Archivo de la etiqueta: matrices

Álgebra Lineal I: Introducción al curso, vectores y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

Esta es la primer entrada correspondiente a las notas del curso Álgebra Lineal I. En esta serie de entradas, cubriremos todo el temario correspondiente al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Las notas están basadas fuertemente en el libro Essential Lineal Algebra with Applications de Titu Andreescu.

El curso se trata, muy a grandes rasgos, de definir espacios vectoriales y estudiar muchas de sus propiedades. Un espacio vectorial con el que tal vez estés familiarizado es $\mathbb{R}^n$, donde sus elementos son vectores con $n$ entradas. En él se pueden hacer sumas entrada a entrada, por ejemplo, si $n=3$ una suma sería

\begin{align*}
(5,-1,2)+(1,4,9)=(6,3,11).
\end{align*}

También se puede multiplicar un vector por un número real, haciéndolo entrada a entrada, por ejemplo,

\begin{align*}
3(1,5,-2,6)=(3,15,-6,18).
\end{align*}

El álgebra lineal estudia espacios vectoriales más generales que simplemente $\mathbb{R}^n$. Como veremos más adelante, hay muchos objetos matemáticos en los que se puede definir una suma y un producto escalar. Algunos ejemplos son los polinomios, ciertas familias de funciones y sucesiones. La ventaja de estudiar estos espacios desde el punto de vista del álgebra lineal es que todas las propiedades que probemos «en general», se valdrán para todos y cada uno de estos ejemplos.

Lo que haremos en la primer unidad del curso es entender muy a profundidad a $F^n$, una generalización de $\mathbb{R}^n$ en la que usamos un campo arbitrario $F$. También, entenderemos a las matrices en $M_{m,n}(F)$, que son arreglos rectangulares con entradas en $F$. La unidad culmina con estudiar sistemas de ecuaciones lineales y el método de reducción Gaussiana.

Más adelante veremos que estudiar estos conceptos primero es muy buena idea pues los espacios vectoriales más generales tienen muchas de las propiedades de $F^n$, y podemos entender a ciertas transformaciones entre ellos al entender a $M_{m,n}(F)$.

Breve comentario sobre campos

En este curso no nos enfocaremos en estudiar a profundidad las propiedades que tienen los campos como estructuras algebraicas. De manera pragmática, pensaremos que un campo $F$ consiste de elementos que se pueden sumar y multiplicar bajo propiedades bonitas:

  • La suma y el producto son asociativas, conmutativas, tienen neutro (que llamaremos $0$ y $1$ respectivamente y tienen inversos (i.e. se vale «restar» y «dividir»)
  • La suma y producto satisfacen la regla distributiva

De hecho, de manera muy práctica, únicamente usaremos a los campos $\mathbb{Q}$ de racionales, $\mathbb{R}$ de reales, $\mathbb{C}$ de complejos y $\mathbb{F}_2$, el campo de dos elementos $0$ y $1$. Este último sólo lo usaremos para observar que hay algunas sutilezas cuando usamos campos con una cantidad finita de elementos.

Para todos estos campos, supondremos que sabes cómo se suman y multiplican elementos. Si necesitas dar un repaso a estos temas, puedes echarle un ojo a las entradas del curso Álgebra Superior II, que también están aquí en el blog.

Nociones iniciales de álgebra lineal: escalares, vectores y matrices

Quizás te has encontrado con vectores y matrices en otros cursos. Por ejemplo, en geometría analítica es usual identificar a un vector $(x,y)$ con un punto en el plano cartesiano, o bien con una «flecha» que va del origen a ese punto. En álgebra lineal nos olvidaremos de esta interpretación por mucho tiempo. Será hasta unidades posteriores que tocaremos el tema de geometría de espacios vectoriales. Por el momento, sólo nos importan los vectores desde el punto de vista algebraico.

Tomemos un campo $F$. A los elementos de $F$ les llamaremos escalares. Para un entero positivo $n$, un vector $X$ en $F^n$ consiste de un arreglo de $n$ entradas $a_1,a_2,\ldots,a_n$ que pueden estar dispuestas en un vector fila $$X=(a_1, a_2,\ldots, a_n),$$ o bien un vector columna $$X=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}.$$

Para $i=1,\ldots,n$, a $a_i$ le llamamos la $i$-ésima coordenada o $i$-ésima entrada de $X$.

Como vectores, puedes pensar que el vector fila y el vector columna correspondientes son el mismo. Abajo veremos en qué sentido tenemos que pensarlos como diferentes. Aunque como vectores sean los mismos, los vectores columna tienen varias ventajas conceptuales en álgebra lineal.

Ejemplo 1. El vector $$X=\left(\frac{1}{2}, -1, \frac{2}{3}, 4\right).$$ tiene cuatro entradas, y todas ellas son números racionales. Por lo tanto, es un vector en $\mathbb{Q}^4$. Su primer entrada es $\frac{1}{2}$. Está escrito como vector fila, pero podríamos escribirlo también como vector columna: $$\begin{pmatrix} \frac{1}{2} \\ -1 \\ \frac{2}{3} \\ 4 \end{pmatrix}.$$

El vector $$Y=\left(\pi, \frac{3}{4}, 5, 6, \sqrt{2}\right)$$ es un vector fila en $\mathbb{R}^5$, pero no en $\mathbb{Q}^5$, pues no todas sus entradas son racionales. A $Y$ también lo podemos pensar como un vector en $\mathbb{C}$.

$\triangle$

Una matriz en $M_{m,n}(F)$ es un arreglo rectangular de elementos en $F$ dispuestos en $m$ filas y $n$ columnas como sigue:

$$A=\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n}\\
\vdots & & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{pmatrix}.$$

Al escalar $a_{ij}$ le llamamos la entrada $(i,j)$ de $A$.

Para cada $i=1,\ldots,m$, definimos a la $i$-ésima fila de $A$ como el vector fila $$L_i=(a_{i1},a_{i2},\ldots,a_{in}),$$ y para cada $j=1,2,\ldots,n$ definimos a la $j$-ésima columna de $A$ como el vector columna $$C_j=\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj}\end{pmatrix}.$$

Veamos algunas aclaraciones de notación. Cuando $m=n$, las matrices en $M_{m,n}(F)$ tienen la misma cantidad de filas que de columnas. En este caso simplemente usamos la notación $M_{n}(F)$ para ahorrarnos una letra, y si una matriz está en $M_{n}(F)$, le llamamos una matriz cuadrada. También, en ocasiones expresamos a una matriz en forma compacta diciendo cuántas filas y columnas tiene y usando la notación $A=[a_{ij}]$.

Ejemplo 2. Consideremos la matriz $A$ en $M_3(\mathbb{R})$ dada por $A=[a_{ij}]=[i+2j]$. Si queremos poner a $A$ de manera explícita, simplemente usamos la fórmula en cada una de sus entradas:

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2 & 1+2\cdot 3\\
2+2\cdot 1 & 2+2\cdot 2 & 2+2\cdot 3\\
3+2\cdot 1 & 3+2\cdot 2 & 3+2\cdot 3\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 & 7\\
4 & 6 & 8\\
5 & 7 & 9\\
\end{pmatrix}
\end{align*}

Esta es una matriz cuadrada. Sin embargo, la matriz $B$ en $M_{3,2}(\mathbb{R})$ con la misma regla $B=[b_{ij}]=[i+2j]$ no es una matriz cuadrada pues es

\begin{align*}
B=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2\\
2+2\cdot 1 & 2+2\cdot 2\\
3+2\cdot 1 & 3+2\cdot 2\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 \\
4 & 6 \\
5 & 7 \\
\end{pmatrix},
\end{align*}

la cual es una matriz con $3$ filas y $2$ columnas.

$\triangle$

Cualquier vector fila en $F^n$ lo podemos pensar como una matriz en $M_{1n}(F)$ y cualquier vector columna en $F^n$ lo podemos pensar como una matriz en $M_{n1}(F)$. En este sentido estos dos vectores sí serían distintos. Usualmente será claro si se necesita o no hacer la distinción.

Para que dos vectores o dos matrices sean iguales, tienen que serlo coordenada a coordenada.

Vectores y matrices especiales

Al vector en $F^n$ con todas sus entradas iguales al cero del campo $F$ le llamamos el vector cero y lo denotamos con $0$. El contexto nos ayuda a decidir si estamos hablando del escalar cero (el neutro aditivo del campo $F$) o del vector cero.

De manera similar, a la matriz en $M_{m,n}$ con todas sus entradas iguales al cero del campo $F$ le llamamos la matriz cero y la denotamos con $O_{m,n}$. Si $m=n$, la llamamos simplemente $O_n$.

Otra matriz especial que nos encontraremos frecuentemente es la matriz identidad. Para cada $n$, es la matriz $I_n$ en $M_n(F)$ tal que cada entrada de la forma $a_{ii}$ es igual a uno (el neutro multiplicativo de $F$) y el resto de sus entradas son iguales a $0$.

Cuando estamos trabajando en $M_n(F)$, es decir, con matrices cuadradas, hay otras familias de matrices que nos encontraremos frecuentemente. Una matriz $A=[a_{ij}]$ en $M_{n}(F)$:

  • Es diagonal si cuando $i\neq j$, entonces $a_{ij}=0$.
  • Es triangular superior si cuando $i>j$, entonces $a_{ij}=0$.
  • Y es triangular inferior si cuando $i<j$ entonces $a_{ij}=0$.

A las entradas de la forma $a_{ii}$ se les conoce como las entradas de la diagonal principal de la matriz. En otras palabras, $A$ es diagonal cuando sus únicas entradas no cero están en la diagonal principal. Es triangular superior cuando sus entradas por debajo de la diagonal principal son iguales a cero. Y de manera similar, es triangular inferior cuando sus entradas por encima de la diagonal principal son iguales a cero.

Ejemplo. La matriz $O_{3,2}$ de $M_{3,2}(\mathbb{Q})$ es la siguiente

$$O_{3,2}=\begin{pmatrix}
0 & 0 \\ 0& 0 \\ 0 & 0 \\
\end{pmatrix}$$

La matriz $I_4$ de $M_{4}(F)$ es la siguiente

$$I_4=\begin{pmatrix}
1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Esta matriz identidad es diagonal, triangular superior y triangular inferior. Una matriz diagonal distinta a la identidad podría ser la siguiente matriz en $M_3(\mathbb{Q})$:

$$\begin{pmatrix}
1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \\
\end{pmatrix}.$$

Una matriz que es triangular superior, pero que no es diagonal (ni triangular inferior), podría ser la siguiente matriz en $M_4(\mathbb{R})$:

$$\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 0\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

$\triangle$

Operaciones de vectores y matrices

Si tenemos dos matrices $A=[a_{ij}]$ y $B=[b_{ij}]$ en $M_{m,n}(F)$, entonces podemos definir a la matriz suma $A+B$ como la matriz cuyas entradas son $[a_{ij}+b_{ij}]$, es decir, se realiza la suma (del campo $F$) entrada por entrada.

Ejemplo 1. Si queremos sumar a las matrices $A$ y $B$ en $M_{4}(\mathbb{R})$ dadas por $$A=\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 2\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

y $$B=\begin{pmatrix}
1 & 1 & -1 & -3\\ 0 & 1 & 1 & -2\\ 0& 0 & 1 & 1\\ 0 & 0 & 0 & 1
\end{pmatrix},$$

entonces hacemos la suma entrada por entrada para obtener:

$$A+B=\begin{pmatrix}
2 & 1+\sqrt{2} & 1 & -3+\sqrt{5}\\ 0 & 2 & 1+\sqrt{3} & 0\\ 0 & 0 & 2 & 1+\sqrt{2}\\ 0 & 0 & 0 & 2
\end{pmatrix}.$$

$\triangle$

Es muy importante que las dos matrices tengan la misma cantidad de filas y renglones. Insistiendo: si no coinciden la cantidad de filas o de columnas, entonces las matrices no se pueden sumar.

Si tenemos una matriz $A=[a_{ij}]$ en $M_{m,n}(F)$ y un escalar $c$ en $F$, podemos definir el producto escalar de $A$ por $c$ como la matriz $cA=[ca_{ij}]$, es decir, aquella que se obtiene al multiplicar cada una de las entradas de $A$ por el escalar $c$ (usando la multiplicación del campo $F$).

Ejemplo 2. Al tomar la siguiente matriz en $M_{2}(\mathbb{C})$ $$A=\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$ y el escalar $i$ en $\mathbb{C}$, se tiene que $$iA=\begin{pmatrix} i\cdot 1 &i\cdot i \\ i\cdot (-i) & i\cdot 1\end{pmatrix} = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}.$$

$\triangle$

Dada una matriz $A$, a la matriz $(-1)A$ le llamamos simplemente $-A$, y definimos $A-B:=A+(-B)$.

Como todo vector en $F^n$ se puede pensar como una matriz, estas operaciones también se pueden definir para vectores para obtener la suma de vectores y el producto escalar en vectores.

En álgebra lineal frecuentemente hablaremos de escalares, vectores y matrices simultáneamente. Cada que veas una una variable es importante que te preguntes de cuál de estos tipos de objeto es. También, cada que veas una operación (por ejemplo, una suma), es importante preguntarte si es una suma de escalares, vectores o matrices.

Muchas de las buenas propiedades de las operaciones de suma y producto en el campo $F$ también se cumplen para estas definiciones de suma y producto escalar de vectores y matrices.

Teorema. Sean $A,B,C$ matrices en $M_{m,n}(F)$ y $\alpha,\beta,\gamma$ escalares en $F$. Entonces la suma de matrices:

  • Es asociativa: $(A+B)+C = A+(B+C)$
  • Es conmutativa: $A+B=B+A$
  • Tiene neutro: $A+O_{m,n}=A=O_{m,n}+A$
  • Tiene inversos: $A+(-A)=O_{m,n}=(-A)+A$

Además,

  • La suma de escalares y el producto escalar se distribuyen: $(\alpha+\beta)A=\alpha A + \beta A$
  • La suma de matrices y el producto escalar se distribuyen: $\alpha(A+B)=\alpha A + \alpha B$
  • El producto escalar es homogéneo: $\alpha(\beta A) = (\alpha \beta) A$
  • El $1$ es neutral para el producto escalar: $1A = A$

Un teorema análogo se vale al cambiar matrices por vectores. La demostración de este teorema se sigue directamente de las propiedades del campo $F$. La notación de entradas nos ayuda mucha a escribir una demostración sin tener que escribir demasiadas entradas una por una. Veamos, como ejemplo, la demostración de la primera propiedad.

Demostración. Tomemos matrices $A=[a_{ij}]$, $B=[b_{ij}]$ y $C=[c_{ij}]$ en $M_{m,n}(F)$. Para mostrar que $$(A+B)+C=A+(B+C),$$ tenemos que mostrar que la entrada $(i,j)$ del lado izquierdo es igual a la entrada $(i,j)$ del lado derecho para cada $i=1,\ldots,m$ y $j=1,\ldots,n$.

Por definición de suma, $A+B=[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]$. Por ello, y de nuevo por definicón de suma, $$(A+B)+C=[(a_{ij}+b_{ij})+c_{ij}].$$ De manera similar, $$A+(B+C)=[a_{ij}+(b_{ij}+c_{ij})].$$

Pero en $F$ la suma es asociativa, de modo que $$(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij}).$$

Con esto hemos demostrado que $(A+B)+C$ y $A+(B+C)$ son iguales entrada a entrada, y por lo tanto son iguales como matrices.

$\square$

La receta para demostrar el resto de las propiedades es la misma:

  1. Usar la definición de suma o producto por escalares para saber cómo es la entrada $(i,j)$ del lado izquierdo y del lado derecho.
  2. Usar las propiedades del campo $F$ para concluir que las entradas son iguales.
  3. Concluir que las matrices son iguales.

Para practicar las definiciones y esta técnica, la demostración del resto de las propiedades queda como tarea moral. A partir de ahora usaremos todas estas propiedades frecuentemente, así que es importante que las tengas en cuenta.

Base canónica de vectores y matrices

Cuando estamos trabajando en $F^n$, al vector $e_i$ tal que su $i$-ésima entrada es $1$ y el resto son $0$ lo llamamos el $i$-ésimo vector de la base canónica. Al conjunto de vectores $\{e_1,\ldots,e_n\}$ le llamamos la base canónica de $F^n$.

De manera similar, cuando estamos trabajando en $M_{m,n}(F)$, para cada $i=1,\ldots,m$ y $j=1,\ldots,n$, la matriz $E_{ij}$ tal que su entrada $(i,j)$ es $1$ y todas las otras entradas son cero se le conoce como la matriz $(i,j)$ de la base canónica. Al conjunto de todas estas matrices $E_{ij}$ le llamamos la base canónica de $M_{m,n}(F)$.

Ejemplo 1. El vector $e_2$ de $F^3$ es $(0,1,0)$. Ten cuidado, pues este es distinto al vector $e_2$ de $F^5$, que es $(0,1,0,0,0)$.

La matriz $E_{12}$ de $M_{2,3}(\mathbb{R})$ es $$\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

$\triangle$

Más adelante veremos el concepto de base en general, cuando hablemos de espacios vectoriales. Por el momento, la intuición para álgebra lineal es que una base es un conjunto que nos ayuda a generar elementos que nos interesan mediante sumas y productos escalares. Los siguientes resultados dan una intuición inicial de este fenómeno.

Teorema. Todo vector $X$ en $F^n$ se puede escribir de manera única de la forma $$X=x_1e_1+x_2e_2+\ldots+x_ne_n,$$ en donde $x_1,\ldots,x_n$ son escalares en $F$ y $\{e_1,\ldots,e_n\}$ es la base canónica.

Demostración. Si $X$ es un vector en $F^n$, entonces es de la forma $X=(x_1,x_2,\ldots,x_n)$. Afirmamos que las coordenadas de $X$ son los $x_i$ buscados.

En efecto, tomemos una $i=1,\ldots,n$. Como $e_i$ tiene $1$ en la $i$-ésima entrada y $0$ en el resto, entonces $x_ie_i$ es el vector con $x_i$ en la $i$-ésima entrada y $0$ en el resto. De esta forma, sumando entrada a entrada, tenemos

\begin{align*}
x_1e_1+x_2e_2+\ldots+x_ne_n&=\begin{pmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} 0\\ 0 \\ 0 \\ \vdots \\ x_n \end{pmatrix}\\
&=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X.
\end{align*}

Esto muestra la existencia.

Para demostrar la unicidad, un argumento análogo muestra que si tenemos otros escalares $y_1,\ldots,y_n$ que cumplan, entonces:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X=y_1e_1+\ldots+y_ne_n=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix},$$

de modo que $x_i=y_i$ para todo $i=1,\ldots,n$.

$\square$

Tenemos un resultado análogo para matrices.

Teorema. Toda matriz $A$ en $M_{m,n}(F)$ se puede escribir de manera única de la forma $$A=\sum_{i=1}^m \sum_{j=1}^n x_{ij} E_{ij},$$ en donde para $i=1,\ldots,m$ y $j=1,\ldots,n$, se tiene que $x_{ij}$ son escalares en $F$ y $E_{ij}$ son las matrices de la base canónica.

La demostración es muy similar a la del teorema anterior y como práctica queda como tarea moral.

Ejemplo 2. La matriz $$A=\begin{pmatrix} 2 & 0\\ 0 & -1 \\ 3 & 5 \end{pmatrix}$$ en $M_{3,2}(\mathbb{C})$ se expresa de manera única en términos de la base canónica como $$A=2E_{11}-1E_{22}+3E_{31}+5E_{32}.$$

$\square$

Más adelante…

En esta entrada dimos una breve introducción al álgebra lineal. Ya definimos la suma y el producto escalar para vectores y matrices. En la siguiente entrada hablaremos de otro producto que sucede en álgebra lineal: la de una matriz en $M_{m,n}(F)$ por un vector en $F^n$. Veremos que esta multiplicación nos permite pensar a una matriz $A$ como una función $\varphi_A:F^n\to F^m$ con ciertas propiedades especiales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Explica por qué no puedes sumar la matriz $I_5$ con la matriz $O_4$.
  • Muestra que la suma de dos matrices diagonales es diagonal. Haz lo mismo para matrices triangulares superiores y para matrices triangulares inferiores.
  • Termina de demostrar el teorema de propiedades de las operaciones de suma y producto escalar.
  • Explica por qué si una matriz es simultáneamente triangular superior y triangular inferior, entonces es diagonal.
  • Expresa a la siguiente matriz como combinación lineal de matrices de la base canónica:
    $$\begin{pmatrix}
    2 & \frac{1}{2} & 0 & 1\\
    3 & -3 & 3 & -3\\
    7 & -8 & -1 & 0
    \end{pmatrix}.$$
  • Demuestra el teorema de representación de matrices en términos de la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM».

Álgebra Lineal I: Problemas de vectores, matrices y matrices como transformaciones lineales

Por Julio Sampietro

Introducción

Esta entrada consiste de puros problemas resueltos. Mediante la solución de estos problemas se puede poner en práctica los conceptos vistos anteriormente. En específico, aquí repasamos los conceptos de suma y producto escalar que vimos al inicio, así como la idea de la entrada anterior de relacionar a matrices con transformaciones lineales.

Problemas resueltos

Problema 1. Escribe de manera explicita la matriz $A=[a_{ij}]\in M_{2,3}(\mathbb{R})$ tal que

\begin{align*}
a_{ij}=\begin{cases} 1 & \text{si } i+j \text{ es par}\\ 0 & \text{si } i+j\text{ es impar}\end{cases}
\end{align*}

Solución. Tomemos como ejemplo a la entrada $a_{11}$. Como $1+1=2$ y $2$ es par, entonces la entrada $a_{11}$ será igual a $1$. De manera similar, obtenemos que $a_{12}=0$ pues $1+2=3$, que es un número impar. Siguiendo de este modo, obtenemos que
\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\
0 & 1& 0 \end{pmatrix}.
\end{align*}

$\triangle$

Problema 2. Para cada par de matrices $(A,B)$, explica cuáles de las operaciones $A+2B$ y $A-B$ tienen sentido, y cuando tengan sentido, haz el cálculo.

  1. \begin{align*}
    A= \begin{pmatrix} 1 & 1& 0\\
    0& 1 & 1\\
    1 & 0 & 1 \end{pmatrix} \hspace{5mm} \text{y}\hspace{5mm} B=\begin{pmatrix} 1 &2 &3\\
    7 & 8 & 9\\
    4 & 5 & 6
    \end{pmatrix}.
    \end{align*}
  2. \begin{align*}
    A=\begin{pmatrix} 192450916\\1\\0 \\1\\2\end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm} B= \begin{pmatrix} -1\\ 0 \\ 199\\ 2020\\ 0\\ 3\end{pmatrix}.
    \end{align*}
  3. \begin{align*}
    A= \begin{pmatrix} 1 & 1 & 2\\
    3 & 5 & 8 \end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm}B= \begin{pmatrix} 1&-1 & 1\\ 2 & 4 & 8 \end{pmatrix}.
    \end{align*}

Solución:

  1. Dado que ambas matrices tienen el mismo tamaño, podemos calcular ambas operaciones. Tenemos que hacer las operaciones entrada a entrada. Así, la primer entrada de $A+2B$ será $1+2\cdot 1 = 3$. Haciendo lo mismo para cada entrada, obtenemos que
    \begin{align*}
    A+2B= \begin{pmatrix}
    3 & 5 & 6\\
    14 & 17 & 19\\
    9 & 10 & 13
    \end{pmatrix}
    \end{align*}
    De manera similar, obtenemos que \begin{align*}A-B=\begin{pmatrix} 0 &-1 & -3 \\ -7 & -7 & -8\\ -3 & -5 &-5\end{pmatrix}.\end{align*}
  2. En este caso las operaciones no tienen sentido, pues una matriz tiene 5 renglones y la otra 6.
  3. Observamos que ambas matrices tienen el mismo tamaño, por lo que sí podemos calcular ambas operaciones: \begin{align*}
    A+2B= \begin{pmatrix}
    3 & -1 & 4\\ 7 & 13 & 24
    \end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm} A-B=\begin{pmatrix} 0 &2 & 1 \\ 1 & 1 & 0 \end{pmatrix}.\end{align*}

$\triangle$

Problema 3.

  • a) Considera la función $f: \mathbb{R}^2\to \mathbb{R}^2$ dada por
    \begin{align*}
    f(x,y)=(x^2,y^2).
    \end{align*}
    ¿Es $f$ una transformación lineal?
  • b) Responde la misma pregunta reemplazando $\mathbb{R}$ por $\mathbb{F}_2$.

Solución.

  • a) No, $f$ no es lineal. Vamos a ver un ejemplo en el cual no «abre sumas». Por un lado, tenemos por definición que $f(2,0)=(4,0)$. Por otro lado, tenemos que $(2,0)=(1,0)+(1,0)$ y que $f(1,0)+f(1,0)= (2,0)$. Es decir
    \begin{align*}
    f( (1,0)+(1,0) ) \neq f(1,0)+f(1,0).
    \end{align*}
  • b) Si cambiamos el dominio por $\mathbb{F}_2$ entonces $f$ sí es lineal. Lo podemos verificar:
    \begin{align*}
    f(x+y,z+w)&= \left((x+y)^2, (z+w)^2\right)\\
    &= \left( x^2+y^2+2xy, z^2+w^2+2wz\right)\\
    &=\left(x^2+y^2, z^2+w^2\right)\\
    &= \left(x^2,z^2\right)+\left(y^2,w^2\right)\\
    &= f(x,z)+f(y,w).
    \end{align*}
    En estas igualdades estamos usando que $\mathbb{F}_2$ es el campo con dos elementos, en donde se cumple que $2=1+1=0$, por lo cual $2xy=0=2wz$.
    Por otro lado, si $\alpha\in \mathbb{F}_2$ es un escalar, entonces
    \begin{align*}
    f(\alpha\cdot(x,y))&= f(\alpha x, \alpha y)\\
    &= (\alpha^2 x^2, \alpha^2 y^2)\\
    &= \alpha^2 \cdot (x^2,y^2)\\
    &= \alpha \cdot f(x,y).
    \end{align*}
    De nuevo estamos usando las propiedades del campo $\mathbb{F}_2$ en la última igualdad. Como $\mathbb{F}_2$ es el campo con $2$ elementos, los valores de $\alpha, x,y $ sólo pueden ser $0$ o $1$. Como $0^2=0$ y $1^2=1$, tenemos la igualdad. Concluimos que $f$ es lineal.
  • b)’ Otra manera de resolver el inciso b) es observar que en $\mathbb{F}_2$, $x^2=x$ para todo $x$ (esto lo usamos con $\alpha, x, y$ en la prueba pasada). Luego la función $f$ coincide con la función identidad, y es más fácil verificar que ésta es lineal.

$\triangle$

Problema 4. Da un ejemplo de un mapeo $f:\mathbb{R}^2\to \mathbb{R}$ que no sea lineal, pero que cumpla

\begin{align*}
f(av)= af(v)
\end{align*}

para cualesquiera $v\in \mathbb{R}^2$ y $a\in \mathbb{R}$.

Solución. Proponemos

\begin{align*}
f(x,y)= \begin{cases} x & \text{si } y=0\\
y & \text{si } y\neq 0
\end{cases}.
\end{align*}

Verifiquemos que $f$ cumple la compatibilidad con escalares. Primero, si $a=0$ es claro que

\begin{align*}
f(av) &= f(0,0)\\
&= 0\\
&= 0 \cdot f(v)\\
&= a\cdot f(v).
\end{align*}

Entonces si $a=0$ se cumple la condición. Ahora supongamos que $a\neq 0$, tenemos dos subcasos que verificar:

  • Si $v=(x,y)$ con $y\neq 0$, entonces $av= (ax,ay)$ y $ay\neq 0$ (pues el producto de reales no nulos es no nulo), por lo que
    \begin{align*}
    f(av)&= f(ax,ay)\\
    &= ay\\
    &= a\cdot f(x,y)=a\cdot f(v).
    \end{align*}
  • Si $v=(x,0)$ entonces $av= (ax,0)$ y así
    \begin{align*}
    f(av)&= f(ax,0)\\
    &= ax\\
    &= a\cdot f(x,0)=a\cdot f(v).
    \end{align*}

Así verificamos que $f$ cumple con la condición buscada. Para ver que $f$ no es lineal, observamos que

  • $f(1,0)=1$
  • $f(0,1)=1$
  • $f(1,1)=1$

Y así tenemos

\begin{align*}
f(0,1)+f(1,0)&= 2\\
&\neq 1\\
&= f(1,1)\\
&=f((1,0)+(0,1))
\end{align*}

Es decir, existen $u$ y $v$ vectores tales que $f(u+v)\neq f(u)+f(v)$, por lo que $f$ no es lineal.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices como transformaciones lineales

Por Julio Sampietro

Introducción

En la entrada pasada introdujimos el concepto de vector en $F^n$ y el concepto de matriz en $M_{m,n}(F)$. También definimos las operaciones básicas de suma y producto escalar. En esta entrada exploraremos la relación que existe entre estos. Más precisamente, veremos cómo una matriz define una función que manda vectores en vectores, y cómo algunas de estas funciones (que resultarán ser las transformaciones lineales) nos dan una matriz. Más adelante hablaremos de espacios vectoriales en general y de transformaciones lineales entre ellos. Pero es muy importante entender estos conceptos primero en una situación concreta.

Procederemos construyendo primero la transformación asociada a una matriz. Luego, verificaremos algunas propiedades de la construcción realizada. Finalmente, veremos que hay una biyección entre matrices y transformaciones lineales.

Construir una transformación a partir de una matriz

Comencemos con un campo $F$ y una matriz $A\in M_{m,n}(F)$ con entradas $a_{ij}$, es decir

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
& \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
\end{align*}

A un vector $X=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in F^n$ le podemos asociar un nuevo vector que denotaremos (de manera sugestiva) $AX\in F^m$ (observa el cambio de superíndice) y definimos como $$AX= \begin{pmatrix} a_{11}x_1+a_{12}x_2 +\dots+ a_{1n} x_n \\ a_{21} x_1 +a_{22} x_2 +\dots + a_{2n} x_2 \\ \vdots \\ a_{m1}x_1 +a_{m2} x_2 + \dots +a_{mn}x_n \end{pmatrix}.$$

Así, obtenemos una función de $F^n$ a $ F^m$ que manda a cada vector $X$ de $F^n$ en el vector $AX$ de $F^m$.

Ejemplo. A la matriz $$A=\begin{pmatrix} 1 & 0 & 1 &0 \\ 1 & 2 &3 &4 \\ 0 & 0 & 0 & 1 \end{pmatrix}\in M_{3,4}(\mathbb{R})$$ le asociamos entonces la función $f: \mathbb{R}^4\to \mathbb{R}^3$ definida por $$f\left( \begin{pmatrix} x \\ y \\z \\ w \end{pmatrix} \right) = A\cdot \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+ z\\ x+2y+3z+4w\\ w \end{pmatrix}.$$

$\triangle$

Observación. Si denotamos por $e_1, \dots, e_n$ a la base canónica de $F^n$ y $A\in M_{m,n}(F)$ tiene entradas $a_{ij}$ entonces

\begin{align*}
Ae_i&=\begin{pmatrix} a_{11}\cdot 0+\dots + a_{1i} \cdot 1+\dots +a_{1n}\cdot 0\\ a_{21}\cdot 0+\dots + a_{2i} \cdot 1+\dots + a_{2n}\cdot 0\\ \vdots \\ a_{n1}\cdot 0 +\dots + a_{ni} \cdot 1+ \dots + a_{nn}\cdot 0 \end{pmatrix}\\
&= \begin{pmatrix} a_{1i}\\ a_{2i}\\ \vdots \\ a_{mi} \end{pmatrix}=C_i.\end{align*}

Dónde, recordamos, $C_i$ es la $i$-ésima columna de $A$. Más generalmente, si $X=\begin{pmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{pmatrix}\in F^n$ es cualquier vector, entonces $$AX= x_1 C_1+ \dots +x_n C_n.$$

Las sutilezas de esta asignación matriz-transformación se resumen en el siguiente resultado:

Teorema: Para cualesquiera matrices $A,B\in M_{m,n} (F)$, cualesquiera vectores $X,Y\in F^n$ cualesquiera escalares $\alpha, \beta \in F$ se cumple:

  1. $A(\alpha X +\beta Y)=\alpha AX+\beta AY$
  2. $(\alpha A+ \beta B)X= \alpha A X +\beta B X$
  3. Si $AX=BX$ para toda $X\in F^n$, entonces $A=B$.

Demostración: Escribimos $A=[a_{ij}], B=[b_{ij}]$ y $X=\begin{pmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{pmatrix}$ y $Y=\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$. Así $\alpha A+ \beta B= [\alpha a_{ij}+\beta b_{ij}]$ y $\alpha X+ \beta Y= \begin{pmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 +\beta y_2\\ \vdots \\ \alpha x_n +\beta y_n \end{pmatrix} $

  1. Por definición, la $i$-ésima coordenada de $A(\alpha X+ \beta Y)$ es $$\sum_{j=1}^{n} a_{ij}(\alpha x_j+\beta y_j)= \alpha \sum_{j=1}^n a_{ij} x_j+ \beta \sum_{j=1}^{n} a_{ij} y_j.$$ Aquí estamos las propiedades distributivas en $F$. El lado derecho de la ecuación corresponde a la $i$-ésima coordenada de $\alpha AX+\beta AY$, lo que prueba el resultado.
  2. El argumento es esencialmente el mismo, el cálculo esta vez se reduce a la igualdad $$ \sum_{j=1}^{n} \left(\alpha a_{ij}+\beta b_{ij}\right) x_j = \alpha \sum_{j=1}^{n} a_{ij} x_j +\beta \sum_{j=1}^n b_{ij} x_j.$$ Esta sabemos es verdadera por las propiedades distributivas en $F$.
  3. Por hipótesis, tenemos $A e_i = B e_i$ dónde $e_i$ denota el $i$-ésimo elemento de la base canónica de $F^n$. Por la observación anterior, esto implica que la $i$-ésima columna de $A$ es igual a la $i$-ésima columna de $B$, para todo $i$. Luego $A$ y $B$ son iguales.

$\square$

Observa que en las demostraciones (1) y (2) anteriores estamos usando las propiedades del campo $F$ para poder distribuir la suma y producto. A grandes rasgos, lo importante que estamos haciendo es ver que, gracias a que todo sucede entrada a entrada, entonces la distributividad también sucede para matrices y vectores.

La asignación que a cada matriz le asocia una función

La última condición del teorema nos dice que la asignación que manda a cada matriz $A$ a su función $\varphi_A=X\mapsto AX$ (en símbolos, la asignación $A\mapsto \varphi_A$) es inyectiva: si a dos matrices le asociamos la misma función, es porque eran la misma matriz para empezar. Esta asignación tiene como dominio el conjunto de matrices $M_{m,n} (F)$ y como codominio el conjunto de funciones $\varphi: F^n \to F^m$ que (por las parte (1) del último teorema) cumplen $$\varphi(\alpha X +\beta Y)= \alpha \varphi(X)+\beta \varphi(Y)$$ para cualesquiera $\alpha,\beta \in F$ y $X,Y\in F^n$.

A una función (o bien «transformación») $\varphi: F^n \to F^m$ que cumple esta última condición se le llama lineal. Observamos que cualquier transformación lineal satisface $\varphi(0)=0$, ya que si en la condición ponemos $\alpha=\beta=0$ tenemos que $$\varphi(0)=\varphi(0\cdot X+ 0 \cdot Y)= 0\cdot \varphi(X)+0\cdot \varphi(Y)=0.$$ En otras áreas de las matemáticas el término «lineal» denota otro tipo de transformaciones, por ejemplo las de la forma $\psi(X)=aX+b$, que nosotros llamaremos afines. Más que «función lineal» usaremos el término transformación lineal.

El siguiente teorema nos dice que la asignación $A\mapsto \varphi_A$ discutida arriba no es sólo inyectiva, si no también suprayectiva. Es decir, cualquier transformación lineal $\varphi: F^n\to F^m$ es la función asociada de alguna matriz $A\in M_{m,n}(F)$.

Teorema: Sea $\varphi: F^n\to F^m$ una transformación lineal. Existe una única matriz $A\in M_{m,n} (F)$ tal que $\varphi(X)=AX$ para toda $X\in F^n$.

Demostración: La unicidad fue establecida en el último inciso del teorema anterior, basta con verificar existencia. Sea $\varphi: F^n\to F^m$ lineal, y sea $e_1, \dots, e_n$ la base canónica para $F^n$. Construimos la matriz $A$ tal que la $i$-ésima columna $C_i$ es el vector $\varphi(e_i)\in F^m$. Así, por una observación previa, tenemos que $Ae_i= C_i = \varphi(e_i)$ para cualquier $1\leq i \leq n$.

Si $X=\begin{bmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{bmatrix} \in F^n$ es cualquier vector, entonces $X=x_1 e_1 +x_2 e_2 +\dots + x_n e_n$. Como $\varphi$ es lineal, entonces

\begin{align*}
\varphi(X)&=\varphi(x_1 e_1 +x_2 e_2 + \dots + x_n e_n)\\&= x_1 \varphi(e_1)+x_2 \varphi(e_2)+\dots + x_n \varphi(e_n)\\&= x_1 C_1+ x_2 C_2 +\dots + x_n C_n= AX.
\end{align*}

La última igualdad es de nuevo una consecuencia de la observación que hicimos. Luego $\varphi(X)=AX$ para toda $X\in F^n$ y queda así probado el teorema.

$\square$

Tenemos entonces una biyección entre matrices en $M_{m,n}(F)$ y transformaciones lineales $\varphi: F^n\to F^m$. En símbolos $$M_{m,n}(F) \leftrightarrow \lbrace \varphi: F^n \to F^m \mid \varphi \text{ es lineal }\rbrace.$$

Ejemplo. Ya vimos cómo obtener la transformación lineal asociada a una matriz, ahora queremos hacer el proceso inverso. Por ejemplo, si tenemos el mapeo $f: \mathbb{R}^4 \to \mathbb{R}^3$ dado por $$f: (x,y,z,w) \mapsto (x+y-z, 3z-w, z+2y),$$ entonces ¿cuál es la matriz $A$ tal que $f(X)=AX$?

De acuerdo con nuestra demostración del teorema, las columnas de $A$ corresponden a las imágenes $f(e_i)$. Hacemos entonces el cálculo directo:

  • $f(e_1)= f(1,0,0,0)=(1,0,0)$
  • $f(e_2)=f(0,1,0,0)=(1,0,2)$
  • $f(e_3)= f(0,0,1,0)= (-1, 3,1)$
  • $f(e_4)= f(0,0,0,1)=(0,-1,0)$

Así $$A=\begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 &3 & -1 \\ 0 & 2 & 1 & 0 \end{pmatrix}$$ En realidad, pudimos habernos saltado el cálculo y solo fijarnos en los coeficientes de cada coordenada: La primer coordenada de $f(x,y,z,w)$ no es más que $x+y-z= 1\cdot x+ 1\cdot y +(-1)\cdot z +0\cdot w$, acomodando estos coeficientes $[1\ 1 \ -1 \ 0]$ en las columnas correspondientes nos da el primer renglón de $A$. De manera análoga, con la segunda coordenada recuperamos el segundo renglón y con la tercer coordenada el tercero, y así recuperamos $A$.

$\triangle$

Más adelante…

La conclusión principal de esta entrada es que para entender transformaciones lineales basta con entender las matrices con entradas en el campo. Este fenómeno será muy recurrente en el álgebra lineal, y muchos problemas de transformaciones lineales se traducen en problemas de matrices y vice-versa. ¡A veces la traducción es tan inmediata que incluso se omite!

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra la matriz de la transformación lineal que manda al vector $(x,y,z)$ de $\mathbb{R}^3$ al vector $(x+y+z,x-y+z, x + 3y, 2y-z, 8x+z)$ de $\mathbb{R}^5$.
  • Considera la matriz $A=\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \\ -2 & 2 & -2\end{pmatrix}$. Si la pensamos como transformación lineal, ¿de dónde a dónde va? ¿cómo se escribe de manera explícita $AX$ en términos de las coordenadas del vector $X$ al que se le aplica?
  • Sea $A$ la matriz del punto anterior. Sean $X=(1,2,3)$ y $Y=(3,-1,4)$. Encuentra $AX$ y $AY$. Realiza la suma $AX+AY$. Luego, por separado, realiza primero la suma $X+Y$ y usando esto encuentra el valor de $A(X+Y)$. Verifica en en efecto ambos procesos te dan el mismo resultado.
  • Explica por qué no es posible encontrar una matriz que represente a la función que manda al vector $(x,y,z,w)$ de $\mathbb{R}^4$ al vector $(x+y+z+w, xy+yz+zw+wx)$ de $\mathbb{R}^2$.
  • ¿Cuál es la matriz que representa a la transformación lineal que manda al vector $(x_1,x_2,\ldots,x_n)$ de $F^n$ al vector $(x_2,x_3,\ldots,x_n,x_1)$, también de $F^n$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de sistemas de ecuaciones e inversas de matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada resolveremos problemas relacionados con el uso del método de reducción gaussiana para resolver sistemas de ecuaciones y encontrar inversas de matrices.

Problemas resueltos

Problema 1. Sea $A$ una matriz de tamaño $m\times n$ y sean $b$ y $c$ dos vectores en $\mathbb{R}^{m}$ tales que $AX=b$ tiene una única solución y el sistema $AX=c$ no tiene solución. Explica por qué tiene que ser cierto que $m>n$.

Solución. Dado que el sistema $AX=b$ es consistente, usando el teorema de existencia y unicidad podemos concluir que

  1. $\left(A’\vert b’\right)$ no tiene pivotes en la última columna,
  2. $A’$ tiene pivotes en todas sus columnas.

Sin embargo, sabemos que el sistema $AX=c$ no tiene solución. Otra vez por el teorema de existencia y unicidad, esto nos implica que $\left(A’\vert c’\right)$ tiene un pivote en la última columna. Sin embargo, ya sabíamos que $A’$ tiene pivotes en todas sus columnas, pero aún así hay espacio en $\left(A’\vert c’\right)$ para un pivote más, es decir, nos sobra espacio hasta abajo por lo que necesariamente tenemos al menos un renglón más que el número de columnas. Es decir $m\geq n+1$, y por lo tanto $m>n$.

$\triangle$

Problema 2. Determina si existen reales $w$, $x$, $y$ y $z$ tales que las matrices $$
\begin{pmatrix} x & 2\\ y & 1 \end{pmatrix}$$ y $$\begin{pmatrix} 5 & -2 \\ z & w \end{pmatrix}$$ sean inversas la una de la otra.

Solución. En una entrada anterior mostramos que para que dos matrices cuadradas $A$ y $B$ del mismo tamaño sean inversas, basta con mostrar que $AB=I$. De esta forma, haciendo el producto tenemos que el enunciado es equivalente a

\begin{align*}
\begin{pmatrix} 5x+2z & -2x+2w \\ 5y+z & -2y+w \end{pmatrix}
=\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}.
\end{align*}

Es decir, tenemos un sistema lineal

\begin{align*}
\begin{cases}
5x+2z&=1\\
-2x+2w&=0\\
5y+z&=0\\
-2y+w&=1.
\end{cases}
\end{align*}

Este es un sistema lineal de la forma $AX=b$, donde $$A=\begin{pmatrix} 5 & 0 & 2 & 0 \\ -2 & 0 & 0 & 2 \\ 0 & 5 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}$$ y $$b=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Para determinar si tiene solución, aplicamos reducción gaussiana a la matriz $(A|b)$. En los siguientes pasos estamos aplicando una o más operaciones elementales.

\begin{align*}
&\begin{pmatrix}
5 & 0 & 2 & 0 & 1 \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to &\begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix} \\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix} \\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{10} \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{4}{5} \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{5}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\end{align*}

Ya encontramos la forma escalonada reducida $(A’|b’)$ de $(A|b)$. La última columna de $(A’|b’)$ tiene un pivote (el de la última fila). De esta forma, el sistema de ecuaciones no tiene solución.

$\triangle$

En la práctica, se pueden usar herramientas tecnológicas para para resolver algunos problemas numéricos concretos. Sin embargo, es importante tener un sólido conocimiento teórico para saber cómo aprovecharlas.

Problema 3. Determina si las siguientes matrices son invertibles. En caso de serlo, encuentra la inversa. \begin{align*}
A&=\begin{pmatrix} -1 & 1 & 3 \\ 0 & 1 & 5 \\ 7 & 3 & 2 \end{pmatrix}\\
B&=\begin{pmatrix}1 & 5 & -1 & 2 \\ -1 & 3 & 1 & 2 \\ 3 & 4 & 1 & -2 \\ -15 & 9 & -1 & 22 \end{pmatrix}.
\end{align*}

Solución. Usando la calculadora de forma escalonada reducida de eMathHelp, obtenemos que la forma escalonada reducida de $A$ y $B$ son, respectivamente

\begin{align*}
A_{red}&=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\\
B_{red}&=\begin{pmatrix}1 & 0 & 0 & -\frac{9}{8}\\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{5}{8} \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\end{align*}

Por uno de nuestros teoremas de caracterización, para que una matriz cuadrada sea invertible debe de suceder que su forma escalonada reducida sea la identidad. Esto nos dice que $A$ sí es invertible, pero $B$ no.

Para encontrar la inversa de $A$, consideramos la matriz extendida $(A|I_3)$, y a ella le aplicamos reducción gaussiana. Usamos de nuevo la calculadora de eMathHelp para obtener

\begin{align*}
(A_{red}|X)=
\begin{pmatrix}
1 & 0 & 0 & -\frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\
0 & 1 & 0 & \frac{35}{27} & – \frac{23}{27} & \frac{5}{27} \\
0 & 0 & 1 & -\frac{7}{27} & \frac{10}{27} & – \frac{1}{27}
\end{pmatrix}.
\end{align*}

De aquí obtenemos que la inversa de $A$ es \begin{align*}A^{-1}=\begin{pmatrix} -\frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\ \frac{35}{27} & – \frac{23}{27} & \frac{5}{27} \\ -\frac{7}{27} & \frac{10}{27} & – \frac{1}{27}\end{pmatrix}.\end{align*}

$\triangle$

Finalmente, hay algunos problemas en los que no es posible aplicar herramientas digitales, o por lo menos no es directo cómo hacerlo. Esto sucede, por ejemplo, cuando en un problema las dimensiones o entradas de una matriz son variables.

Problema 4. Sea $a$ un número real. Determina la inversa de la siguiente matriz en $M_{n}(\mathbb{R})$: $$A=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ a & 1 & 0 & \cdots & 0 & 0 \\ a^2 & a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ a^{n-2} & a^{n-3} & a^{n-4} & \cdots & 1 & 0 \\
a^{n-1} & a^{n-2} & a^{n-3} & \cdots & a & 1 \end{pmatrix}.$$

Solución. Recordemos que para obtener la inversa de una matriz cuadrada $A$, si es que existe, se puede aplicar a la matriz identidad las mismas operaciones elementales que se le apliquen a $A$ para llevarla a forma escalonada reducida.

¿Qué operaciones necesitamos hacer para llevar a $A$ a su forma escalonada reducida? La esquina $(1,1)$ ya es un pivote, y con transvecciones de factores $-a, -a^2,\ldots, -a^{n-1}$ podemos hacer $0$ al resto de las entradas en la columna $1$.

Tras esto, la entrada $(2,2)$ es ahora pivote de la segunda fila, y con transvecciones de factores $-a,-a^2,\ldots, -a^{n-2}$ podemos hacer $0$ al resto de las entradas en la columna $2$. Siguiendo este procedimiento, llevamos a $A$ a su forma escalonada reducida. Esto puede demostrar formalmente usando inducción.

Ahora veamos qué sucede si aplicamos estas mismas operaciones a la matriz identidad. Si aplicamos las mismas operaciones que arreglan la primer columna de $A$, pero a la matriz identidad, obtenemos

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ -a^2 & 0 & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ -a^{n-2} & 0 & 0 & \cdots & 1 & 0 \\
-a^{n-1} & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Si ahora aplicamos las operaciones que arreglan la segunda columna de $A$, obtenemos

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & -a^{n-3} & 0 & \cdots & 1 & 0 \\
0 & -a^{n-2} & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Continuando de esta manera, en cada columna sólo nos quedará un $1$ y un $-a$. Esto puede probarse formalmente de manera inductiva. Al final, obtenemos la matriz

$$B=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & -a & 1 \end{pmatrix},$$

en donde la diagonal principal consiste de puros unos, y la diagonal debajo de ella consiste de puras entradas $-a$.

Hay dos formas de proceder para dar una demostración formal que esta matriz encontrada es la inversa de $A$. La primera es completar las demostraciones inductivas que mencionamos. La segunda es tomar lo que hicimos arriba como una exploración del problema y ahora realizar de manera explícita el producto $AB$ o el producto $BA$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Transposición de matrices, matrices simétricas y antisimétricas

Por Julio Sampietro

Introducción

En esta sección introducimos el concepto de transpuesta de una matriz, que consiste en solo ‘voltear’ una matriz. De ahí sale la operación de transposición de matrices. Si bien esta operación es sencilla, las aplicaciones son vastas, especialmente cuando veamos el concepto de espacio dual. Veremos propiedades básicas de esta operación y cómo se relaciona con suma, producto e inversa de matrices.

Luego definimos tres tipos de matrices importantes, las simétricas, antisimétricas y ortogonales. Estos tipos de matrices nos permiten entender un poco mejor los espacios de matrices, que son más grandes, y nos dan mucha información geométrica sobre nuestro espacio de trabajo. Profundizaremos en esto en la tercera unidad.

Transposición de matrices

Sea $A\in M_{m,n}(F)$ una matriz. Intuitivamente, la transpuesta de $A$ se obtiene al trazar una línea de «pendiente» $-1$ desde la entrada $(1,1)$ a lo largo de la diagonal y reflejar la matriz con respecto a esta línea. Daremos unos ejemplos para entender esto más adelante. Primero damos una definición formal.

Definición. La transpuesta de $A\in M_{m,n}(F)$, denotada por $^{t} A$ se obtiene intercambiando los renglones y las columnas de $A$. Consecuentemente $^t A$ es una matriz de tamaño $n\times m$, es decir $^t A \in M_{n,m}(F)$. Dicho de otra manera, si $A=[a_{ij}]$, entonces $^t A=[a_{ji}]$.

Observación. En otras fuentes es posible que encuentres una notación un poco diferente para matriz transpuesta. Algunas veces se pone el superíndice $t$ arriba a la derecha, así: $A^t$. Otras veces se usa una $T$ mayúscula así: $A^T$. Nosotros usaremos el superíndice a la izquierda.

Ejemplo 1. La transpuesta de

\begin{align*}
A= \begin{pmatrix} 1& 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{pmatrix}
\end{align*}

es

\begin{align*}
^t A= \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.
\end{align*}

En general, la transpuesta de una matriz cuadrada en $M_n(F)$ también es cuadrada y está en $M_n(F)$.

$\triangle$

Es claro también que $^t I_n= I_n$.

Ejemplo 2. La transpuesta de

\begin{align*} A= \begin{pmatrix} 0 & 1 & 0 & 3\\ 4 & 7 & 2 & 0\end{pmatrix} \end{align*}

es

\begin{align*}
^t A= \begin{pmatrix} 0 &4\\ 1 & 7\\ 0 & 2\\ 3 & 0 \end{pmatrix}.
\end{align*}

$\triangle$

Propiedades de transposición de matrices

Hasta ahora hemos hablado de sumas de matrices, multiplicación por escalar y multiplicación de matrices. Una forma frecuente de trabajar con álgebra es preguntarse cómo una nueva definición interactúa con lo que ya hemos definido anteriormente.

Resumimos las propiedades de la transposición de matrices $A\mapsto {^t A}$ y cómo se relaciona con operaciones anteriores en el siguiente resultado.

Proposición. La operación de transponer satisface:

  1. $^t\left( ^t A\right) = A$ para toda $A\in M_{m,n}(F)$.
  2. $^t\left ( A+B\right) = {^t A} + {^t B}$ para todas $A,B\in M_{m,n}(F)$.
  3. $ ^t\left( cA\right)= c {^t A}$ si $c\in F$ es un escalar y $A\in M_{m,n}(F)$.
  4. ${}^t\left( AB\right)=\ {^tB} \, {^t A}$ si $A\in M_{m,n}(F)$ y $B\in M_{n,p}(F)$.
  5. ${}^t \left(A^k\right)= \left(^t A\right)^k$ si $A\in M_n(F)$ y $k$ es un entero positivo.
  6. Si $A\in M_n(F)$ es invertible, entonces $^t A$ también es invertible y
    \begin{align*}
    \left(^t A\right)^{-1}= {^t \left(A^{-1}\right)}.
    \end{align*}

Demostración: Las primeras tres propiedades son consecuencia casi inmediata de la definición y las dejamos como tarea moral. Una sugerencia es demostrarlas usando la notación de entradas.

Comencemos pues demostrando la cuarta propiedad. Primero, observamos que $^t B\in M_{p,n}(F)$ y $^t A\in M_{n,m}(F)$ por lo que el producto $^t B \, {^t A}$ tiene sentido. Luego si $A=[a_{ij}]$ y $B=[b_{jk}]$ tenemos por la regla del producto que

\begin{align*}
^t(AB)_{ki}&= (AB)_{ik}\\
& = \sum_{j=1}^{n} a_{ij} b_{jk}\\
&=\sum_{j=1}^{n} \left(^t B\right)_{kj} \left(^t A\right)_{ji}\\
& = \left( ^t B\, {^t A}\right)_{ki}.
\end{align*}

Así $^t (AB)= \ ^t B \,{^t A}$.

La quinta propiedad la demostramos por inducción sobre $k$. El caso base $k=1$ es claro. Asumamos entonces que se cumple para algún $k$, y verifiquemos que la propiedad sigue siendo cierta para $k+1$.

\begin{align*}
^t \left( A^{k+1}\right)&= {^t \left( A^{k} \cdot A\right)} \\
&=\ ^t A\ ^t\left(A^{k}\right) \\
&=\ ^t A \cdot \left(^t A\right)^{k}\\
&= \left(^t A\right)^{k+1}.
\end{align*}

Donde la segunda igualdad se debe a la cuarta propiedad y la tercera a la hipótesis de inducción. Por inducción, queda probado el resultado.

Finalmente la sexta propiedad se sigue de la cuarta, dado que

\begin{align*}
^t A \cdot \ ^t\left(A^{-1}\right)= \ ^t\left( A^{-1} \cdot A\right) = \ ^t I_n =I_n.\end{align*}

La igualdad simétrica se verifica de la misma manera, y queda demostrada la última propiedad.

$\square$

Observación. La transposición de matrices «voltea» el producto de matrices. Es decir, si en el producto $AB$ aparece $A$ a la izquierda y $B$ a la derecha, al transponer obtenemos $^tB\, {^tA}$, con $^tB$ a la izquierda y $^tA$ a la derecha.

Observación. Por la proposición anterior, la transposición de matrices preserva la invertibilidad de las matrices y así lo podemos ver como un mapeo $^t : GL_n(F)\to GL_n(F)$.

Problema. Sea $X\in F^n$ un vector con coordenadas $x_1, \dots, x_n$ considerado como una matriz en $M_{n,1}(F)$. Demuestre que para cualquier matriz $A\in M_n(F)$ se tiene

\begin{align*}
^t X \left( ^t A \cdot A\right) X= \sum_{i=1}^{n} \left( a_{i1} x_1+ a_{i2} x_2 +\dots + a_{in} x_n\right)^2. \end{align*}

Solución: Primero, usamos la proposición para transformar el lado izquierdo de la igualdad buscada:

\begin{align*}
^t X \left( ^t A\cdot A\right) X=\ ^tX\ ^t A A X=\ ^{t} \left( AX\right) \cdot AX.
\end{align*}

Luego nombrando $Y=AX$ tenemos que

\begin{align*}
Y=AX=\begin{pmatrix} a_{11} x_1+\dots + a_{1n} x_n\\ a_{21} x_1+\dots +a_{2n} x_n \\ \vdots \\ a_{n1} x_1+\dots +a_{nn} x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n\end{pmatrix} .
\end{align*}

Así

\begin{align*}
^t Y \cdot Y= \begin{pmatrix} y_1 & y_2 & \dots & y_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}
\end{align*}

y usando la regla del producto para matrices concluimos que esta última cantidad no es más que $y_1^2+\dots + y_n^2$. Finalmente, sustituyendo $y_i$ por su correspondiente $a_{i1} x_1 +\dots + a_{in} x_n$ obtenemos la igualdad buscada.

$\square$

Matrices simétricas, antisimétricas y ortogonales

En el álgebra lineal hay tres tipos de matrices muy importantes y relacionadas con la transposición de matrices. Todas ellas son matrices cuadradas.

  • Las matrices simétricas. Son aquellas matrices $A\in M_n (F)$ tales que $^t A=A$, equivalentemente $a_{ij}=a_{ji}$ para cualesquiera $1\leq i,j\leq n$. Más adelante veremos que son de fundamental importancia para la teoría de formas cuadráticas y espacios euclideanos (donde $F=\mathbb{R}$), y un cacho importante de nuestro curso se dedicará a estudiar sus propiedades. Por ejemplo todas las matrices simétricas de tamaños $2$ y $3$ son de la forma
    \begin{align*}
    \begin{pmatrix} a & b \\ b &c\end{pmatrix}, \hspace{1mm} a,b,c\in F\text{ y } \begin{pmatrix} a & b & c\\ b & d & e\\ c & e & f\end{pmatrix}, \hspace{1mm} a,b,c,d,e,f\in F.\end{align*}
  • Las matrices ortogonales. Estas son las matrices invertibles $A\in GL_n(F)$ que satisfacen $A^{-1}=\ ^{t}A$. Estas (como su nombre lo indica) tienen una interpretación geométrica muy importante, pues corresponden a isometrías de espacios euclideanos. También las estudiaremos a detalle más adelante.
  • Las matrices antisimétricas. Son matrices $A\in M_n(F)$ que cumplen con $A^{t}=-A$. Estas tienen que ver con formas alternantes, y cumplen $a_{ij}=-a_{ji}$. Si $F\in \{ \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, esta última condición nos implica que $a_{ii}=-a_{ii}$, de dónde $a_{ii}=0$. Entonces, si $F$ es alguno de estos las entradas en la diagonal son todas cero. Todas las matrices antisimétricas de tamaños $2$ y $3$ sobre el campo $\mathbb{C}$ se ven:
    \begin{align*}
    \begin{pmatrix} 0& a \\ -a &0\end{pmatrix}, \hspace{1mm} a\in \mathbb{C}\text{ y } \begin{pmatrix} 0 & a & b\\ -a & 0& c\\ -b & -c & 0\end{pmatrix}, \hspace{1mm} a,b,c\in \mathbb{C}.\end{align*}
    Sin embargo, si $F$ es por ejemplo $\mathbb{F}_2$, entonces la condición $2a_{ii}=0$ no nos aporta ninguna información nueva, ya que para todo elemento $x$ en $\mathbb{F}_2$, $2x=0$. De hecho, sobre campos de este estilo ¡no hay diferencia entre matrices simétricas y antisimétricas!

A continuación resumimos algunas propiedades iniciales de matrices simétricas y antisimétricas. La idea de las demostraciones es usar las propiedades de transposición de matrices.

Proposición. Todas las matrices en los enunciados siguientes son matrices cuadradas del mismo tamaño. Son ciertas:

  1. La suma de una matriz y su transpuesta es simétrica, la diferencia de una matriz y su transpuesta es antisimétrica.
  2. El producto de una matriz y su transpuesta es simétrica.
  3. Cualquier potencia de una matriz simétrica es simétrica.
  4. Cualquier potencia par de una matriz antisimétrica es simétrica, y cualquier potencia impar de una matriz antisimétrica es antisimétrica.
  5. Si $A$ es invertible y simétrica entonces $A^{-1}$ es simétrica.
  6. Si $A$ es invertible y antisimétrica, entonces $A^{-1}$ es antisimétrica.

Demostración:

  1. Si $A$ es una matriz, entonces $$
    ^t\left( A+\ ^{t}A\right)=\ ^t A + \ ^{t}\left(^{t}A\right) =\ ^{t}A+A= A+\ ^{t} A. $$ Es decir, $A+\ ^{t}A$ es igual a su transpuesta y por tanto es simétrica. El cálculo para verificar la antisimetría de $A-\ ^{t} A$ es similar.
  2. Queremos ver que $A ^{t}A$ es simétrica. Lo podemos hacer directamente $$^{t}\left( A ^{t} A\right) =\ ^{t}\left(^{t}A\right) ^{t} A= A ^{t}A,
    $$ lo que verifica la simetría de la matriz.
  3. Se sigue de la proposición anterior, pues si $A$ es simétrica
    \begin{align*}
    ^{t}\left(A^{n}\right)= \left( ^{t}A\right)^{n}= A^{n}.
    \end{align*}
  4. Hacemos el caso en el que la potencia es par y dejamos el otro como tarea moral, el razonamiento es análogo. Si $A$ es antisimétrica y $n=2k$ para algún $k$ entonces
    \begin{align*}
    ^{t}\left(A^{n}\right)= \left(^{t} A\right)^{n}= (-A)^{n}=(-1)^{2k} A^{n}=A^{n}.
    \end{align*} Aquí usamos que $(-1)^{2k}=1$.
  5. Si $A$ es simétrica, usando la proposición anterior tenemos que
    \begin{align*}
    ^{t}\left(A^{-1}\right)=\left(^t A\right)^{-1}= A^{-1}.
    \end{align*}
  6. Es análogo al inciso anterior.

$\square$

Algunos problemas

Acabamos la entrada con algunos problemas que servirán de práctica.

Problema 1. Describe las matrices simétricas $A\in M_n(F)$ que sean simultáneamente simétricas y triangulares superiores.

Solución: Sea $A=[a_{ij}]$ simétrica y triangular superior. Por definición $a_{ij}=0$ si $i>j$ por ser triangular superior, y $a_{ij}=a_{ji}$ por ser simétrica para cualesquiera $i,j\in \{1, \dots, n\}$. Así, si $i\neq j$ entonces $a_{ij}=0$, pues si $i<j$, entonces $0=a_{ji}=a_{ij}$. Se sigue que $A$ tiene que ser diagonal. Conversamente, es fácil verificar que cualquier matriz diagonal es simétrica y triangular superior. Es decir, la respuesta es precisamente las matrices diagonales.

$\triangle$

Problema 2. ¿Cuántas matrices simétricas hay en $M_n\left( \mathbb{F}_2\right)$?

Solución: Observamos que una matriz simétrica está determinada por las entradas que están sobre o por encima de la diagonal, pues sabemos que para llenar los otros espacios hay que reflejar estas entradas (de otra manera, se puede pensar como colorear solo un lado del papel y luego doblarlo). Conversamente, cada elección de suficientes números para llenar la diagonal y el área encima de ella determina una matriz simétrica.

Así, contemos cuántas entradas hay sobre o por encima de la diagonal: El primer renglón está enteramente por encima de la diagonal, lo que nos da $n$ entradas, luego el segundo renglón está, con excepción de una entrada, contenido en esta área superior, es decir tenemos $n-1$ entradas más. Al tercer renglón le quitamos dos entradas, al cuarto tres entradas y así sucesivamente hasta llegar al último renglón, donde la única entrada sobre o por encima de la diagonal es la última, es decir, una entrada que podemos escoger.

Sumando, tenemos

\begin{align*}
n+(n-1)+(n-2)+\dots +2+1=\frac{n(n+1)}{2}
\end{align*}

entradas que rellenar, y por tanto $\frac{n(n+1)}{2}$ elecciones de números que hacer. Ahora, ¿cuántos números podemos escoger? Al estar trabajando en $\mathbb{F}_2$, solo dos: $0$ ó $1$. Por un argumento combinatorio, concluimos que hay

\begin{align*}
2^{\frac{n(n+1)}{2}}
\end{align*}

matrices simétricas en $M_n\left(\mathbb{F}_2\right)$.

$\triangle$

Problema 3. Demuestra que toda matriz $A\in M_n(\mathbb{C})$ se puede escribir de manera única como $A=B+C$, con $B$ simétrica y $C$ antisimétrica.

Solución: Suponiendo que $A=B+C$ con $B$ simétrica y $C$ antisimétrica, obtenemos que

\begin{align*}
^t A=\ ^t(B+C)= \ ^t B + \ ^t C= B-C
\end{align*}

Así, resolviendo el sistema

\begin{align*}
\begin{cases}
A= B+C\\
^t A= B-C
\end{cases}
\end{align*}

obtenemos que

\begin{align*}
B=\frac{1}{2}\left( A+\ ^t A\right) \text{ y } C=\frac{1}{2}\left( A-\ ^{t} A\right).
\end{align*}

Así la elección de $B$ y $C$ es única, pues están totalmente determinadas. Además, definiendo $B$ y $C$ como en las igualdades de arriba podemos ver que cumplen las condiciones buscadas (probando así existencia).

$\square$

Más adelante…

La transposición de matrices es una operación importante, que más adelante veremos que está relacionada con la dualidad. Las matrices simétricas y antisimétricas son también muy importantes en álgebra lineal. De hecho, el teorema principal del curso (el teorema espectral) es un resultado acerca de matrices simétricas con entradas reales. Por el momento le pondremos una pausa al estudio de estas matrices, pero más adelante las retomaremos.

En la siguiente clase hablaremos de otra clase de matrices: las de bloque. Estas nos ayudarán a enunciar más cómodamente algunos resultados y procedimientos, como el uso de la reducción gaussiana para resolver sistemas de ecuaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Escribe, de manera explícita, todas las matrices simétricas, antisimétricas y ortogonales de $M_2(\mathbb{F}_2)$.
  • La siguiente matriz es una matriz antisimétrica en $M_4(\mathbb{R})$, pero algunas de sus entradas se borraron. ¿Cuáles son estas entradas? $$\begin{pmatrix} 0 & 2 & & 3 \\ & 0 & -4 & \\ 1 & 4 & & \frac{1}{2} \\ & -\frac{2}{3} & & 0 \end{pmatrix}.$$
  • Demuestra las tres primeras propiedades de la proposición de propiedades de transposición de matrices.
  • ¿Será cierto que las matrices de $M_n(F)$ que son simultáneamente invertibles y simétricas forman un subgrupo de $GL_n(F)$? En otras palabras, ¿es cierto que el producto de dos matrices invertibles y simétricas es una matriz invertible y simétrica? ¿Que puedes en este sentido de las matrices ortogonales? ¿De las antisimétricas?
  • Demuestra que cualquier potencia impar de una matriz antisimétrica es antisimétrica
  • Demuestra que en $M_n(\mathbb{F}_2)$, una matriz es simétrica si y sólo si es antisimétrica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»