonces para cualquier $z\in x$ se cumple que $z\subseteq x$.
  2. Como $y$ es un conjunto transitivo, entonces para cualquier $z\in y$ se cumple que $z\subseteq y$.

De $1$ y $2$ podemos concluir que para cualquier $z\in x\cup y$ se satisface que $z\subseteq x\cup y$. Por lo tanto, $x\cup y$ es transitivo.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitira reforzar el concepto de conjunto transitivo.

  1. ¿Cuáles de los siguientes conjuntos son transitivos?
    1. $\set{\emptyset, \set{\emptyset}}$,
    2. $\set{\set{\emptyset}}$,
    3. $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$.
  2. Verifica que, por definición, cada uno de los conjuntos $0,1,2,3,4$ que ya definimos son transitivos.
  3. Demuestra que $(\set{\emptyset, \set{\emptyset}, \set{\emptyset,\set{\emptyset}}}, \in)$ es un conjunto totalmente ordenado.
  4. Demuestra que $x=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ tiene elemento máximo y elemento mínimo en el orden $\in_x$.
  5. Demuestra la segunda equivalencia de la sección de conjuntos transitivos, es decir, que $x$ es transitivo si y sólo si $\bigcup x\subseteq x$.
  6. Si $x$ y $y$ son conjuntos transitivos, ¿será cierto que $x\setminus y$ siempre es un conjunto transitivo?, ¿será cierto que $x\triangle y$ siempre es un conjunto transitivo? Da una demostración o encuentra un contraejemplo en cada caso.

Más adelante…

En la siguiente entrada daremos la definición formal y rigurosa de qué es un número natural. Además demostraremos algunas de sus propiedades.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Buenos órdenes

Por Gabriela Hernández Aguilar

Introducción.

En esta entrada trataremos con un tipo particular de conjuntos ordenados, en donde será de mucha importancia el concepto de mínimo. Puedes recordar la definición de mínimo en la entrada Teoría de los Conjuntos I: Mínimos, máximos, minimales y maximales.

Conjuntos bien ordenados

Definición. Sea $(A,\leq)$ un conjunto parcialmente ordenado. Decimos que $A$ es un conjunto bien ordenado si cada subconjunto no vacío de $A$ tiene elemento mínimo. En este caso al orden $\leq$ se le llama buen orden.

Ejemplo.

Consideremos el conjunto $A=\set{\emptyset,\set{\emptyset}}$ ordenado con la inclusión. Afirmamos que $(A,\subseteq)$ es un buen orden. En efecto: supongamos que $B\subseteq A$ es un conjunto no vacío. Tenemos distintas posibilidades para $B$ y son las siguientes: $B=\set{\emptyset}$ o bien $B=\set{\set{\emptyset}}$ o bien $B=\set{\emptyset,\set{\emptyset}}$.

Si $B=\set{\emptyset}$, entonces $B$ tiene mínimo y es $\emptyset$. Si $B=\set{\set{\emptyset}}$, entonces $B$ tiene mínimo y es $\set{\emptyset}$. Finalmente, si $B=\set{\emptyset,\set{\emptyset}}$, entones $B$ tiene mínimo y es $\emptyset$, pues $\emptyset\subseteq\emptyset$ y $\emptyset\subseteq\set{\emptyset}$.

Así, en cualquier caso $B$ tiene mínimo. Por lo tanto, $(A,\subseteq)$ es un conjunto bien ordenado.

$\square$

Agrandar un conjunto bien ordenado

El siguiente ejemplo nos dice cómo podríamos conseguir conjuntos bien ordenados paso a paso.

Ejemplo.

Consideremos $A=\set{\emptyset,\set{\emptyset,\set{\emptyset}}}$. Luego, $A$ es un conjunto bien ordenado por la relación de contención. Dado que $A\notin A$, el conjunto $W=A\cup\set{A}$ es un conjunto no vacío distinto de $A$. Definamos la relación de orden $\preceq$ en $W$ como sigue: $A\preceq A$, $a\preceq A$ para todo $a\in A$ y $a_1\preceq a_2$ si y sólo si $a_1\leq a_2$ para cualesquiera $a_1,a_2\in A$ (en este caso $\leq$ es la relación de contención en $A$).

Notemos que esta nueva relación de orden definida en $W$ coincide con la relación de orden de $A$ si nos restringimos únicamente a comparar elementos de $A$.

Afirmamos que $(W,\preceq)$ es un conjunto bien ordenado. Para mostrarlo supongamos que $B\subseteq W=A\cup\set{A}$ es un conjunto no vacío y veamos que tiene mínimo en el orden $\preceq$. Si $B=\set{A}$, entonces el mínimo de $B$ es $A$.

Podemos suponer ahora que $B\cap A\not=\emptyset$. Como $B\cap A\subseteq A$ es un conjunto no vacío, entonces tiene un elemento mínimo en el orden $\leq$. Sea $b\in B\cap A$ el mínimo de este conjunto en el orden $\leq$ y veamos que $b\preceq x$ para cualquier $x\in B$. Supongamos entonces que $x\in B$ es cualquier elemento. Si $x\in B\cap A$, entonces $b\leq x$ y en consecuencia, $b\preceq x$. Si ahora $x\notin B\cap A$ se sigue que $x=A$ y, por definición de la relación $\preceq$, sabemos que $b\preceq A$, por lo que $b\preceq x$. De esta manera, $b=\min(B)$ en el orden $\preceq$.

Esto demuestra que cualquier subconjunto no vacío de $W$ tiene mínimo y, por tanto, $(W,\preceq)$ es un conjunto bien ordenado.

$\square$

Si tenemos un conjunto $A$ cualquiera, ¿será posible siempre darle un buen orden? Uno podría intentar hacer algo similar al ejemplo anterior. Comenzar con un elemento $a\in A$ e incluir a la pareja $(a,a)$ en el orden. Luego, tomar otro elemento distinto $b\in A$ y ponerlo como el elemento más grande poniendo las parejas $(a,b)$ y $(b,b)$. Y luego se podría poner un tercer elemento $c$ como el más grande, poniendo las parejas $(a,c)$, $(b,c)$, $(c,c)$. Podríamos intentar decir que se puede seguir «así sucesivamente», pero esto es informal y no está justificado por los axiomas. Aparentemente, tenemos que elegir elementos de $A$ una y otra vez para declararlos el nuevo máximo. Si $A$ es infinito, esto implica algo así como hacer una infinidad de elecciones. ¿Esto te recuerda a otros problemas que hemos enfrentado? ¡Sí! Una vez más nos encontramos con una dificultad que se superará una vez que hablemos del axioma de elección.

Bien ordenado implica totalmente ordenado

Ahora, veamos una consecuencia directa de que un conjunto sea bien ordenado.

Proposición. Si $(A,\leq)$ es un conjunto bien ordenado, entonces, $(A,\leq)$ es un conjunto totalmente ordenado.

Demostración.

Como $(A,\leq)$ es un conjunto bien ordenado, entonces, todo subconjunto no vacío de $A$ tiene elemento mínimo. Así, si tomamos dos elementos cualesquiera $a_1,a_2\in A$ se sigue que $\set{a_1,a_2}$ es un subconjunto no vacío de $A$, por lo que tiene elemento mínimo. En consecuencia, $a_1\leq a_2$ o $a_2\leq a_1$.

Esto demuestra que cualesquiera dos elementos de $A$ son $\leq-$comparables, por lo que $(A,\leq)$ es un conjunto totalmente ordenado.

$\square$

Otros cuántos resultados de buenos órdenes

Veamos ahora algunos resultados relacionados con conjuntos acotados en un conjunto bien ordenado.

Proposición. Sea $(A,\leq)$ un conjunto bien ordenado. Se cumple lo siguiente:
Si $B\subseteq A$ es un conjunto acotado superiormente, entonces, $B$ tiene supremo.

Demostración.

Sea $(A,\leq)$ un conjunto bien ordenado.
Supongamos que $B\subseteq A$ es un conjunto acotado superiormente. Sea $C=\set{a\in A:(\forall b\in B)(b\leq a)}$, el cual es un subconjunto no vacío de $A$, pues por hipótesis $B$ está acotado superiormente, es decir, existe $a\in C$.

Como $A$ está bien ordenado por $\leq$, entonces, existe el mínimo de $C$ en el orden $\leq$, es decir, existe $c\in A$ tal que $c=\min(C)$. Luego, como $c$ es el mínimo del conjunto de cotas superiores de $B$, concluimos por lo que vimos en la entrada anterior que $c=\sup(B)$.

Esto demuestra que todo subconjunto de $A$ que esté acotado superiormente tiene supremo, lo cual concluye la prueba.

Por la proposición anterior y el hecho de que todo subconjunto no vacío de un conjunto bien ordenado tiene mínimo, podemos concluir lo siguiente:

Si $(A,\leq)$ es un conjunto bien ordenado y $B\subseteq A$ es no vacío y acotado superiormente (inferiormente), entonces, $B$ tiene una mínima cota superior (máxima cota inferior).

$\square$

Hay que tener cuidado, pues en un conjunto bien ordenado los subconjuntos acotados inferiormente no necesariamente tienen ínfimo.

Tarea moral

La siguiente lista de ejercicios te ayudará a reforzar lo aprendido en esta sección:

  1. Sean $(A, \leq_A)$ y $(B, \leq_B)$ conjuntos bien ordenados. Demuestra que el orden lexicográfico horizontal en $A\times B$ es un buen orden.
  2. Sea $(A,\leq)$ un conjunto bien ordenado. Muestra que cualquier subconjunto no vacío $B$ tiene ínfimo.
  3. Demuestra que si $A$ admite un buen orden, entonces $\mathcal{P}(A)$ admite un orden total.
  4. Sea $(A, \leq_A)$ un conjunto totalmente ordenado. Prueba que existe $L\subseteq A$ tal que
    1) $\leq_A$ es un buen orden en $L$,
    2) para cualquier $x\in A$ existe $y\in L$ tal que $x\leq_A y$.

Más adelante…

En ocasiones tenemos dos conjuntos $A$ y $B$ con órdenes parciales $\leq_A$ y $\leq_B$ aparentemente distintos, pero que en el fondo se comportan igual. En la siguiente entrada hablaremos de una noción que nos permitirá decir cuándo dos conjuntos parcialmente ordenados son «básicamente el mismo». Esto lo haremos mediante funciones biyectivas que preservan el orden, a las que llamaremos isomorfismos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Cotas superiores y supremos

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca de cotas superiores y supremos. Así como las cotas inferiores que vimos en la entrada anterior, estos nuevos conceptos también nos permitirán acotar subconjuntos de conjuntos parcialmente ordenados.

Cotas superiores

Para comenzar esta entrada definiremos qué es una cota superior.

Definición. Sea $(A, \leq)$ un orden parcial y sea $B\subseteq A$. Decimos que $a\in A$ es una cota superior de $B$ si $x\leq a$ para toda $x\in B$. Si $B$ tiene por lo menos una cota superior, diremos que $B$ está acotado superiormente.

Notemos que la definición es muy parecida al concepto de máximo, sin embargo, los conceptos difieren en que el máximo debe ser elemento del conjunto al que estamos acotando y la cota no necesariamente debe satisfacer esto. Veamos el siguiente ejemplo.

Ejemplo.

Consideremos $A=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}$ ordenado con la inclusión. Sea $B= \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}\subseteq A$, tenemos que $\set{\emptyset, \set{\emptyset}}\in A$ es una cota superior de $B$ pues $x\subseteq \set{\emptyset, \set{\emptyset}}$ para todo $x\in B$, como se muestra en el siguiente diagrama:

$\square$

Ejemplo.

Consideremos $A=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ ordenado con la inclusión. Sea $B= \set{\emptyset, \set{\emptyset}}\subseteq A$, tenemos que $\set{\emptyset, \set{\emptyset}}\in A$ es una cota superior de $B$ pues $x\subseteq \set{\emptyset, \set{\emptyset}}$ para todo $x\in B$, como se muestra en el siguiente diagrama:

Además $\set{\emptyset}\in B$ también es una cota superior de $B$ pues para cada $x\in B$, $x\subseteq \set{\emptyset}$. Más aún, $\set{\emptyset}$ es el elemento máximo de $B$.

$\square$

El ejemplo anterior sugiere que la propiedad de ser máximo implica ser cota superior, pero no siempre es válido el recíproco.

De este último ejemplo podemos notar que la cota superior en un conjunto puede no ser única, y entonces podemos pensar en el conjunto que tenga a todas las cotas superiores. Esta idea junto con el concepto de mínimo motiva el concepto de supremo.

Supremos

Definición. Sea $(A, \leq)$ un orden parcial y sea $B\subseteq A$. Decimos que $a\in A$ es supremo de $B$ si es el elemento mínimo del conjunto de todas las cotas superiores de $B$. Lo denotaremos por $\sup(B)$.

Ejemplo.

Retomando el ejemplo anterior, si consideramos al conjunto de todas las cotas superiores de $B$, es decir, $\set{\set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ tenemos que el supremo es $\set{\emptyset}$ pues respecto al orden de $A$ se tiene que $\set{\emptyset}\subseteq\set{\emptyset, \set{\emptyset}}$ y por lo tanto, $\set{\emptyset}$ es el mínimo de las cotas superiores de $B$. Por lo tanto, $\set{\emptyset}= \sup(B)$.

$\square$

Teorema. Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Si $B$ tiene supremo en el orden $\leq$, entonces es único.

Demostración.

Sea $(A,\leq)$ un orden parcial y $B\subseteq A$ no vacío. Supongamos que $B$ tiene supremo, es decir, que existe $a\in A$ de tal forma que $x\leq a$ para toda $x\in B$ y, si $b\in A$ es tal que $x\leq b$ para toda $x\in B$, entonces, $a\leq b$.

Supongamos que $a_1,a_2\in A$ son supremos de $B$. Veamos que $a_1=a_2$.

Como $a_1$ es supremo de $B$, en particular se tiene que $x\leq a_1$ para toda $x\in B$. Luego, como $a_2$ es supremo de $B$ se sigue por definición que $a_2\leq a_1$. De manera análoga, como $a_2$ es supremo de $B$, en particular se tiene que $x\leq a_2$ para toda $x\in B$ y así, como $a_1$ es supremo de $B$ se sigue por definición que $a_1\leq a_2$.

Tenemos entonces que $a_1\leq a_2$ y $a_2\leq a_1$, de donde se sigue que $a_1=a_2$, lo cual demuestra la unicidad del supremo.

$\square$

Teorema. Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Si $B$ tiene un elemento máximo $b$, entonces $b$ es el supremo de $B$.

Demostración.

Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Luego como $b\in B$ es el elemento máximo de $B$, entonces para cualquier $x\in B$, $x\leq b$.

Sea $C$ el conjunto de todas las cotas superiores de $B$. Veamos que $b\in C$ y que $b=\min(C)$. Dado que $x\leq b$ para todo $x\in B$, entonces $b$ es cota superior de $B$ y, por tanto, $b\in C$. Luego, si $c\in C$ es cualquier elemento, entonces $c$ es cota superior de $B$, es decir, $x\leq c$ para cualquier $x\in B$. En particular, como $b\in B$ se tiene que $b\leq c$. Esto muestra que $b=\min(C)$.

Por lo tanto, $b=\sup(B)$.

$\square$

Aún cuando ser máximo implica ser supremo, no siempre va a ocurrir que el supremo de un conjunto sea máximo, como ocurre en el siguiente ejemplo.

Ejemplo.

Consideremos $A=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}$ ordenado con la inclusión. Sea $B= \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}\subseteq A$, tenemos que $\set{\emptyset, \set{\emptyset}}\in A$ es una cota superior de $B$ pues $x\subseteq \set{\emptyset, \set{\emptyset}}$ para todo $x\in B$, como se muestra en el siguiente diagrama:

Sin embargo, $B$ no tiene máximo pues no existe $x\in B$ tal que $y\subseteq x$. En efecto, si existiera tal $x$, tendría que simultánteamente contener a $\set{\emptyset}$ y a $\set{\set{\emptyset}}$, por lo que debe tener como elementos a $\emptyset$ y $\set{\emptyset}$. Pero entonces debe ser $\set{\emptyset,\set{\emptyset}}$, el cual no está en $B$.

$\square$

Tarea moral

La siguiente lista de ejercicios te ayudará a reforzar el contenido de esta entrada y las dos anteriores.

  1. Sean $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Demuestra que si $b$ es supremo y $b\in B$, entonces $b$ es máximo de $B$.
  2. Sean $(A, \leq)$ un orden parcial y $B,C\subseteq A$ no vacíos. Si $B$ y $C$ tienen supremo y $B\subseteq C$, demuestra que $\sup(B)\leq \sup(C)$.
  3. Exhibe un conjunto que esté acotado superiormente pero que no tenga supremo.
  4. Da un ejemplo de un conjunto ordenado $(A,\leq)$ en el cual se cumpla que el conjunto $\emptyset$ tiene supremo.

Más adelante…

La siguiente entrada estará dedicada a un tipo particular de conjuntos ordenados llamados buenos órdenes. Para este tema serán importantes los conceptos sobre máximos y mínimos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»