Archivo de la etiqueta: matrices

Álgebra Lineal I: Matrices invertibles

Por Julio Sampietro

Introducción

Siguiendo el hilo de la entrada pasada, por la correspondencia entre transformaciones lineales y matrices así como la composición y su producto, podemos traducir el problema de invertibilidad de transformaciones lineales en términos de matrices, a las que llamaremos matrices invertibles. Es decir, si tenemos $\varphi: F^n\to F^n$, $\psi: F^n\to F^n$ transformaciones lineales tales que

\begin{align*}
\varphi\circ \psi= Id_{F^n}, \hspace{2mm} \psi \circ \varphi=Id_{F^n}
\end{align*}

¿cómo se traduce esto en términos de sus matrices asociadas?

Veremos que la respuesta yace en matrices que tienen inverso multiplicativo, a diferencia de un campo $F$, donde todo $x$ tiene un $x^{-1}$, cuando trabajamos con matrices no todas tienen una matriz inversa y las que si son de especial importancia.

Definición de matrices invertibles

Definición. Decimos que una matriz $A\in M_n (F)$ es invertible o bien no singular si existe una matriz $B\in M_n(F)$ tal que

\begin{align*}
AB=BA=I_n
\end{align*}

Ejemplo. Veamos que la matriz $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ es invertible. Para ello, tenemos que exhibir una matriz $B$ tal que $AB=I_2=BA$. Proponemos a la matriz $B=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Haciendo la multiplicación con la regla del producto, tenemos que

\begin{align*}
AB&=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + 1 \cdot 0 & 1 \cdot (-1) + 1\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot (-1)+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

¡Aún no hemos terminado! Para satisfacer la definición, también tenemos que mostrar que $BA=I_2$:

\begin{align*}
BA&=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + (-1) \cdot 0 & 1 \cdot 1 + (-1)\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot 1+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

Ahora sí, podemos concluir que la matriz $A$ es invertible.

$\square$

Observación. Una primera cosa que hay que notar es que en la definición se pide que tanto $AB$ como $BA$ sean la matriz identidad $I_n$. Es importante verificar ambas, pues como sabemos, el producto de matrices no siempre conmuta.

Otra observación importante es que si la matriz $B$ como en la definición existe, entonces es necesariamente única: En efecto, si $C\in M_n(F)$ es otra matriz tal que

\begin{align*}
AC=CA=I_n,
\end{align*}

entonces manipulando las expresiones en juego:

\begin{align*}
C&= I_n C \\&= (BA)C\\
&=B(AC)\\&= B I_n \\&=B.
\end{align*}

Entonces no hay ambigüedad al hablar de la matriz inversa de $A$. Ya no tiene mucho sentido usar una letra diferente para ella. Simplemente la denotaremos por $A^{-1}$.

Primeras propiedades de matrices invertibles

Resumimos algunas propiedades de las matrices invertibles en la siguiente proposición.

Proposición.

  1. Para $c\in F$ es un escalar distinto de cero, se tiene que $c I_n$ es invertible.
  2. Si $A$ es invertible, entonces $A^{-1}$ también lo es, y $\left(A^{-1}\right)^{-1}=A$
  3. Si $A,B\in M_n(F)$ son invertibles, entonces $AB$ también lo es y

    \begin{align*}
    \left(AB\right)^{-1}= B^{-1}A^{-1}.
    \end{align*}

Demostración:

  1. Como $c\neq 0$ y $F$ es un campo, entonces existe $c^{-1}$ en $F$ y así $c^{-1} I_n$ satisface (por la compatibilidad del producto por escalares de esta entrada)

    \begin{align*}
    (cI_n)\cdot (c^{-1}I_n)&= (cc^{-1})\cdot (I_n I_n)\\&= I_n\\
    &= (c^{-1} c) \cdot(I_n)\\&= (c^{-1} I_n) \cdot (c I_n).
    \end{align*}
    Luego $c^{-1}I_n$ es la matriz inversa de $c I_n$.
  2. Para evitar alguna confusión con la notación, denotemos a $A^{-1}$ por $B$. Así

    \begin{align*}
    AB=BA=I_n.
    \end{align*}
    Luego $B$ es invertible y su inversa es $A$.
  3. Si $A,B\in M_n(F)$ son invertibles entonces existen $A^{-1}$ y $B^{-1}$. Sea $C= B^{-1} A^{-1}$. Así

    \begin{align*}
    (AB)C=ABB^{-1}A^{-1}= A I_n A^{-1}= AA^{-1} =I_n.
    \end{align*}
    Y análogamente

    \begin{align*}
    C(AB)= B^{-1}A^{-1} A B= B^{-1} I_n B= B^{-1} B=I_n.
    \end{align*}
    Mostrando así que $AB$ es invertible con inversa $C$.

$\square$

Observación. Es importante notar que el ‘sacar inverso’ invierte el orden de los productos. Es decir, en el producto $AB$ aparece primero $A$ y luego $B$, mientras que el inverso $(AB)^{-1}$ es $B^{-1}A^{-1}$, en donde aparece primero $B^{-1}$ y luego $A^{-1}$. Esto es muy importante en vista de que la multiplicación de matrices no es conmutativa y por lo tanto en general

\begin{align*}
(AB)^{-1}\neq A^{-1} B^{-1}.
\end{align*}

También es importante notar que si bien la invertibilidad se preserva bajo productos (el producto de matrices invertibles es invertible) ésta no se preserva bajo sumas. Por ejemplo, tanto $I_n$ como $-I_n$ son invertibles en virtud del teorema, sin embargo su suma es $I_n+(-I_n)=O_n$, que no es invertible.

Ya hablamos de cuándo una matriz $A$ en $M_n(F)$ es invertible. ¿Qué sucede si consideramos a todas las matrices invertibles en $M_n(F)$? Introducimos el siguiente objeto de importancia fundamental en muchas áreas de las matemáticas:

Definición. El conjunto de matrices invertibles $A\in M_n(F)$ es llamado el grupo lineal general y es denotado por $GL_n(F)$.

En la tarea moral hay un ejercicio en el que se pide mostrar que $GL_n(F)$ es un grupo bajo la operación de producto de matrices. En realidad en este curso no hablaremos mucho de $GL_n(F)$ como grupo. Pero es importante que sepas de su existencia y que conozcas su notación, pues será importante en tu preparación matemática futura.

Invirtiendo matrices

Si bien el concepto de invertibilidad es sencillo de introducir, gran parte de la herramienta para determinar (irónicamente, a través de los determinantes) la invertibilidad de una matriz o propiedades relacionadas (por ejemplo, una computación efectiva de matrices inversas) todavía no está a nuestra disposición. Por tanto, lo único que podemos hacer es uso de ‘fuerza bruta’ para encontrar las inversas de matrices invertibles, y eso haremos en los siguientes ejemplos para al menos familiarizarnos con los cálculos.

Problema. Sea la matriz $A=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}$. ¿Es $A$ invertible? De serlo, calcula su inversa.

Solución. Como mencionamos, con la teoría que hemos desarrollado hasta ahora solo podemos atacar el problema directamente. Buscamos una matriz

\begin{align*}
B= \begin{pmatrix} a & b & c\\ x & y & z\\ u & v & w\end{pmatrix}
\end{align*}

tal que $AB=I_3=BA$. Usando la regla del producto, calculamos

\begin{align*}
AB=\begin{pmatrix} x & y & z\\ a & b &c \\ u & v & w \end{pmatrix}.
\end{align*}

Igualando esta matriz a $I_3$ obtenemos las condiciones

\begin{align*}
\begin{cases} x=b=w=1\\ y=z=a=c=u=v=0. \end{cases}
\end{align*}

Esto muestra que una buena candidata a ser la inversa de $A$ es la matriz

\begin{align*}
A^{-1}= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Falta un paso más: hay que verificar que $BA=I_3$. Afortunadamente esto es cierto. Su verificación queda como tarea moral.

$\triangle$

Resaltamos que el método usado no es eficiente, y tampoco es general (pues funcionó solo por la particularidad de la matriz $A$). Dicho esto, exhibimos un método que puede ser útil cuando la matriz por invertir es suficientemente ‘bonita’ (por ejemplo si tiene muchos ceros).

Sea $A\in M_n(F)$ una matriz y $b\in F^n$ un vector. Supongamos que el sistema $AX=b$ en el vector variable $X$ tiene una única solución $X\in F^n$. Un resultado que probaremos más adelante nos dice que entonces $A$ es invertible y que la solución es $X=A^{-1}b$ (es decir, que podemos ‘despejar’ $X$ multiplicando por $A^{-1}$ del lado izquierdo ambos lados). Así, si el sistema resulta fácil de resolver, podemos obtener una expresión de $A^{-1}$ en términos de cualquier vector $b$, y ésto basta para determinar a $A^{-1}$. En la práctica, la resolución del sistema mostrará que

\begin{align*}
A^{-1} b = \begin{pmatrix}
c_{11}b_1 + c_{12} b_2 +\dots + c_{1n}b_n\\
c_{21}b_1+c_{22}b_2 + \dots + c_{2n} b_n\\
\vdots\\
c_{n1} b_1 + c_{n2} b_2 +\dots + c_{nn}b_n
\end{pmatrix}
\end{align*}

para algunos escalares $c_{ij}$ independientes de $b$. Escogiendo $b=e_i$ el $i-$ésimo vector de la base canónica, el lado izquierdo es simplemente la $i-$ésima columna de $A^{-1}$ y el lado derecho es la $i-$ésima columna de $[c_{ij}]$. Como ambas matrices son iguales columna a columna, deducimos que

\begin{align*}
A^{-1}=[c_{ij}]
\end{align*}

Subrayamos que, una vez el sistema resuelto, el resto es relativamente sencillo pues solo es fijarnos en los coeficientes. La dificultad reside entonces en resolver el sistema $AX=b$, y la dificultad de este sistema depende fuertemente de la matriz $A$, por lo que nos limitaremos por lo pronto a ejemplos sencillos.

Retomemos el problema anterior para ver cómo funciona este método recién expuesto.

Problema. Resuelve el problema anterior usando el método que acabamos de describir.

Solución. Sea $b=\begin{pmatrix} b_1 \\ b_2 \\ b3 \end{pmatrix}\in F^3$, tratemos de resolver $AX=b$ para $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. El sistema se escribe entonces

\begin{align*}
\begin{pmatrix} b_1 \\ b_2 \\ b_3\end{pmatrix}=AX= \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} x_2 \\ x_1 \\ x_3\end{pmatrix}.
\end{align*}

O equivalentemente

\begin{align*}
\begin{cases} x_1=b_2\\ x_2= b_1 \\ x_3=b_3.\end{cases}
\end{align*}

Como el sistema siempre se puede resolver dado $b\in F^3$, podemos afirmar que $A$ es invertible, y tenemos que

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1\\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} b_2\\ b_1 \\ b_3\end{pmatrix}= \begin{pmatrix} 0\cdot b_1 + 1\cdot b_2 + 0 \cdot b_3\\ 1\cdot b_1 +0\cdot b_2 +0\cdot b_3\\ 0\cdot b_1 + 0\cdot b_2 +1\cdot b_3\end{pmatrix}. \end{align*}

Fijándonos en los coeficientes del lado derecho, vemos que la primera fila de $A^{-1}$ es $(0 \ 1 \ 0)$, la segunda $(1\ 0 \ 0)$ y la tercera $(0\ 0\ 1)$. Luego

\begin{align*}
A^{-1}=\begin{pmatrix}
0 & 1& 0\\
1 & 0&0\\
0 & 0 & 1\end{pmatrix}\end{align*}

$\triangle$

Problema. Sea la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 1 &1 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix} \end{align*}

Demuestre que $A$ es invertible y encuentre su inversa.

Solución. Usamos el mismo método. Sea $b= \begin{pmatrix} b_1\\ b_2 \\ b_3 \\ b_4 \end{pmatrix}\in F^4$ y resolvemos $AX=b$ con $X=\begin{pmatrix} x_1\\ x_2 \\ x_3 \\ x_4\end{pmatrix}$. Esta vez el sistema asociado es el siguiente (omitimos los cálculos de la regla del producto):

\begin{align*}
\begin{cases}
x_1+x_2+x_3+x_4=b_1\\
x_2+x_3+x_4=b_2\\
x_3+x_4=b_3\\
x_4=b_4
\end{cases}.
\end{align*}

Este sistema lo podemos resolver de manera más o menos sencilla: De la última ecuación tenemos que $x_4=b_4$, luego sustituyendo en la penúltima obtenemos $x_3+b_4=b_3$ o bien $x_3=b_3-b_4$. Sustituyendo esto a su vez en la segunda ecuación obtenemos que $x_2+b_3=b_2$, es decir $x_2=b_2-b_3$ y finalmente $x_1= b_1-b_2$. Así el sistema siempre tiene solución y estas están dadas por

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4\end{pmatrix} = \begin{pmatrix} b_1-b_2\\ b_2-b_3\\ b_3-b_4\\ b_4 \end{pmatrix}.
\end{align*}

De esto se sigue que (fijándonos en los coeficientes) la primera fila de $A^{-1}$ es $(1\ -1 \ 0 \ 0)$, y análogamente obtenemos las demás, de manera que

\begin{align*}
A^{-1}=\begin{pmatrix}
1 & -1 & 0 &0\\
0 & 1 & -1 & 0\\
0&0 &1 &-1\\
0 & 0 & 0 &1
\end{pmatrix}.
\end{align*}

Un buen ejercicio es verificar que en efecto con esta inversa propuesta se cumple que $AA^{-1}=I_4=A^{-1}A$.

$\triangle$

Matrices invertibles diagonales

Concluimos esta sección con un último problema de matrices invertibles. Para resolverlo no usamos el método expuesto, sino un argumento particular para las matrices diagonales.

Problema. Demuestre que una matriz diagonal $A\in M_n(F)$ es invertible si y sólo si todas sus entradas en la diagonal son distintas de cero. Más aún, de ser el caso, $A^{-1}$ también es diagonal.

Solución. Sea $A=[a_{ij}]\in M_n(F)$ una matriz diagonal y $B=[b_{ij}]\in M_n(F)$ cualquier matriz. Usando la regla del producto tenemos que

\begin{align*}
(AB)_{ij}= \sum_{k=1}^{n} a_{ik} b_{kj}.
\end{align*}

Como $a_{ik}=0$ para $k\neq i$ (por ser $A$ diagonal) muchos de los términos en la suma desaparecen y nos quedamos con

\begin{align*}
(AB)_{ij}= a_{ii} b_{ij}
\end{align*}

y de manera similar se puede verificar que

\begin{align*}
(BA)_{ij}=a_{jj}b_{ij}.
\end{align*}

Aprovechemos estas observaciones para proponer a la inversa de $A$.

Si $a_{ii}\neq 0$ para todo $i\in \{1,\dots, n\}$ entonces podemos considerar a $B$ como la matriz diagonal con entradas $b_{ii}=\frac{1}{a_{ii}}$. Las fórmulas que acabamos de calcular nos dan que $AB=BA=I_n$ y así $A$ es invertible y su inversa $B$ es diagonal.

Conversamente, supongamos que $A$ es invertible y diagonal. Así, existe una matriz $B$ tal que $AB=BA=I_n$. Luego para toda $i\in \{1, \dots, n\}$ se cumple

\begin{align*}
1= (I_n)_{ii}= (AB)_{ii}= a_{ii}b_{ii}
\end{align*}

Así $a_{ii}\neq 0$ para $i\in \{1, \dots, n\}$ y así todas las entradas en la diagonal son distintas de cero.

$\square$

Más adelante…

En esta entrada hablamos del concepto de matrices invertibles, vimos algunas de sus propiedades y esbozamos un método para encontrar la inversa de una matriz. Hay mejores métodos para encontrar dicha inversa. Uno de ellos, que es muy rápido, es el método de reducción gaussiana, que sirve para mucho más que invertir matrices. Para llegar a él, aún tenemos que desarrollar algo de teoría. Pero antes de eso, hablaremos de otros tipos particulares de matrices.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Aunque para determinar inversos de matrices generales necesitamos desarrollar más teoría, las matrices invertibles de $2\times 2$ son fáciles de entender. Muestra que si se tiene una matriz $A$ en $M_2(F)$ con entradas $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ y $ad-bc\neq 0$, entonces la matriz $$B=\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ es la inversa de $A$. Para ello verifica explícitamente usando la regla del producto que tanto $AB=I_2$, como que $BA=I_2$.
  • En el primer problema de invertir matrices, muestra que $BA$ también es $I_3$.
  • La matriz $$A=\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \sqrt{2}\end{pmatrix}$$ es invertible. Encuentra su inversa.
  • Verifica que $GL_n(F)$ es en efecto un grupo bajo la operación de multiplicación de matrices. Debes mostrar que:
    • El producto de dos matrices invertibles es invertible.
    • Existe un neutro multiplicativo $E$ (¿quién sería?).
    • Para matriz $A$ en $GL_n(F)$ existe una matriz $B$ en $GL_n(F)$ tal que $AB=BA=E$.
  • Explica por qué la matriz $O_n$ no es invertible. Explica por que si una matriz en $M_n(F)$ tiene una columna (o fila) tal que todas sus entradas sen iguales a $0$, entonces la matriz no es invertible. Este ejercicio lo puedes hacer directamente de la definición, sin tener que recurrir a herramientas más fuertes.
  • Generaliza el penúltimo problema a una matriz de tamaño $n\times n$ con puros unos sobre y por encima de la diagonal, es decir, para la cual $[a_{ij}]=1$ si $j\geq i$ y $0$ en otro caso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Introducción al curso, vectores y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

Esta es la primer entrada correspondiente a las notas del curso Álgebra Lineal I. En esta serie de entradas, cubriremos todo el temario correspondiente al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Las notas están basadas fuertemente en el libro Essential Lineal Algebra with Applications de Titu Andreescu.

El curso se trata, muy a grandes rasgos, de definir espacios vectoriales y estudiar muchas de sus propiedades. Un espacio vectorial con el que tal vez estés familiarizado es $\mathbb{R}^n$, donde sus elementos son vectores con $n$ entradas. En él se pueden hacer sumas entrada a entrada, por ejemplo, si $n=3$ una suma sería

\begin{align*}
(5,-1,2)+(1,4,9)=(6,3,11).
\end{align*}

También se puede multiplicar un vector por un número real, haciéndolo entrada a entrada, por ejemplo,

\begin{align*}
3(1,5,-2,6)=(3,15,-6,18).
\end{align*}

El álgebra lineal estudia espacios vectoriales más generales que simplemente $\mathbb{R}^n$. Como veremos más adelante, hay muchos objetos matemáticos en los que se puede definir una suma y un producto escalar. Algunos ejemplos son los polinomios, ciertas familias de funciones y sucesiones. La ventaja de estudiar estos espacios desde el punto de vista del álgebra lineal es que todas las propiedades que probemos «en general», se valdrán para todos y cada uno de estos ejemplos.

Lo que haremos en la primer unidad del curso es entender muy a profundidad a $F^n$, una generalización de $\mathbb{R}^n$ en la que usamos un campo arbitrario $F$. También, entenderemos a las matrices en $M_{m,n}(F)$, que son arreglos rectangulares con entradas en $F$. La unidad culmina con estudiar sistemas de ecuaciones lineales y el método de reducción Gaussiana.

Más adelante veremos que estudiar estos conceptos primero es muy buena idea pues los espacios vectoriales más generales tienen muchas de las propiedades de $F^n$, y podemos entender a ciertas transformaciones entre ellos al entender a $M_{m,n}(F)$.

Breve comentario sobre campos

En este curso no nos enfocaremos en estudiar a profundidad las propiedades que tienen los campos como estructuras algebraicas. De manera pragmática, pensaremos que un campo $F$ consiste de elementos que se pueden sumar y multiplicar bajo propiedades bonitas:

  • La suma y el producto son asociativas, conmutativas, tienen neutro (que llamaremos $0$ y $1$ respectivamente y tienen inversos (i.e. se vale «restar» y «dividir»)
  • La suma y producto satisfacen la regla distributiva

De hecho, de manera muy práctica, únicamente usaremos a los campos $\mathbb{Q}$ de racionales, $\mathbb{R}$ de reales, $\mathbb{C}$ de complejos y $\mathbb{F}_2$, el campo de dos elementos $0$ y $1$. Este último sólo lo usaremos para observar que hay algunas sutilezas cuando usamos campos con una cantidad finita de elementos.

Para todos estos campos, supondremos que sabes cómo se suman y multiplican elementos. Si necesitas dar un repaso a estos temas, puedes echarle un ojo a las entradas del curso Álgebra Superior II, que también están aquí en el blog.

Nociones iniciales de álgebra lineal: escalares, vectores y matrices

Quizás te has encontrado con vectores y matrices en otros cursos. Por ejemplo, en geometría analítica es usual identificar a un vector $(x,y)$ con un punto en el plano cartesiano, o bien con una «flecha» que va del origen a ese punto. En álgebra lineal nos olvidaremos de esta interpretación por mucho tiempo. Será hasta unidades posteriores que tocaremos el tema de geometría de espacios vectoriales. Por el momento, sólo nos importan los vectores desde el punto de vista algebraico.

Tomemos un campo $F$. A los elementos de $F$ les llamaremos escalares. Para un entero positivo $n$, un vector $X$ en $F^n$ consiste de un arreglo de $n$ entradas $a_1,a_2,\ldots,a_n$ que pueden estar dispuestas en un vector fila $$X=(a_1, a_2,\ldots, a_n),$$ o bien un vector columna $$X=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}.$$

Para $i=1,\ldots,n$, a $a_i$ le llamamos la $i$-ésima coordenada o $i$-ésima entrada de $X$.

Como vectores, puedes pensar que el vector fila y el vector columna correspondientes son el mismo. Abajo veremos en qué sentido tenemos que pensarlos como diferentes. Aunque como vectores sean los mismos, los vectores columna tienen varias ventajas conceptuales en álgebra lineal.

Ejemplo 1. El vector $$X=\left(\frac{1}{2}, -1, \frac{2}{3}, 4\right).$$ tiene cuatro entradas, y todas ellas son números racionales. Por lo tanto, es un vector en $\mathbb{Q}^4$. Su primer entrada es $\frac{1}{2}$. Está escrito como vector fila, pero podríamos escribirlo también como vector columna: $$\begin{pmatrix} \frac{1}{2} \\ -1 \\ \frac{2}{3} \\ 4 \end{pmatrix}.$$

El vector $$Y=\left(\pi, \frac{3}{4}, 5, 6, \sqrt{2}\right)$$ es un vector fila en $\mathbb{R}^5$, pero no en $\mathbb{Q}^5$, pues no todas sus entradas son racionales. A $Y$ también lo podemos pensar como un vector en $\mathbb{C}$.

$\triangle$

Una matriz en $M_{m,n}(F)$ es un arreglo rectangular de elementos en $F$ dispuestos en $m$ filas y $n$ columnas como sigue:

$$A=\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n}\\
\vdots & & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{pmatrix}.$$

Al escalar $a_{ij}$ le llamamos la entrada $(i,j)$ de $A$.

Para cada $i=1,\ldots,m$, definimos a la $i$-ésima fila de $A$ como el vector fila $$L_i=(a_{i1},a_{i2},\ldots,a_{in}),$$ y para cada $j=1,2,\ldots,n$ definimos a la $j$-ésima columna de $A$ como el vector columna $$C_j=\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj}\end{pmatrix}.$$

Veamos algunas aclaraciones de notación. Cuando $m=n$, las matrices en $M_{m,n}(F)$ tienen la misma cantidad de filas que de columnas. En este caso simplemente usamos la notación $M_{n}(F)$ para ahorrarnos una letra, y si una matriz está en $M_{n}(F)$, le llamamos una matriz cuadrada. También, en ocasiones expresamos a una matriz en forma compacta diciendo cuántas filas y columnas tiene y usando la notación $A=[a_{ij}]$.

Ejemplo 2. Consideremos la matriz $A$ en $M_3(\mathbb{R})$ dada por $A=[a_{ij}]=[i+2j]$. Si queremos poner a $A$ de manera explícita, simplemente usamos la fórmula en cada una de sus entradas:

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2 & 1+2\cdot 3\\
2+2\cdot 1 & 2+2\cdot 2 & 2+2\cdot 3\\
3+2\cdot 1 & 3+2\cdot 2 & 3+2\cdot 3\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 & 7\\
4 & 6 & 8\\
5 & 7 & 9\\
\end{pmatrix}
\end{align*}

Esta es una matriz cuadrada. Sin embargo, la matriz $B$ en $M_{3,2}(\mathbb{R})$ con la misma regla $B=[b_{ij}]=[i+2j]$ no es una matriz cuadrada pues es

\begin{align*}
B=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2\\
2+2\cdot 1 & 2+2\cdot 2\\
3+2\cdot 1 & 3+2\cdot 2\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 \\
4 & 6 \\
5 & 7 \\
\end{pmatrix},
\end{align*}

la cual es una matriz con $3$ filas y $2$ columnas.

$\triangle$

Cualquier vector fila en $F^n$ lo podemos pensar como una matriz en $M_{1n}(F)$ y cualquier vector columna en $F^n$ lo podemos pensar como una matriz en $M_{n1}(F)$. En este sentido estos dos vectores sí serían distintos. Usualmente será claro si se necesita o no hacer la distinción.

Para que dos vectores o dos matrices sean iguales, tienen que serlo coordenada a coordenada.

Vectores y matrices especiales

Al vector en $F^n$ con todas sus entradas iguales al cero del campo $F$ le llamamos el vector cero y lo denotamos con $0$. El contexto nos ayuda a decidir si estamos hablando del escalar cero (el neutro aditivo del campo $F$) o del vector cero.

De manera similar, a la matriz en $M_{m,n}$ con todas sus entradas iguales al cero del campo $F$ le llamamos la matriz cero y la denotamos con $O_{m,n}$. Si $m=n$, la llamamos simplemente $O_n$.

Otra matriz especial que nos encontraremos frecuentemente es la matriz identidad. Para cada $n$, es la matriz $I_n$ en $M_n(F)$ tal que cada entrada de la forma $a_{ii}$ es igual a uno (el neutro multiplicativo de $F$) y el resto de sus entradas son iguales a $0$.

Cuando estamos trabajando en $M_n(F)$, es decir, con matrices cuadradas, hay otras familias de matrices que nos encontraremos frecuentemente. Una matriz $A=[a_{ij}]$ en $M_{n}(F)$:

  • Es diagonal si cuando $i\neq j$, entonces $a_{ij}=0$.
  • Es triangular superior si cuando $i>j$, entonces $a_{ij}=0$.
  • Y es triangular inferior si cuando $i<j$ entonces $a_{ij}=0$.

A las entradas de la forma $a_{ii}$ se les conoce como las entradas de la diagonal principal de la matriz. En otras palabras, $A$ es diagonal cuando sus únicas entradas no cero están en la diagonal principal. Es triangular superior cuando sus entradas por debajo de la diagonal principal son iguales a cero. Y de manera similar, es triangular inferior cuando sus entradas por encima de la diagonal principal son iguales a cero.

Ejemplo. La matriz $O_{3,2}$ de $M_{3,2}(\mathbb{Q})$ es la siguiente

$$O_{3,2}=\begin{pmatrix}
0 & 0 \\ 0& 0 \\ 0 & 0 \\
\end{pmatrix}$$

La matriz $I_4$ de $M_{4}(F)$ es la siguiente

$$I_4=\begin{pmatrix}
1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Esta matriz identidad es diagonal, triangular superior y triangular inferior. Una matriz diagonal distinta a la identidad podría ser la siguiente matriz en $M_3(\mathbb{Q})$:

$$\begin{pmatrix}
1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \\
\end{pmatrix}.$$

Una matriz que es triangular superior, pero que no es diagonal (ni triangular inferior), podría ser la siguiente matriz en $M_4(\mathbb{R})$:

$$\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 0\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

$\triangle$

Operaciones de vectores y matrices

Si tenemos dos matrices $A=[a_{ij}]$ y $B=[b_{ij}]$ en $M_{m,n}(F)$, entonces podemos definir a la matriz suma $A+B$ como la matriz cuyas entradas son $[a_{ij}+b_{ij}]$, es decir, se realiza la suma (del campo $F$) entrada por entrada.

Ejemplo 1. Si queremos sumar a las matrices $A$ y $B$ en $M_{4}(\mathbb{R})$ dadas por $$A=\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 2\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

y $$B=\begin{pmatrix}
1 & 1 & -1 & -3\\ 0 & 1 & 1 & -2\\ 0& 0 & 1 & 1\\ 0 & 0 & 0 & 1
\end{pmatrix},$$

entonces hacemos la suma entrada por entrada para obtener:

$$A+B=\begin{pmatrix}
2 & 1+\sqrt{2} & 1 & -3+\sqrt{5}\\ 0 & 2 & 1+\sqrt{3} & 0\\ 0 & 0 & 2 & 1+\sqrt{2}\\ 0 & 0 & 0 & 2
\end{pmatrix}.$$

$\triangle$

Es muy importante que las dos matrices tengan la misma cantidad de filas y renglones. Insistiendo: si no coinciden la cantidad de filas o de columnas, entonces las matrices no se pueden sumar.

Si tenemos una matriz $A=[a_{ij}]$ en $M_{m,n}(F)$ y un escalar $c$ en $F$, podemos definir el producto escalar de $A$ por $c$ como la matriz $cA=[ca_{ij}]$, es decir, aquella que se obtiene al multiplicar cada una de las entradas de $A$ por el escalar $c$ (usando la multiplicación del campo $F$).

Ejemplo 2. Al tomar la siguiente matriz en $M_{2}(\mathbb{C})$ $$A=\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$ y el escalar $i$ en $\mathbb{C}$, se tiene que $$iA=\begin{pmatrix} i\cdot 1 &i\cdot i \\ i\cdot (-i) & i\cdot 1\end{pmatrix} = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}.$$

$\triangle$

Dada una matriz $A$, a la matriz $(-1)A$ le llamamos simplemente $-A$, y definimos $A-B:=A+(-B)$.

Como todo vector en $F^n$ se puede pensar como una matriz, estas operaciones también se pueden definir para vectores para obtener la suma de vectores y el producto escalar en vectores.

En álgebra lineal frecuentemente hablaremos de escalares, vectores y matrices simultáneamente. Cada que veas una una variable es importante que te preguntes de cuál de estos tipos de objeto es. También, cada que veas una operación (por ejemplo, una suma), es importante preguntarte si es una suma de escalares, vectores o matrices.

Muchas de las buenas propiedades de las operaciones de suma y producto en el campo $F$ también se cumplen para estas definiciones de suma y producto escalar de vectores y matrices.

Teorema. Sean $A,B,C$ matrices en $M_{m,n}(F)$ y $\alpha,\beta,\gamma$ escalares en $F$. Entonces la suma de matrices:

  • Es asociativa: $(A+B)+C = A+(B+C)$
  • Es conmutativa: $A+B=B+A$
  • Tiene neutro: $A+O_{m,n}=A=O_{m,n}+A$
  • Tiene inversos: $A+(-A)=O_{m,n}=(-A)+A$

Además,

  • La suma de escalares y el producto escalar se distribuyen: $(\alpha+\beta)A=\alpha A + \beta A$
  • La suma de matrices y el producto escalar se distribuyen: $\alpha(A+B)=\alpha A + \alpha B$
  • El producto escalar es homogéneo: $\alpha(\beta A) = (\alpha \beta) A$
  • El $1$ es neutral para el producto escalar: $1A = A$

Un teorema análogo se vale al cambiar matrices por vectores. La demostración de este teorema se sigue directamente de las propiedades del campo $F$. La notación de entradas nos ayuda mucha a escribir una demostración sin tener que escribir demasiadas entradas una por una. Veamos, como ejemplo, la demostración de la primera propiedad.

Demostración. Tomemos matrices $A=[a_{ij}]$, $B=[b_{ij}]$ y $C=[c_{ij}]$ en $M_{m,n}(F)$. Para mostrar que $$(A+B)+C=A+(B+C),$$ tenemos que mostrar que la entrada $(i,j)$ del lado izquierdo es igual a la entrada $(i,j)$ del lado derecho para cada $i=1,\ldots,m$ y $j=1,\ldots,n$.

Por definición de suma, $A+B=[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]$. Por ello, y de nuevo por definicón de suma, $$(A+B)+C=[(a_{ij}+b_{ij})+c_{ij}].$$ De manera similar, $$A+(B+C)=[a_{ij}+(b_{ij}+c_{ij})].$$

Pero en $F$ la suma es asociativa, de modo que $$(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij}).$$

Con esto hemos demostrado que $(A+B)+C$ y $A+(B+C)$ son iguales entrada a entrada, y por lo tanto son iguales como matrices.

$\square$

La receta para demostrar el resto de las propiedades es la misma:

  1. Usar la definición de suma o producto por escalares para saber cómo es la entrada $(i,j)$ del lado izquierdo y del lado derecho.
  2. Usar las propiedades del campo $F$ para concluir que las entradas son iguales.
  3. Concluir que las matrices son iguales.

Para practicar las definiciones y esta técnica, la demostración del resto de las propiedades queda como tarea moral. A partir de ahora usaremos todas estas propiedades frecuentemente, así que es importante que las tengas en cuenta.

Base canónica de vectores y matrices

Cuando estamos trabajando en $F^n$, al vector $e_i$ tal que su $i$-ésima entrada es $1$ y el resto son $0$ lo llamamos el $i$-ésimo vector de la base canónica. Al conjunto de vectores $\{e_1,\ldots,e_n\}$ le llamamos la base canónica de $F^n$.

De manera similar, cuando estamos trabajando en $M_{m,n}(F)$, para cada $i=1,\ldots,m$ y $j=1,\ldots,n$, la matriz $E_{ij}$ tal que su entrada $(i,j)$ es $1$ y todas las otras entradas son cero se le conoce como la matriz $(i,j)$ de la base canónica. Al conjunto de todas estas matrices $E_{ij}$ le llamamos la base canónica de $M_{m,n}(F)$.

Ejemplo 1. El vector $e_2$ de $F^3$ es $(0,1,0)$. Ten cuidado, pues este es distinto al vector $e_2$ de $F^5$, que es $(0,1,0,0,0)$.

La matriz $E_{12}$ de $M_{2,3}(\mathbb{R})$ es $$\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

$\triangle$

Más adelante veremos el concepto de base en general, cuando hablemos de espacios vectoriales. Por el momento, la intuición para álgebra lineal es que una base es un conjunto que nos ayuda a generar elementos que nos interesan mediante sumas y productos escalares. Los siguientes resultados dan una intuición inicial de este fenómeno.

Teorema. Todo vector $X$ en $F^n$ se puede escribir de manera única de la forma $$X=x_1e_1+x_2e_2+\ldots+x_ne_n,$$ en donde $x_1,\ldots,x_n$ son escalares en $F$ y $\{e_1,\ldots,e_n\}$ es la base canónica.

Demostración. Si $X$ es un vector en $F^n$, entonces es de la forma $X=(x_1,x_2,\ldots,x_n)$. Afirmamos que las coordenadas de $X$ son los $x_i$ buscados.

En efecto, tomemos una $i=1,\ldots,n$. Como $e_i$ tiene $1$ en la $i$-ésima entrada y $0$ en el resto, entonces $x_ie_i$ es el vector con $x_i$ en la $i$-ésima entrada y $0$ en el resto. De esta forma, sumando entrada a entrada, tenemos

\begin{align*}
x_1e_1+x_2e_2+\ldots+x_ne_n&=\begin{pmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} 0\\ 0 \\ 0 \\ \vdots \\ x_n \end{pmatrix}\\
&=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X.
\end{align*}

Esto muestra la existencia.

Para demostrar la unicidad, un argumento análogo muestra que si tenemos otros escalares $y_1,\ldots,y_n$ que cumplan, entonces:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X=y_1e_1+\ldots+y_ne_n=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix},$$

de modo que $x_i=y_i$ para todo $i=1,\ldots,n$.

$\square$

Tenemos un resultado análogo para matrices.

Teorema. Toda matriz $A$ en $M_{m,n}(F)$ se puede escribir de manera única de la forma $$A=\sum_{i=1}^m \sum_{j=1}^n x_{ij} E_{ij},$$ en donde para $i=1,\ldots,m$ y $j=1,\ldots,n$, se tiene que $x_{ij}$ son escalares en $F$ y $E_{ij}$ son las matrices de la base canónica.

La demostración es muy similar a la del teorema anterior y como práctica queda como tarea moral.

Ejemplo 2. La matriz $$A=\begin{pmatrix} 2 & 0\\ 0 & -1 \\ 3 & 5 \end{pmatrix}$$ en $M_{3,2}(\mathbb{C})$ se expresa de manera única en términos de la base canónica como $$A=2E_{11}-1E_{22}+3E_{31}+5E_{32}.$$

$\square$

Más adelante…

En esta entrada dimos una breve introducción al álgebra lineal. Ya definimos la suma y el producto escalar para vectores y matrices. En la siguiente entrada hablaremos de otro producto que sucede en álgebra lineal: la de una matriz en $M_{m,n}(F)$ por un vector en $F^n$. Veremos que esta multiplicación nos permite pensar a una matriz $A$ como una función $\varphi_A:F^n\to F^m$ con ciertas propiedades especiales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Explica por qué no puedes sumar la matriz $I_5$ con la matriz $O_4$.
  • Muestra que la suma de dos matrices diagonales es diagonal. Haz lo mismo para matrices triangulares superiores y para matrices triangulares inferiores.
  • Termina de demostrar el teorema de propiedades de las operaciones de suma y producto escalar.
  • Explica por qué si una matriz es simultáneamente triangular superior y triangular inferior, entonces es diagonal.
  • Expresa a la siguiente matriz como combinación lineal de matrices de la base canónica:
    $$\begin{pmatrix}
    2 & \frac{1}{2} & 0 & 1\\
    3 & -3 & 3 & -3\\
    7 & -8 & -1 & 0
    \end{pmatrix}.$$
  • Demuestra el teorema de representación de matrices en términos de la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM».

Álgebra Lineal I: Problemas de vectores, matrices y matrices como transformaciones lineales

Por Julio Sampietro

Introducción

Esta entrada consiste de puros problemas resueltos. Mediante la solución de estos problemas se puede poner en práctica los conceptos vistos anteriormente. En específico, aquí repasamos los conceptos de suma y producto escalar que vimos al inicio, así como la idea de la entrada anterior de relacionar a matrices con transformaciones lineales.

Problemas resueltos

Problema 1. Escribe de manera explicita la matriz $A=[a_{ij}]\in M_{2,3}(\mathbb{R})$ tal que

\begin{align*}
a_{ij}=\begin{cases} 1 & \text{si } i+j \text{ es par}\\ 0 & \text{si } i+j\text{ es impar}\end{cases}
\end{align*}

Solución. Tomemos como ejemplo a la entrada $a_{11}$. Como $1+1=2$ y $2$ es par, entonces la entrada $a_{11}$ será igual a $1$. De manera similar, obtenemos que $a_{12}=0$ pues $1+2=3$, que es un número impar. Siguiendo de este modo, obtenemos que
\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\
0 & 1& 0 \end{pmatrix}.
\end{align*}

$\triangle$

Problema 2. Para cada par de matrices $(A,B)$, explica cuáles de las operaciones $A+2B$ y $A-B$ tienen sentido, y cuando tengan sentido, haz el cálculo.

  1. \begin{align*}
    A= \begin{pmatrix} 1 & 1& 0\\
    0& 1 & 1\\
    1 & 0 & 1 \end{pmatrix} \hspace{5mm} \text{y}\hspace{5mm} B=\begin{pmatrix} 1 &2 &3\\
    7 & 8 & 9\\
    4 & 5 & 6
    \end{pmatrix}.
    \end{align*}
  2. \begin{align*}
    A=\begin{pmatrix} 192450916\\1\\0 \\1\\2\end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm} B= \begin{pmatrix} -1\\ 0 \\ 199\\ 2020\\ 0\\ 3\end{pmatrix}.
    \end{align*}
  3. \begin{align*}
    A= \begin{pmatrix} 1 & 1 & 2\\
    3 & 5 & 8 \end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm}B= \begin{pmatrix} 1&-1 & 1\\ 2 & 4 & 8 \end{pmatrix}.
    \end{align*}

Solución:

  1. Dado que ambas matrices tienen el mismo tamaño, podemos calcular ambas operaciones. Tenemos que hacer las operaciones entrada a entrada. Así, la primer entrada de $A+2B$ será $1+2\cdot 1 = 3$. Haciendo lo mismo para cada entrada, obtenemos que
    \begin{align*}
    A+2B= \begin{pmatrix}
    3 & 5 & 6\\
    14 & 17 & 19\\
    9 & 10 & 13
    \end{pmatrix}
    \end{align*}
    De manera similar, obtenemos que \begin{align*}A-B=\begin{pmatrix} 0 &-1 & -3 \\ -7 & -7 & -8\\ -3 & -5 &-5\end{pmatrix}.\end{align*}
  2. En este caso las operaciones no tienen sentido, pues una matriz tiene 5 renglones y la otra 6.
  3. Observamos que ambas matrices tienen el mismo tamaño, por lo que sí podemos calcular ambas operaciones: \begin{align*}
    A+2B= \begin{pmatrix}
    3 & -1 & 4\\ 7 & 13 & 24
    \end{pmatrix} \hspace{5mm} \text{y} \hspace{5mm} A-B=\begin{pmatrix} 0 &2 & 1 \\ 1 & 1 & 0 \end{pmatrix}.\end{align*}

$\triangle$

Problema 3.

  • a) Considera la función $f: \mathbb{R}^2\to \mathbb{R}^2$ dada por
    \begin{align*}
    f(x,y)=(x^2,y^2).
    \end{align*}
    ¿Es $f$ una transformación lineal?
  • b) Responde la misma pregunta reemplazando $\mathbb{R}$ por $\mathbb{F}_2$.

Solución.

  • a) No, $f$ no es lineal. Vamos a ver un ejemplo en el cual no «abre sumas». Por un lado, tenemos por definición que $f(2,0)=(4,0)$. Por otro lado, tenemos que $(2,0)=(1,0)+(1,0)$ y que $f(1,0)+f(1,0)= (2,0)$. Es decir
    \begin{align*}
    f( (1,0)+(1,0) ) \neq f(1,0)+f(1,0).
    \end{align*}
  • b) Si cambiamos el dominio por $\mathbb{F}_2$ entonces $f$ sí es lineal. Lo podemos verificar:
    \begin{align*}
    f(x+y,z+w)&= \left((x+y)^2, (z+w)^2\right)\\
    &= \left( x^2+y^2+2xy, z^2+w^2+2wz\right)\\
    &=\left(x^2+y^2, z^2+w^2\right)\\
    &= \left(x^2,z^2\right)+\left(y^2,w^2\right)\\
    &= f(x,z)+f(y,w).
    \end{align*}
    En estas igualdades estamos usando que $\mathbb{F}_2$ es el campo con dos elementos, en donde se cumple que $2=1+1=0$, por lo cual $2xy=0=2wz$.
    Por otro lado, si $\alpha\in \mathbb{F}_2$ es un escalar, entonces
    \begin{align*}
    f(\alpha\cdot(x,y))&= f(\alpha x, \alpha y)\\
    &= (\alpha^2 x^2, \alpha^2 y^2)\\
    &= \alpha^2 \cdot (x^2,y^2)\\
    &= \alpha \cdot f(x,y).
    \end{align*}
    De nuevo estamos usando las propiedades del campo $\mathbb{F}_2$ en la última igualdad. Como $\mathbb{F}_2$ es el campo con $2$ elementos, los valores de $\alpha, x,y $ sólo pueden ser $0$ o $1$. Como $0^2=0$ y $1^2=1$, tenemos la igualdad. Concluimos que $f$ es lineal.
  • b)’ Otra manera de resolver el inciso b) es observar que en $\mathbb{F}_2$, $x^2=x$ para todo $x$ (esto lo usamos con $\alpha, x, y$ en la prueba pasada). Luego la función $f$ coincide con la función identidad, y es más fácil verificar que ésta es lineal.

$\triangle$

Problema 4. Da un ejemplo de un mapeo $f:\mathbb{R}^2\to \mathbb{R}$ que no sea lineal, pero que cumpla

\begin{align*}
f(av)= af(v)
\end{align*}

para cualesquiera $v\in \mathbb{R}^2$ y $a\in \mathbb{R}$.

Solución. Proponemos

\begin{align*}
f(x,y)= \begin{cases} x & \text{si } y=0\\
y & \text{si } y\neq 0
\end{cases}.
\end{align*}

Verifiquemos que $f$ cumple la compatibilidad con escalares. Primero, si $a=0$ es claro que

\begin{align*}
f(av) &= f(0,0)\\
&= 0\\
&= 0 \cdot f(v)\\
&= a\cdot f(v).
\end{align*}

Entonces si $a=0$ se cumple la condición. Ahora supongamos que $a\neq 0$, tenemos dos subcasos que verificar:

  • Si $v=(x,y)$ con $y\neq 0$, entonces $av= (ax,ay)$ y $ay\neq 0$ (pues el producto de reales no nulos es no nulo), por lo que
    \begin{align*}
    f(av)&= f(ax,ay)\\
    &= ay\\
    &= a\cdot f(x,y)=a\cdot f(v).
    \end{align*}
  • Si $v=(x,0)$ entonces $av= (ax,0)$ y así
    \begin{align*}
    f(av)&= f(ax,0)\\
    &= ax\\
    &= a\cdot f(x,0)=a\cdot f(v).
    \end{align*}

Así verificamos que $f$ cumple con la condición buscada. Para ver que $f$ no es lineal, observamos que

  • $f(1,0)=1$
  • $f(0,1)=1$
  • $f(1,1)=1$

Y así tenemos

\begin{align*}
f(0,1)+f(1,0)&= 2\\
&\neq 1\\
&= f(1,1)\\
&=f((1,0)+(0,1))
\end{align*}

Es decir, existen $u$ y $v$ vectores tales que $f(u+v)\neq f(u)+f(v)$, por lo que $f$ no es lineal.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices como transformaciones lineales

Por Julio Sampietro

Introducción

En la entrada pasada introdujimos el concepto de vector en $F^n$ y el concepto de matriz en $M_{m,n}(F)$. También definimos las operaciones básicas de suma y producto escalar. En esta entrada exploraremos la relación que existe entre estos. Más precisamente, veremos cómo una matriz define una función que manda vectores en vectores, y cómo algunas de estas funciones (que resultarán ser las transformaciones lineales) nos dan una matriz. Más adelante hablaremos de espacios vectoriales en general y de transformaciones lineales entre ellos. Pero es muy importante entender estos conceptos primero en una situación concreta.

Procederemos construyendo primero la transformación asociada a una matriz. Luego, verificaremos algunas propiedades de la construcción realizada. Finalmente, veremos que hay una biyección entre matrices y transformaciones lineales.

Construir una transformación a partir de una matriz

Comencemos con un campo $F$ y una matriz $A\in M_{m,n}(F)$ con entradas $a_{ij}$, es decir

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
& \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
\end{align*}

A un vector $X=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in F^n$ le podemos asociar un nuevo vector que denotaremos (de manera sugestiva) $AX\in F^m$ (observa el cambio de superíndice) y definimos como $$AX= \begin{pmatrix} a_{11}x_1+a_{12}x_2 +\dots+ a_{1n} x_n \\ a_{21} x_1 +a_{22} x_2 +\dots + a_{2n} x_2 \\ \vdots \\ a_{m1}x_1 +a_{m2} x_2 + \dots +a_{mn}x_n \end{pmatrix}.$$

Así, obtenemos una función de $F^n$ a $ F^m$ que manda a cada vector $X$ de $F^n$ en el vector $AX$ de $F^m$.

Ejemplo. A la matriz $$A=\begin{pmatrix} 1 & 0 & 1 &0 \\ 1 & 2 &3 &4 \\ 0 & 0 & 0 & 1 \end{pmatrix}\in M_{3,4}(\mathbb{R})$$ le asociamos entonces la función $f: \mathbb{R}^4\to \mathbb{R}^3$ definida por $$f\left( \begin{pmatrix} x \\ y \\z \\ w \end{pmatrix} \right) = A\cdot \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+ z\\ x+2y+3z+4w\\ w \end{pmatrix}.$$

$\triangle$

Observación. Si denotamos por $e_1, \dots, e_n$ a la base canónica de $F^n$ y $A\in M_{m,n}(F)$ tiene entradas $a_{ij}$ entonces

\begin{align*}
Ae_i&=\begin{pmatrix} a_{11}\cdot 0+\dots + a_{1i} \cdot 1+\dots +a_{1n}\cdot 0\\ a_{21}\cdot 0+\dots + a_{2i} \cdot 1+\dots + a_{2n}\cdot 0\\ \vdots \\ a_{n1}\cdot 0 +\dots + a_{ni} \cdot 1+ \dots + a_{nn}\cdot 0 \end{pmatrix}\\
&= \begin{pmatrix} a_{1i}\\ a_{2i}\\ \vdots \\ a_{mi} \end{pmatrix}=C_i.\end{align*}

Dónde, recordamos, $C_i$ es la $i$-ésima columna de $A$. Más generalmente, si $X=\begin{pmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{pmatrix}\in F^n$ es cualquier vector, entonces $$AX= x_1 C_1+ \dots +x_n C_n.$$

Las sutilezas de esta asignación matriz-transformación se resumen en el siguiente resultado:

Teorema: Para cualesquiera matrices $A,B\in M_{m,n} (F)$, cualesquiera vectores $X,Y\in F^n$ cualesquiera escalares $\alpha, \beta \in F$ se cumple:

  1. $A(\alpha X +\beta Y)=\alpha AX+\beta AY$
  2. $(\alpha A+ \beta B)X= \alpha A X +\beta B X$
  3. Si $AX=BX$ para toda $X\in F^n$, entonces $A=B$.

Demostración: Escribimos $A=[a_{ij}], B=[b_{ij}]$ y $X=\begin{pmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{pmatrix}$ y $Y=\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$. Así $\alpha A+ \beta B= [\alpha a_{ij}+\beta b_{ij}]$ y $\alpha X+ \beta Y= \begin{pmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 +\beta y_2\\ \vdots \\ \alpha x_n +\beta y_n \end{pmatrix} $

  1. Por definición, la $i$-ésima coordenada de $A(\alpha X+ \beta Y)$ es $$\sum_{j=1}^{n} a_{ij}(\alpha x_j+\beta y_j)= \alpha \sum_{j=1}^n a_{ij} x_j+ \beta \sum_{j=1}^{n} a_{ij} y_j.$$ Aquí estamos las propiedades distributivas en $F$. El lado derecho de la ecuación corresponde a la $i$-ésima coordenada de $\alpha AX+\beta AY$, lo que prueba el resultado.
  2. El argumento es esencialmente el mismo, el cálculo esta vez se reduce a la igualdad $$ \sum_{j=1}^{n} \left(\alpha a_{ij}+\beta b_{ij}\right) x_j = \alpha \sum_{j=1}^{n} a_{ij} x_j +\beta \sum_{j=1}^n b_{ij} x_j.$$ Esta sabemos es verdadera por las propiedades distributivas en $F$.
  3. Por hipótesis, tenemos $A e_i = B e_i$ dónde $e_i$ denota el $i$-ésimo elemento de la base canónica de $F^n$. Por la observación anterior, esto implica que la $i$-ésima columna de $A$ es igual a la $i$-ésima columna de $B$, para todo $i$. Luego $A$ y $B$ son iguales.

$\square$

Observa que en las demostraciones (1) y (2) anteriores estamos usando las propiedades del campo $F$ para poder distribuir la suma y producto. A grandes rasgos, lo importante que estamos haciendo es ver que, gracias a que todo sucede entrada a entrada, entonces la distributividad también sucede para matrices y vectores.

La asignación que a cada matriz le asocia una función

La última condición del teorema nos dice que la asignación que manda a cada matriz $A$ a su función $\varphi_A=X\mapsto AX$ (en símbolos, la asignación $A\mapsto \varphi_A$) es inyectiva: si a dos matrices le asociamos la misma función, es porque eran la misma matriz para empezar. Esta asignación tiene como dominio el conjunto de matrices $M_{m,n} (F)$ y como codominio el conjunto de funciones $\varphi: F^n \to F^m$ que (por las parte (1) del último teorema) cumplen $$\varphi(\alpha X +\beta Y)= \alpha \varphi(X)+\beta \varphi(Y)$$ para cualesquiera $\alpha,\beta \in F$ y $X,Y\in F^n$.

A una función (o bien «transformación») $\varphi: F^n \to F^m$ que cumple esta última condición se le llama lineal. Observamos que cualquier transformación lineal satisface $\varphi(0)=0$, ya que si en la condición ponemos $\alpha=\beta=0$ tenemos que $$\varphi(0)=\varphi(0\cdot X+ 0 \cdot Y)= 0\cdot \varphi(X)+0\cdot \varphi(Y)=0.$$ En otras áreas de las matemáticas el término «lineal» denota otro tipo de transformaciones, por ejemplo las de la forma $\psi(X)=aX+b$, que nosotros llamaremos afines. Más que «función lineal» usaremos el término transformación lineal.

El siguiente teorema nos dice que la asignación $A\mapsto \varphi_A$ discutida arriba no es sólo inyectiva, si no también suprayectiva. Es decir, cualquier transformación lineal $\varphi: F^n\to F^m$ es la función asociada de alguna matriz $A\in M_{m,n}(F)$.

Teorema: Sea $\varphi: F^n\to F^m$ una transformación lineal. Existe una única matriz $A\in M_{m,n} (F)$ tal que $\varphi(X)=AX$ para toda $X\in F^n$.

Demostración: La unicidad fue establecida en el último inciso del teorema anterior, basta con verificar existencia. Sea $\varphi: F^n\to F^m$ lineal, y sea $e_1, \dots, e_n$ la base canónica para $F^n$. Construimos la matriz $A$ tal que la $i$-ésima columna $C_i$ es el vector $\varphi(e_i)\in F^m$. Así, por una observación previa, tenemos que $Ae_i= C_i = \varphi(e_i)$ para cualquier $1\leq i \leq n$.

Si $X=\begin{bmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{bmatrix} \in F^n$ es cualquier vector, entonces $X=x_1 e_1 +x_2 e_2 +\dots + x_n e_n$. Como $\varphi$ es lineal, entonces

\begin{align*}
\varphi(X)&=\varphi(x_1 e_1 +x_2 e_2 + \dots + x_n e_n)\\&= x_1 \varphi(e_1)+x_2 \varphi(e_2)+\dots + x_n \varphi(e_n)\\&= x_1 C_1+ x_2 C_2 +\dots + x_n C_n= AX.
\end{align*}

La última igualdad es de nuevo una consecuencia de la observación que hicimos. Luego $\varphi(X)=AX$ para toda $X\in F^n$ y queda así probado el teorema.

$\square$

Tenemos entonces una biyección entre matrices en $M_{m,n}(F)$ y transformaciones lineales $\varphi: F^n\to F^m$. En símbolos $$M_{m,n}(F) \leftrightarrow \lbrace \varphi: F^n \to F^m \mid \varphi \text{ es lineal }\rbrace.$$

Ejemplo. Ya vimos cómo obtener la transformación lineal asociada a una matriz, ahora queremos hacer el proceso inverso. Por ejemplo, si tenemos el mapeo $f: \mathbb{R}^4 \to \mathbb{R}^3$ dado por $$f: (x,y,z,w) \mapsto (x+y-z, 3z-w, z+2y),$$ entonces ¿cuál es la matriz $A$ tal que $f(X)=AX$?

De acuerdo con nuestra demostración del teorema, las columnas de $A$ corresponden a las imágenes $f(e_i)$. Hacemos entonces el cálculo directo:

  • $f(e_1)= f(1,0,0,0)=(1,0,0)$
  • $f(e_2)=f(0,1,0,0)=(1,0,2)$
  • $f(e_3)= f(0,0,1,0)= (-1, 3,1)$
  • $f(e_4)= f(0,0,0,1)=(0,-1,0)$

Así $$A=\begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 &3 & -1 \\ 0 & 2 & 1 & 0 \end{pmatrix}$$ En realidad, pudimos habernos saltado el cálculo y solo fijarnos en los coeficientes de cada coordenada: La primer coordenada de $f(x,y,z,w)$ no es más que $x+y-z= 1\cdot x+ 1\cdot y +(-1)\cdot z +0\cdot w$, acomodando estos coeficientes $[1\ 1 \ -1 \ 0]$ en las columnas correspondientes nos da el primer renglón de $A$. De manera análoga, con la segunda coordenada recuperamos el segundo renglón y con la tercer coordenada el tercero, y así recuperamos $A$.

$\triangle$

Más adelante…

La conclusión principal de esta entrada es que para entender transformaciones lineales basta con entender las matrices con entradas en el campo. Este fenómeno será muy recurrente en el álgebra lineal, y muchos problemas de transformaciones lineales se traducen en problemas de matrices y vice-versa. ¡A veces la traducción es tan inmediata que incluso se omite!

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra la matriz de la transformación lineal que manda al vector $(x,y,z)$ de $\mathbb{R}^3$ al vector $(x+y+z,x-y+z, x + 3y, 2y-z, 8x+z)$ de $\mathbb{R}^5$.
  • Considera la matriz $A=\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \\ -2 & 2 & -2\end{pmatrix}$. Si la pensamos como transformación lineal, ¿de dónde a dónde va? ¿cómo se escribe de manera explícita $AX$ en términos de las coordenadas del vector $X$ al que se le aplica?
  • Sea $A$ la matriz del punto anterior. Sean $X=(1,2,3)$ y $Y=(3,-1,4)$. Encuentra $AX$ y $AY$. Realiza la suma $AX+AY$. Luego, por separado, realiza primero la suma $X+Y$ y usando esto encuentra el valor de $A(X+Y)$. Verifica en en efecto ambos procesos te dan el mismo resultado.
  • Explica por qué no es posible encontrar una matriz que represente a la función que manda al vector $(x,y,z,w)$ de $\mathbb{R}^4$ al vector $(x+y+z+w, xy+yz+zw+wx)$ de $\mathbb{R}^2$.
  • ¿Cuál es la matriz que representa a la transformación lineal que manda al vector $(x_1,x_2,\ldots,x_n)$ de $F^n$ al vector $(x_2,x_3,\ldots,x_n,x_1)$, también de $F^n$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de sistemas de ecuaciones e inversas de matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada resolveremos problemas relacionados con el uso del método de reducción gaussiana para resolver sistemas de ecuaciones y encontrar inversas de matrices.

Problemas resueltos

Problema 1. Sea $A$ una matriz de tamaño $m\times n$ y sean $b$ y $c$ dos vectores en $\mathbb{R}^{m}$ tales que $AX=b$ tiene una única solución y el sistema $AX=c$ no tiene solución. Explica por qué tiene que ser cierto que $m>n$.

Solución. Dado que el sistema $AX=b$ es consistente, usando el teorema de existencia y unicidad podemos concluir que

  1. $\left(A’\vert b’\right)$ no tiene pivotes en la última columna,
  2. $A’$ tiene pivotes en todas sus columnas.

Sin embargo, sabemos que el sistema $AX=c$ no tiene solución. Otra vez por el teorema de existencia y unicidad, esto nos implica que $\left(A’\vert c’\right)$ tiene un pivote en la última columna. Sin embargo, ya sabíamos que $A’$ tiene pivotes en todas sus columnas, pero aún así hay espacio en $\left(A’\vert c’\right)$ para un pivote más, es decir, nos sobra espacio hasta abajo por lo que necesariamente tenemos al menos un renglón más que el número de columnas. Es decir $m\geq n+1$, y por lo tanto $m>n$.

$\triangle$

Problema 2. Determina si existen reales $w$, $x$, $y$ y $z$ tales que las matrices $$
\begin{pmatrix} x & 2\\ y & 1 \end{pmatrix}$$ y $$\begin{pmatrix} 5 & -2 \\ z & w \end{pmatrix}$$ sean inversas la una de la otra.

Solución. En una entrada anterior mostramos que para que dos matrices cuadradas $A$ y $B$ del mismo tamaño sean inversas, basta con mostrar que $AB=I$. De esta forma, haciendo el producto tenemos que el enunciado es equivalente a

\begin{align*}
\begin{pmatrix} 5x+2z & -2x+2w \\ 5y+z & -2y+w \end{pmatrix}
=\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}.
\end{align*}

Es decir, tenemos un sistema lineal

\begin{align*}
\begin{cases}
5x+2z&=1\\
-2x+2w&=0\\
5y+z&=0\\
-2y+w&=1.
\end{cases}
\end{align*}

Este es un sistema lineal de la forma $AX=b$, donde $$A=\begin{pmatrix} 5 & 0 & 2 & 0 \\ -2 & 0 & 0 & 2 \\ 0 & 5 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}$$ y $$b=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Para determinar si tiene solución, aplicamos reducción gaussiana a la matriz $(A|b)$. En los siguientes pasos estamos aplicando una o más operaciones elementales.

\begin{align*}
&\begin{pmatrix}
5 & 0 & 2 & 0 & 1 \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to &\begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix} \\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix} \\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{10} \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{4}{5} \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{5}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\end{align*}

Ya encontramos la forma escalonada reducida $(A’|b’)$ de $(A|b)$. La última columna de $(A’|b’)$ tiene un pivote (el de la última fila). De esta forma, el sistema de ecuaciones no tiene solución.

$\triangle$

En la práctica, se pueden usar herramientas tecnológicas para para resolver algunos problemas numéricos concretos. Sin embargo, es importante tener un sólido conocimiento teórico para saber cómo aprovecharlas.

Problema 3. Determina si las siguientes matrices son invertibles. En caso de serlo, encuentra la inversa. \begin{align*}
A&=\begin{pmatrix} -1 & 1 & 3 \\ 0 & 1 & 5 \\ 7 & 3 & 2 \end{pmatrix}\\
B&=\begin{pmatrix}1 & 5 & -1 & 2 \\ -1 & 3 & 1 & 2 \\ 3 & 4 & 1 & -2 \\ -15 & 9 & -1 & 22 \end{pmatrix}.
\end{align*}

Solución. Usando la calculadora de forma escalonada reducida de eMathHelp, obtenemos que la forma escalonada reducida de $A$ y $B$ son, respectivamente

\begin{align*}
A_{red}&=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\\
B_{red}&=\begin{pmatrix}1 & 0 & 0 & -\frac{9}{8}\\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{5}{8} \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\end{align*}

Por uno de nuestros teoremas de caracterización, para que una matriz cuadrada sea invertible debe de suceder que su forma escalonada reducida sea la identidad. Esto nos dice que $A$ sí es invertible, pero $B$ no.

Para encontrar la inversa de $A$, consideramos la matriz extendida $(A|I_3)$, y a ella le aplicamos reducción gaussiana. Usamos de nuevo la calculadora de eMathHelp para obtener

\begin{align*}
(A_{red}|X)=
\begin{pmatrix}
1 & 0 & 0 & -\frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\
0 & 1 & 0 & \frac{35}{27} & – \frac{23}{27} & \frac{5}{27} \\
0 & 0 & 1 & -\frac{7}{27} & \frac{10}{27} & – \frac{1}{27}
\end{pmatrix}.
\end{align*}

De aquí obtenemos que la inversa de $A$ es \begin{align*}A^{-1}=\begin{pmatrix} -\frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\ \frac{35}{27} & – \frac{23}{27} & \frac{5}{27} \\ -\frac{7}{27} & \frac{10}{27} & – \frac{1}{27}\end{pmatrix}.\end{align*}

$\triangle$

Finalmente, hay algunos problemas en los que no es posible aplicar herramientas digitales, o por lo menos no es directo cómo hacerlo. Esto sucede, por ejemplo, cuando en un problema las dimensiones o entradas de una matriz son variables.

Problema 4. Sea $a$ un número real. Determina la inversa de la siguiente matriz en $M_{n}(\mathbb{R})$: $$A=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ a & 1 & 0 & \cdots & 0 & 0 \\ a^2 & a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ a^{n-2} & a^{n-3} & a^{n-4} & \cdots & 1 & 0 \\
a^{n-1} & a^{n-2} & a^{n-3} & \cdots & a & 1 \end{pmatrix}.$$

Solución. Recordemos que para obtener la inversa de una matriz cuadrada $A$, si es que existe, se puede aplicar a la matriz identidad las mismas operaciones elementales que se le apliquen a $A$ para llevarla a forma escalonada reducida.

¿Qué operaciones necesitamos hacer para llevar a $A$ a su forma escalonada reducida? La esquina $(1,1)$ ya es un pivote, y con transvecciones de factores $-a, -a^2,\ldots, -a^{n-1}$ podemos hacer $0$ al resto de las entradas en la columna $1$.

Tras esto, la entrada $(2,2)$ es ahora pivote de la segunda fila, y con transvecciones de factores $-a,-a^2,\ldots, -a^{n-2}$ podemos hacer $0$ al resto de las entradas en la columna $2$. Siguiendo este procedimiento, llevamos a $A$ a su forma escalonada reducida. Esto puede demostrar formalmente usando inducción.

Ahora veamos qué sucede si aplicamos estas mismas operaciones a la matriz identidad. Si aplicamos las mismas operaciones que arreglan la primer columna de $A$, pero a la matriz identidad, obtenemos

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ -a^2 & 0 & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ -a^{n-2} & 0 & 0 & \cdots & 1 & 0 \\
-a^{n-1} & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Si ahora aplicamos las operaciones que arreglan la segunda columna de $A$, obtenemos

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & -a^{n-3} & 0 & \cdots & 1 & 0 \\
0 & -a^{n-2} & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Continuando de esta manera, en cada columna sólo nos quedará un $1$ y un $-a$. Esto puede probarse formalmente de manera inductiva. Al final, obtenemos la matriz

$$B=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & -a & 1 \end{pmatrix},$$

en donde la diagonal principal consiste de puros unos, y la diagonal debajo de ella consiste de puras entradas $-a$.

Hay dos formas de proceder para dar una demostración formal que esta matriz encontrada es la inversa de $A$. La primera es completar las demostraciones inductivas que mencionamos. La segunda es tomar lo que hicimos arriba como una exploración del problema y ahora realizar de manera explícita el producto $AB$ o el producto $BA$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»