Archivo de la etiqueta: simediana

Geometría Moderna I: Punto simediano

Por Rubén Alexander Ocampo Arellano

Introducción

El punto simediano es el punto en el que concurren las simedianas de un triángulo, es otro punto notable del triángulo, en esta entrada veremos algunas de sus propiedades.

Punto simediano

Teorema 1. Las tres simedianas de un triángulo son concurrentes, al punto de concurrencia se le conoce como punto simediano o punto de Lemoine a menudo denotado con la letra K.

Demostración. En la entrada teorema de Menelao mostramos que un triángulo ABC y su triangulo tangencial KaKbKc, están en perspectiva desde una recta, conocida como eje de Lemoine.

Por el teorema de Desargues, ABC y KaKbKc están en perspectiva desde un punto, es decir, AKa, BKb y CKc concurren en un punto K.

Figura 1

Por el teorema 2 de la entrada anterior, dos exsimedianas (los lados del triángulo tangencial KaKbKc) y una simediana, que pasan por vértices distintos de ABC concurren en un punto exsimediano, es decir, AKa, BKb, CKc son las simedianas de ABC.

◼

Observación. Como el eje de Lemoine de ABC es el eje de Gergonne de KaKbKc, entonces el punto de Lemoine de ABC es el punto de Gergonne de KaKbKc, su triángulo tangencial.

Corolario 1. Sea S=AKBC entonces AKSKa es una hilera armónica de puntos.

Demostración. Por el corolario de la entrada anterior B(AKbCKa) es un haz armónico de rectas y como AD es transversal entonces sus intersecciones con el haz forman una hilera armónica.

◼

Triángulo pedal del punto simediano

Definición. Dados un triángulo ABC y un punto P, el triángulo pedal de P respecto de ABC, es aquel cuyos vértices son las proyecciones de P en los lados de ABC. Por ejemplo, el triángulo órtico es el triángulo pedal del ortocentro.

Teorema 2, de Lemoine. El punto simediano es el único punto del plano que es el centroide de su propio triángulo pedal.

Demostración. Sean ABC y K su punto simediano, considera X, Y y Z las proyecciones de K en BC, CA y AB respectivamente, sea XKX tal que YXKZ.

Figura 2

Entonces ABCYXK, pues sus respectivos lados son perpendiculares, esto es
ABAC=YXYK.

Pero ABAC=KZKY pues K esta en la A-simediana, por lo tanto KZ=YX.

En consecuencia, ◻XZKY es un paralelogramo y por lo tanto KX biseca a YZ.

Como resultado tenemos que XK es mediana de XYZ.

De manera análoga vemos que YK, ZK son medianas de XYZ, por lo tanto, K es el centroide de su triangulo pedal.

◼

Recíprocamente, supongamos que K es el centroide de su triángulo pedal XYZ respecto a ABC, con XBC, YCA, ZAB, sea M el punto medio de YZ, extendemos KM hasta un punto X tal que KM=MX.

Como YZ y KX se bisecan entonces ◻XZKY es un paralelogramo, entonces YX=KZ y YXKZ.

Ya que los lados de YXK son perpendiculares a los lados de ABC, entonces son semejantes, esto es
ABAC=YXYK=KZKY.

Por lo tanto, K está en la A-simediana, igualmente vemos que K pertenece a las B y C-simedianas.

En consecuencia, K es el punto simediano de ABC.

◼

Conjugado isotómico del punto simediano

Teorema 3. Las rectas que unen el punto medio del lado de un triángulo con el punto medio de la altura perpendicular a ese lado concurren en el punto simediano del triángulo.

Demostración. Sean ABC, K el punto simediano, Kb el punto exsimediano opuesto al vértice B, S=BKbCA.

Figura 3

Por el corolario 1, BKSKb es una hilera armónica, por lo tanto, B(BKSKb) es un haz armónico, donde B es el punto medio de CA.

Considera O el circuncentro de ABC y Hb el pie de la altura por B, notemos que O, B y Kb son colineales, por lo tanto, BKb es perpendicular a CA y así BHbBKb.

Como BHb es paralela a una de las rectas del haz armónico, entonces las otras tres rectas del haz dividen a BHb en dos segmentos iguales, es decir BK biseca a BHb.

Igualmente vemos que AK y CK bisecan a AHa y CHc respectivamente, y de esto concluimos la concurrencia de las rectas mencionadas.

◼

Proposición 1. El ortocentro de un triángulo y el punto simediano de su triángulo anticomplementario son conjugados isotómicos respecto del triángulo original.

Demostración. Sean ABC y ABC su triángulo anticomplementario.

Como AB y AC son segmentos medios de ABC, entonces ◻ABAC es un paralelogramo, por lo tanto, ABC y ACB son congruentes, además AA y BC se intersecan en su punto medio N.

Figura 4

Sean Ha, Ma los pies de las alturas desde A y A respectivamente en BC, como ABCACB, entonces AHa=MaA.

Por criterio de congruencia ALA, AHaNAMaN, por lo que HaN=NMa, es decir, el punto medio de Ha y Ma coincide con el punto medio de BC,

Por lo tanto, Ha y Ma son puntos isotómicos respecto de ABC.

Sea F el pie de la altura por A en ABC, como ◻AHaMaF es un rectángulo entonces MaA=AHa=FMa, y así Ma es el punto medio de la altura AF.

Por lo tanto, el segmento AMa une los puntos medios de un lado y una altura de ABC.

De manera análoga vemos que los pies de las alturas en ABC, Hb, Hc son isotómicos a los puntos medios de las alturas en ABC, Mb, Mc, respectivamente.

Como las alturas de ABC concurren en el ortocentro H y, por el teorema 3, los segmentos AMa, BMb, CMc concurren en el punto simediano S de ABC, entonces estos puntos son conjugados isotómicos respecto de ABC.

◼

Construcción de un triángulo dado su punto simediano

Problema. Construye un triángulo dados dos vértices B, C, y su punto simediano K.

Solución. Supongamos que ABC es el triángulo requerido y consideremos G y A el centroide y el punto medio de BC respectivamente.

Sean B, CBC, tales que BABG y ACGC.

Figura 5

Por el teorema de Tales tenemos
12=AGGA=ABBB=ACCC.

Por lo tanto, BB=CC=2AB=BC, así que B y C pueden ser construidos teniendo B y C.

Por otro lado, como BABG y ACGC y tomando en cuenta que K esta en las reflexiones de BG y CG respecto de las bisectrices de B y C respectivamente, tenemos lo siguiente:

BAB=GBA=KBC y CAC=ACG=KCB.

Y estos ángulos son conocidos.

Entonces BB y CC subtienden ángulos conocidos en A, por lo que podemos trazar los arcos de circunferencia que son el lugar geométrico de los puntos que subtienden estos ángulos.

Así que de la intersección de estos dos arcos resultara en el vértice faltante.

Notemos que los arcos pueden tener dos intersecciones, ser tangentes o no intersecarse, por lo tanto, existen dos, una o cero soluciones.

◼

Distancia del punto simediano a los lados del triángulo

Proposición 2. El punto simediano de un triángulo es el único punto dentro del triángulo cuyas distancias a los lados del triángulo son proporcionales a los respectivos lados.

Demostración. Sean ABC y K su punto simediano, considera X, Y y Z las proyecciones de K en BC, CA y AB respectivamente, denotemos BC=a, CA=b, AB=c.

Figura 6

Dado que K está en las tres simedianas del triángulo, por el teorema 4 de la entrada anterior, las razones de sus distancias a los lados del triángulo son proporcionales a estos:

(1)KZKY=cb,
(2)KYKX=ba,
(3)KXKZ=ac.

Por (1), (2) y (3)
KXa=KYb=KZc=q.

Por lo tanto,
KZ=cKYb=cq,
KY=bKXa=bq,
KX=aKZc=aq.

La unicidad se da por que solo los puntos en las simedianas cumplen esa propiedad y solo K se encuentra en las tres simedianas.

◼

Corolario. 2 KX=a2(ABC)a2+b2+c2.

Demostración. Calculamos el área de ABC en función de áreas menores (figura 6).

(ABC)=(KBC)+(KCA)+(KAB)
=12(aKX+bKY+cKZ)
=q2(a2+b2+c2).

Por lo tanto, KX=aq=a2(ABC)a2+b2+c2.

◼

Teorema 4. La suma de los cuadrados de las distancias de un punto a los lados de un triángulo dado, es mínima si el punto es el punto simediano del triángulo.

Demostración. Sean a, b, c, x, y, z seis números reales entonces la siguiente igualdad es cierta:

 (a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2+(aybx)2+(azcx)2+(bzcy)2.

Para comprobarlo solo hace falta realizar los productos.

Podemos pensar estas cantidades como los lados de un triángulo ABC, BC=a, CA=b, AB=c, y x, y, z, las distancias de un punto K, a los lados de ABC.

Notemos ax+by+cz representa al menos dos veces el área del triángulo ABC, 2(ABC), que junto con (a2+b2+c2) son constantes.

Como las cantidades (aybx)2, (azcx)2, (bzcy)2 son mayores o iguales a cero, entonces el mínimo se alcanza si se satisfacen las siguientes igualdades:
(4)(aybx)2=(azcx)2=(bzcy)2=0,
(5)ax+by+cz=2(ABC).

Por otra parte, por las ecuaciones (1), (2) y (3) sabemos que el punto simediano cumple (4) y por el corolario 2 cumple (5), también podemos calcular directamente,

KX2+KY2+KZ2=(2(ABC))2a2+b2+c2.

Por lo tanto, si K es el punto simediano de ABC, se alcanza el mínimo.

◼

Más adelante…

En la próxima entrada veremos otra propiedad del punto simediano, o punto de Lemoine, que amerita su propia entrada, se trata de un conjunto de circunferencias asociadas a este punto.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si K es el punto simediano de ABC, sea X la proyección de K en BC, muestra que la reflexión de X respecto de K esta en la mediana que pasa por A.
  2.  Encuentra el punto simediano de un triángulo rectángulo.
  3. Sobre los lados de un triángulo ABC construye cuadrados externamente, muestra que los lados (de los cuadrados) opuestos a los lados de ABC se intersecan formando un triángulo homotético a ABC, con centro de homotecia el punto simediano de ABC.
  4. Si las simedianas de ABC intersecan a su circuncírculo en D, E y F muestra que ABC y DEF tienen el mismo punto simediano.
  5. i) Muestra que las distancias a los lados de un triángulo desde sus puntos exsimedianos son proporcionales a las longitudes de los lados del triángulo,
    ii) calcula dichas distancias.
  6. Prueba que de entre todos los triángulos inscritos en un triángulo dado, el triángulo pedal del punto simediano, es el que tiene la propiedad de que la suma de los cuadrados de sus lados es mínima.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 252-257.
  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 129-145.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 215-218.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Simediana

Por Rubén Alexander Ocampo Arellano

Introducción

La simediana es un tipo especial de ceviana relacionada con la mediana de un triángulo, veremos algunas caracterizaciones y propiedades.

Simediana, primera caracterización

Definición 1. Una simediana de un triángulo es la reflexión de una mediana respecto de la bisectriz interna que pasa por el mismo vértice. Un triángulo tiene tres simedianas.

Notación. Denotaremos a la intersección de una simediana con el lado opuesto como S.

Teorema 1. Una ceviana de un triángulo divide internamente al lado opuesto en la razón de los cuadrados de los lados adyacentes si y solo si es simediana.

Demostración. Sean AA la mediana y AS la simediana en un triángulo ABC.

Sea H el pie de la altura por A, calculamos las áreas de los triángulos BAS, BAA, SAC y AAC.

Figura 1

(6)(BAS)=BS×AH2=BA×ASsinBAS2,
(7)(BAA)=BA×AH2=BA×AAsinBAA2,
(8)(SAC)=SC×AH2=SA×ACsinSAC2,
(9)(AAC)=AC×AH2=AA×ACsinAAC2.

Sea L la intersección de la bisectriz de A con BC, entonces
(10)BAS=BALSAL=LACLAA=AAC,
BAA=BAL+LAA=LAC+SAL=SAC.

Haciendo el cociente de (1) con (4) y de (2) con (3) obtenemos
BSAC=BA×ASAA×AC,
BASC=BA×AASA×AC.

Multiplicando estas dos ecuaciones obtenemos el resultado esperado
BSSC=BA2AC2.

El reciproco también es cierto, pues el punto S que divide a BC en la razón BA2AC2, es único.

◼

Exsimediana

Definición 2. Las tangentes al circuncírculo de un triángulo por sus vértices se conocen como simedianas externas o exsimedianas.

Corolario. La simediana y la exsimediana que pasan por el mismo vértice de un triángulo son conjugadas armónicas respecto de los lados del triángulo que forman dicho vértice.

Demostración. En la entrada teorema de Menelao mostramos que la exsimediana de un triángulo divide externamente al lado opuesto en la razón de los cuadrados de los lados que pasan por el mismo vértice.

El resultado se sigue del hecho de que el conjugado armónico es único y el teorema 1.

◼

Teorema 2. Una simediana y las exsimedianas que pasan por vértices distintos son concurrentes, al punto de concurrencia se le conoce como punto exsimediano.

Demostración. En ABC, AP y CP son tangentes al circuncírculo Γ de ABC en A y en C respectivamente y se cortan en P (figura 2).

Figura 2

Sea D=BPΓ, DB, por la proposición 5 de la entrada anterior, ◻ABCD es un cuadrilátero armónico.

Entonces, por el teorema 2 de la entrada anterior, el Haz B(BCDA) es armónico, es decir, la tangente a Γ en B, y BD son conjugadas armónicas respecto de BA y BC.

Como el conjugado armónico es único, BP es simediana de ABC, por el corolario anterior.

◼

Antiparalelas (1)

Teorema 3. La B-simediana de un triángulo ABC es el lugar geométrico de los puntos que bisecan a las antiparalelas de AC respecto a AB y BC.

Demostración. Sean DAB y EBC tales que AC y DE son antiparalelas respecto a AB y BC, entonces ◻ADEC es cíclico.

Figura 3

Por lo tanto, ACE y EDA son suplementarios, en consecuencia, ACB=ACE=BDE.

Sea TB tangente al circuncírculo de ABC en B, entonces ABT=ACB pues abarcan el mismo arco, por lo tanto, la B-exsimediana y DE son paralelas.

Sea BS una ceviana de ABC, entonces por la proposición 2 de la entrada anterior BS biseca a DE si y solo si el haz B(TCSA) es armónico.

En consecuencia, como el conjugado armónico de BT respecto de BC y BA es la B-simediana, BS biseca a DE si y solo si BS es simediana de ABC.

◼

Antiparalelas (2)

Proposición. 1 Si dos antiparalelas a dos de los lados de un triángulo tienen la misma longitud, entonces estas se intersecan en la simediana relativa al tercer lado, el reciproco también es cierto.

Demostración. Sean ABC, E, GBC, FAB y HCA, tales que EF, AC son antiparalelas respecto a AB y BC; AB, GH son antiparalelas respecto a BC y CA, y EF=GH.

Figura 4

Como ◻AFEC y ◻ABGH son cíclicos, entonces, FEB=BAC=CGH, por lo tanto PG=PE.

Sea P=EFGH, dado que FE=GH entonces FP=HP.

Si S=APBC, considera IAB, JCA, tales que ISFE y JSGH, entonces ASIAPF y ASJAPH.

Por lo tanto, SIPF=ASAP=SJPH, como PF=PH entonces SI=SJ.

Por otro lado SBIABCSJC, esto es
SBSI=ABAC y SJSC=ABAC.

Como resultado de multiplicar estas dos ecuaciones obtenemos
BSSC=AB2AC2.

Por el teorema 1, esto implica que AS es la A-simediana de ABC.

Notemos que el reciproco también es cierto, esto es, si dos antiparalelas a dos de los lados de un triángulo se intersecan en la simediana relativa al tercer lado, entonces estas tienen la misma longitud.

Esto lo podemos ver tomando la prueba anterior en sentido contrario.

◼

Otra caracterización importante

Teorema 4. Una simediana es el lugar geométrico de los puntos (dentro de los ángulos internos del triángulo o sus ángulos opuestos por el vértice) tales que la razón de sus distancias a los lados adyacentes a la simediana, es igual a la razón entre esos lados.

Demostración. Sean ABC, A el punto medio de BC y PAA, considera las proyecciones Pc, Pb de P en AB y AC respectivamente y Ac, Ab, las correspondientes de A.

Figura 5

Como APPcAAAc y APPbAAAb entonces
PPcAAc=APAA=PPbAAb.

Tomando en cuenta que los triángulos ABA y AAC tienen la misma altura desde A, tenemos lo siguiente:
ACAB=PPcPPb=AAcAAb
AC×AAb=AB×AAc
(AAC)=(AAB)
AC=BA.

Por lo tanto, la mediana de un triángulo es el lugar geométrico de los puntos tales que la razón de sus distancias a los lados adyacentes a la mediana es el inverso de la razón entre dichos lados.

Denotamos la distancia de un punto P a una recta l como d(P,l).

Para PAA considera PAS su reflexión respecto de la bisectriz de BAC, entonces

d(P,AB)d(P,AC)=d(P,AC)d(P,AB)=ABAC.

◼

Proposición 2. La recta que une las proyecciones de un punto en la simediana (mediana) de un triángulo, sobre los lados adyacentes, es perpendicular a la mediana (simediana) que pasa por el mismo vértice.

Demostración. En un triángulo ABC sean AA la mediana y AS la simediana, considera PAS y D, E, las proyecciones de P en CA y AB respectivamente.

Figura 6

Como PEA+ADP=π entonces ◻AEPD es cíclico, así que EAP=EDP, por la ecuación (5), EAP=AAD.

Sean F=PDAA y G=DEAA, en los triángulos ADF y DGF, FAD=GDF y DFG es un ángulo común, por lo tanto son semejantes.

Como PDAC entonces DEAA.

El caso para la mediana es análogo.

◼

Más adelante…

Así como las medianas de un triángulo son concurrentes, las simedianas también son concurrentes, pero dicho punto tiene propiedades importantes por si mismo, y de eso hablaremos en la próxima entrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que las segundas intersecciones de una mediana y su correspondiente simediana con el circuncírculo del triángulo, determinan una recta paralela al lado del triángulo relativo a la mediana considerada.
  2.  Sea ABC un triángulo acutángulo, D y A las proyecciones de A y O, el circuncírculo de ABC, en BC respectivamente, sean E=BOAD, F=COAD y considera P el segundo punto en común entre los circuncírculos de ABE y AFC, demuestra que AP es la A-simediana de ABC.
  3. Sea P un punto dentro de un triángulo isósceles ABC con AB=AC, tal que PBC=ACP, si A es el punto medio de BC, muestra que BPA y CPA son suplementarios.
  4. Sean ABC, DAB y ECA tal que DEBC, considera P=BECD, los circuncírculos de BDP y CEP se intersecan en P y Q, muestra que BAQ=PAC.
  5. La A-simediana AS y la A-meidnana AA de un triángulo ABC intersecan otra vez a su circuncírculo en S y L respectivamente, prueba que la rectas de Simson de S y L son perpendiculares a AA y a AS respectivamente.
  6. Muestra que las exsimedianas de un triángulo tienen la misma propiedad que se señala en el teorema 4 respecto a las simedianas, pero esta vez para los puntos dentro de los ángulos externos del triángulo.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 247-252.
  • Lozanovski, S., A Beautiful Journey Through Olympiad Geometry. Version 1.4. 2020, pp 86-92.
  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 129-145.
  • Shively, L., Introducción a la Geómetra Moderna. México: Ed. Continental, 1961, pp 66-70.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»