Álgebra Lineal I: Espacios vectoriales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la primer unidad de este curso de álgebra lineal estudiamos a profundidad al conjunto $F^n$ con sus operaciones de suma y multiplicación por escalar. Luego, hablamos de las matrices en $M_{m,n}(F)$ y vimos cómo pensarlas como transformaciones lineales. Les dimos una operación de producto que en términos de transformaciones lineales se puede pensar como la composición. Luego, hablamos de la forma escalonada reducida de una matriz y cómo llevar cualquier matriz a esta forma usando reducción gaussiana. Esto nos permitió resolver sistemas de ecuaciones lineales homogéneos y no homogeneos, así como encontrar inversas de matrices. Las habilidades desarrolladas en la primer parte del curso serán de mucha utilidad para la segunda, en donde hablaremos de espacios vectoriales.

En esta entrada definiremos el concepto de espacio vectorial y vectores. Para hacer esto, tomaremos como motivación el espacio $F^n$, que ya conocemos bien. Sin embargo, hay muchos otros ejemplos de objetos matemáticos que satisfacen la definición que daremos. Hablaremos de algunos de ellos.

En el transcurso de la unidad también hablaremos de otros conceptos básicos, incluido el de subespacio. Hablaremos de conjuntos linealmente independientes, de generadores y de bases. Esto nos llevará a establecer una teoría de la dimensión de un espacio vectorial. Las bases son de fundamental importancia pues en el caso de dimensión finita, nos permitirán pensar a cualquier espacio vectorial «como si fuera $F^n$ «. Más adelante precisaremos en qué sentido es esto.

Después, veremos cómo pasar de un espacio vectorial a otro mediante transformaciones lineales. Veremos que las transformaciones entre espacios vectoriales de dimensión finita las podemos pensar prácticamente como matrices, siempre y cuando hayamos elegido una base para cada espacio involucrado. Para ver que estamos haciendo todo bien, debemos verificar que hay una forma sencilla de cambiar esta matriz si usamos una base distinta, y por ello estudiaremos a las matrices de cambio de base.

Esta fuerte relación que existe entre transformaciones lineales y y matrices nos permitirá llevar información de un contexto a otro. Además, nos permitirá definir el concepto de rango para una matriz (y transformación vectorial). Hasta ahora, sólo hemos distinguido entre matrices invertibles y no invertibles. Las matrices invertibles corresponden a transformaciones lineales que «guardan toda la información». El concepto de rango nos permitirá entender de manera más precisa cuánta información guardan las transformaciones lineales no invertibles.

Recordando a $F^n$

Antes de definir el concepto de espacio vectorial en toda su generalidad, recordemos algunas de las cosas que suceden con $F^n$. De hecho, puedes pensar en algo mucho más concreto como $\mathbb{R}^4$.

Como recordatorio, comenzamos tomando un campo $F$ y dijimos que, para fines prácticos, podemos pensar que se trata de $\mathbb{R}$ y $\mathbb{C}$. A los elementos de $F$ les llamamos escalares.

Luego, consideramos todas las $n$-adas de elementos de $F$ y a cada una de ellas le llamamos un vector. A $F^n$ le pusimos una operación de suma, que tomaba dos vectores en $F^n$ y nos daba otro. Además, le pusimos una operación de producto por escalar, la cual tomaba un escalar en $F$ y un vector en $F^n$ y nos daba como resultado un vector. Para hacer estas operaciones procedíamos entrada a entrada.

Sin embargo, hay varias propiedades que demostramos para la suma y producto por escalar, para las cuales ya no es necesario hablar de las entradas de los vectores. Mostramos que todo lo siguiente pasa:

  1. (Asociatividad de la suma) Para cualesquiera vectores $u,v,w$ en $F^n$ se cumple que $(u+v)+w=u+(v+w)$.
  2. (Conmutatividad de la suma) Para cualesquiera vectores $u,v$ en $F^n$ se cumple que $u+v=v+u$.
  3. (Identidad para la suma) Existe un vector $0$ en $F^n$ tal que $u+0=u=0+u$.
  4. (Inversos para la suma) Para cualquier vector $u$ en $F^n$ existe un vector $v$ en $F^n$ tal que $u+v=0=v+u$.
  5. (Distributividad para la suma escalar) Para cualesquiera escalares $a,b$ en $F$ y cualquier vector $v$ en $F^n$ se cumple que $(a+b)v=av+bv$.
  6. (Distributividad para la suma vectorial) Para cualquier escalar $a$ en $F$ y cualesquiera vectores $v,w$ en $F^n$ se cumple que $a(v+w)=av+aw$.
  7. (Identidad de producto escalar) Para la identidad multiplicativa $1$ del campo $F$ y cualquier vector $v$ en $F^n$ se cumple que $1v=v$.
  8. (Compatibilidad de producto escalar) Para cualesquiera dos escalares $a,b$ en $F$ y cualquier vector $v$ en $F^n$ se cumple que $(ab)v=a(bv)$.

Los primeros cuatro puntos son equivalentes a decir que la operación suma en $F^n$ es un grupo conmutativo. Resulta que hay varios objetos matemáticos que satisfacen todas estas ocho propiedades o axiomas de espacio vectorial, y cuando esto pasa hay muchas consecuencias útiles que podemos deducir. La esencia del álgebra lineal precisamente consiste en deducir todo lo posible en estructuras que tienen las ocho propiedades anteriores. Estas estructuras son tan especiales, que tienen su propio nombre: espacio vectorial.

Definición de espacio vectorial

Estamos listos para la definición crucial del curso.

Definición. Sea $F$ un campo. Un espacio vectorial sobre el campo $F$ es un conjunto $V$ con operaciones de suma y producto por escalar, que denotaremos por \begin{align*}
+:& V\times V \to V \quad \text{y}\\
\cdot:& F\times V \to V,
\end{align*}

para las cuales se cumplen las ocho propiedades de la sección anterior. En otras palabras:

  • El conjunto $V$ es un grupo conmutativo con la suma.
  • Se tiene asociatividad para la suma escalar y la suma vectorial
  • Se tiene identidad y compatibilidad de la mulltiplicación escalar.

A los elementos de $F$ les llamamos escalares. A los elementos de $F^n$ les llamamos vectores. Para hacer restas, las definimos como $u-v=u+(-v)$, donde $-v$ es el inverso aditivo de $v$ con la suma vectorial. Usualmente omitiremos el signo de producto escalar, así que escribiremos $av$ en vez de $a\cdot v$ para $a$ escalar y $v$ vector.

La definición da la impresión de que hay que verificar muchas cosas. De manera estricta, esto es cierto. Sin embargo, de manera intuitiva hay que pensar que a grandes rasgos los espacios vectoriales son estructuras en donde podemos sumar elementos entre sí y multiplicar vectores por escalares (externos) sin que sea muy complicado.

Como ya mencionamos, el conjunto $F^n$ con las operaciones de suma y multiplicación por escalar que se hacen entrada por entrada es un espacio vectorial sobre $F$. En lo que resta de la entrada, hablaremos de otros ejemplos de espacios vectoriales que nos encontraremos frecuentemente.

Espacios vectoriales de matrices

Otros ejemplos de espacios vectoriales con los que ya nos encontramos son los espacios de matrices. Dado un campo $F$ y enteros positivos $m$ y $n$, el conjunto de matrices en $M_{m,n}(F)$ es un espacio vectorial en donde la suma se hace entrada a entrada y la multiplicación escalar también.

¿Qué es lo que tenemos que hacer para mostrar que en efecto esto es un espacio vectorial? Se tendrían que verificar las 8 condiciones en la definición de espacio vectorial. Esto lo hicimos desde la primer entrada del curso, en el primer teorema de la sección «Operaciones de vectores y matrices». Vuelve a leer ese teorema y verifica que en efecto se enuncian todas las propiedades necesarias.

Aquí hay que tener cuidado entonces con los términos que se usan. Si estamos hablando del espacio vectorial $F^n$, las matrices no forman parte de él, y las matrices no son vectores. Sin embargo, si estamos hablando del espacio vectorial $M_{m,n}(F)$, entonces las matrices son sus elementos, y en este contexto las matrices sí serían vectores.

Ejemplo. Sea $\mathbb{F}_2$ el campo con $2$ elementos. Consideremos $M_{2}(\mathbb{F}_2)$. Este es un espacio vectorial. Tiene $16$ vectores de la forma $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, en donde cada entrada es $0$ o $1$. La suma y la multiplicación por escalar se hacen entrada a entrada y con las reglas de $\mathbb{F}_2$. Por ejemplo, tenemos $$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$\triangle$

Espacios vectoriales de funciones

Ahora veremos algunos ejemplos de espacios vectoriales cuyos elementos son funciones. Esto puede parecer algo abstracto, pero en unos momentos veremos algunos ejemplos concretos que nos pueden ayudar a entender mejor.

Sea $F$ un campo y consideremos cualquier conjunto $X$. Consideremos el conjunto $V$ de todas las posibles funciones de $X$ a $F$. A este conjunto queremos ponerle operaciones de suma y de multiplicación por escalar.

Para definir la suma, tomemos dos funciones que van de $X$ a $F$, digamos $f:X\to F$ y $g:X\to F$. Definiremos a la función $f+g$ como la función que a cada $x$ en $X$ lo manda a $f(x)+g(x)$. Aquí estamos usando la suma del campo $F$. En símbolos, $(f+g):X\to F$ tiene regla de asignación $$(f+g)(x)=f(x)+g(x).$$

Para definir el producto por escalar, tomamos una función $f:X\to F$ y un escalar $c$ en el campo $F$. La función $cf$ será la función $cf:X\to F$ con regla de asignación $$(cf)(x)=cf(x)$$ para todo $x$ en $X$.

Resulta que el conjunto $V$ de funciones de $X$ a $F$ con estas operaciones de suma y producto, es un espacio vectorial. Podemos probar, por ejemplo, la asociatividad de la suma. Para ello, la primer cosa que necesitamos mostrar es la asociatividad de la suma. Es decir, que si tenemos $f:X\to F$, $g:X\to F$ y $h:X\to F$, entonces $$(f+g)+h = f+ (g+h).$$

Esta es una igualdad de funciones. Para que sea cierta, tenemos que verificarla en todo el dominio, así que debemos mostrar que para todo $x$ en $X$ tenemos que $$((f+g)+h)(x)=(f+(g+h))(x).$$

Para demostrar esto, usemos la definición de suma de funciones y la asociatividad de la suma del campo $F$. Con ello, podemos realizar la siguiente cadena de igualdades:

\begin{align*}
((f+g)+h)(x)&=(f+g)(x)+h(x)\\
&=(f(x)+g(x)) + h(x) \\
&=f(x) + (g(x)+h(x)) \\
&=f(x) + (g+h)(x)\\
&=(f+(g+h))(x).
\end{align*}

Así, la suma en $V$ es asociativa. El resto de las propiedades se pueden demostrar con la misma receta:

  • Se enuncia la igualdad de funciones que se quiere mostrar.
  • Para que dicha igualdad sea cierta, se tiene que dar en cada elemento del dominio, así que se evalúa en cierta $x$.
  • Se prueba la igualdad usando las definiciones de suma y producto por escalar, y las propiedades de campo de $F$.

Ejemplo. El ejemplo anterior es muy abstracto, pues $X$ puede ser cualquier cosa. Sin embargo, hay muchos espacios de funciones con los cuales se trabaja constantemente. Por ejemplo, si el campo es el conjunto $\mathbb{R}$ de reales y $X$ es el intervalo $[0,1]$, entonces simplemente estamos hablando de las funciones que van de $[0,1]$ a los reales.

Si tomamos $f:[0,1]\to \mathbb{R}$ y $g:[0,1]\to \mathbb{R}$ dadas por \begin{align*}f(x)&= \sin x – \cos x\\ g(x) &= \cos x + x^2,\end{align*} entonces su suma simplemente es la función $f+g:[0,1]\to \mathbb{R}$ definida por $(f+g)(x)=\sin x + x^2$. Si tomamos, por ejemplo, el escalar $2$, entonces la función $2f:[0,1]\to \mathbb{R}$ no es nada más que aquella dada por
$$(2f)(x)= 2\sin x – 2\cos x.$$

Así como usamos el intervalo $[0,1]$, pudimos también haber usado al intervalo $[-2,2)$, al $(-5,\infty]$, o a cualquier otro.

$\triangle$

Espacios vectoriales de polinomios

Otro ejemplo de espacios vectoriales que nos encontraremos frecuentemente son los espacios de polinomios. Si no recuerdas con precisión cómo se construyen los polinomios y sus operaciones, te recomendamos repasar este tema con material disponible aquí en el blog.

Dado un campo $F$ y un entero positivo $n$ usaremos $F[x]$ para referirnos a todos los polinomios con coeficientes en $F$ y usaremos $F_n[x]$ para referirnos a aquellos polinomios con coeficientes en $F$ y grado a lo más $n$. Aunque el polinomio cero no tiene grado, también lo incluiremos en $F_n[x]$.

Ejemplo. Si $F$ es $\mathbb{C}$, el campo de los números complejos, entonces todos los siguientes son polinomios en $\mathbb{C}[x]$: \begin{align*}p(x)&=(2+i)x^6 + (1+i),\\ q(x)&=3x^2+2x+1,\\ r(x)&=5x^7+(1-3i)x^5-1.\end{align*}

Tanto $p(x)$ como $q(x)$ están en $\mathbb{C}_6[x]$, pues su grado es a lo más $6$. Sin embargo, $r(x)$ no está en $\mathbb{C}_6[x]$ pues su grado es $7$.

El polinomio $q(x)$ también es un elemento de $\mathbb{R}[x]$, pues tiene coeficientes reales. Pero no es un elemento de $\mathbb{R}_1[x]$ pues su grado es demasiado grande.

$\triangle$

Recuerda que para sumar polinomios se tienen que sumar los coeficientes de grados correspondientes. Al hacer multiplicación por escalar se tienen que multiplicar cada uno de los coeficientes. De esta forma, si $f(x)=x^2+1$ y $g(x)=x^3+\frac{x^2}{2}-3x-1$, entonces $$(f+g)(x)=x^3+\frac{3x^2}{2}-3x,$$ y $$(6g)(x)=6x^3+3x^2-18x-6.$$

Resulta que $F[x]$ con la suma de polinomios y con el producto escalar es un espacio vectorial. Puedes verificar cada uno de los axiomas por tu cuenta.

Observa que la suma de dos polinomios de grado a lo más $n$ tiene grado a lo más $n$, pues no se introducen términos con grado mayor que $n$. Del mismo modo, si tenemos un polinomio con grado a lo más $n$ y lo multiplicamos por un escalar, entonces su grado no aumenta. De esta forma, podemos pensar a estas operaciones como sigue:
\begin{align*}
+:& F_n[x] \times F_n[x] \to F_n[x]\\
\cdot: & F\times F_n[x] \to F_n[x].
\end{align*}

De esta forma, $F_n[x]$ con la suma de polinomios y producto escalar de polinomios también es un espacio vectorial.

Más adelante…

Ya dimos la definición de espacio vectorial y vimos varios ejemplos. Dentro de algunas entradas veremos como conseguir muchos más espacios vectoriales.

En el último ejemplo pasa algo curioso: el espacio $F_n[x]$ es un subconjunto del espacio $F[x]$ y además es un espacio vectorial con las mismas operaciones que $F[x]$. Este es un fenómeno muy importante en álgebra lineal. Decimos que $F_n[x]$ es un subespacio de $F[x]$. En la siguiente entrada definiremos en general qué es un subespacio de un espacio vectorial y veremos algunas propiedades que tienen los subespacios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • A partir de los axiomas de espacio vectorial, muestra lo siguiente para un espacio vectorial $V$:
    • La identidad de la suma vectorial es única, es decir, que si existe otro elemento $e$ en $V$ tal que $u+e=u=e+u$ para todo $u$ en $V$, entonces $e=0$.
    • Que si $0$ es la identidad aditiva del campo $F$ y $v$ es cualquier vector en $V$, entonces $0v$ es la identidad de la suma vectorial. En símbolos, $0v=0$, donde el primer $0$ es el de $F$ y el segundo el de $V$.
    • Se vale la regla de cancelación para la suma vectorial, es decir, que si $u,v,w$ son vectores en $V$ y $u+v=u+w$, entonces $v=w$.
    • Se vale la regla de cancelación para el producto escalar, es decir, que si $a$ es un escalar no cero del campo $F$ y $u,v$ son vectores de $V$ para los cuales $au=av$, entonces $u=v$.
    • Que el inverso aditivo de un vector $v$ para la suma vectorial en $V$ es precisamente $(-1)v$, es decir, el resultado de hacer la multiplicación escalar de $v$ con el inverso aditivo del $1$ del campo $F$.
  • Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Sean $u$, $v$ y $w$ vectores en $V$. Justifica la siguiente igualdad enunciando de manera explícita todos los axiomas de espacio vectorial que uses $$u+5v-3w+2u-8v= -3(w+v-u).$$
  • Termina de demostrar que en efecto los espacios de funciones con la suma y producto escalar que dimos son espacios de funciones.
  • Enlista todos los polinomios de $(\mathbb{F}_2)_3[x]$. A continuación hay algunos: $$0, x+1, x^2+x, x^3+1.$$ Para cada uno de ellos, encuentra quien es su inverso aditivo para la suma vectorial de $(\mathbb{F}_2)_3[x]$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

13 comentarios en “Álgebra Lineal I: Espacios vectoriales

  1. Juan Angeles

    Hola, una pregunta, en «Espacios vectoriales de polinomios» en el primer ejemplo,¿ q(x) no pertenecería a C_2[x] en lugar de C_6[x] ? Ya que el polinomio su grado es de 2.

    Responder
    1. Leonardo Ignacio Martínez SandovalLeo Autor

      Hola Juan. C_6[x] es el de los polinomios de grado a lo más 6, así que ahí viven los de grado 0,1,2,3,4,5 y 6, así como el polinomio cero (que no tiene grado). Así, q(x) vive en C_6[x]. Tienes razón en que también vive en C_2[x], pues ahí están los de grado 0,1,2 y el polinomio cero.

      Responder
  2. Juan Pablo Yamamoto

    En el último punto de la tarea moral, ¿por qué decimos que el polinomio x^3+1 está en (F_2)_2 si es de grado 3? ¿Es un error o entendí algo mal? Gracias.

    Responder
  3. JP Antuna

    Erro de dedo: En la propiedad 4 (Inversos para la suma) repiten dos veces al vector v…
    «Para culaquier vector v, existe un vector v…»

    Responder
    1. Leonardo Ignacio Martínez SandovalLeo Autor

      Hola Saúl. Más adelante en el curso se habla de esto. Pero, a grandes rasgos, lo que debes hacer es construir una base para el plano, luego completarla a una base de todo y para obtener la proyección del vector deberás expresarlo en esta base más grande y luego sólo considerar los términos que tienen a los vectores base del plano.

      Responder
  4. Efraín Kaled Ríos González

    Hola, me gustaría Saber Aparte del conjunto de funciones de un oscilador armónico cuántico, el conjunto de modos normales de oscilación de una cuerda, funciones algebraicas definidas en un intervalo real, polinomios, R^{N}, números complejo o reales, y matrices, que otros temas incluyen estos espacios vectoriales?

    Responder
  5. Amilkar

    LEO un gusto soy Amilkar, queria consultarte nombres de algunos libros o si tuvieras poderlos compartir, en los cuales pueda iniciar todo lo que es el algera lineal avanzada, ya que tengo problemas para iniciar un curso que estoy.
    gracias.

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.