Ecuaciones Diferenciales I: Método de eliminación de variables

Por Omar González Franco

En las matemáticas no entiendes las cosas. Te acostumbras a ellas.
– John Von Neumann

Introducción

Estamos listos para comenzar a desarrollar los distintos métodos de resolución de sistemas lineales de primer orden.

En esta entrada desarrollaremos un método relativamente sencillo, pero muy limitado, ya que en general se utiliza cuando sólo tenemos un sistema lineal de dos ecuaciones diferenciales. Este método se conoce como método de eliminación de variables y, como su nombre lo indica, lo que se intenta hacer es eliminar las variables dependientes de $t$ hasta quedarnos con sólo una, esto produce que el resultado sea una sola ecuación diferencial de orden superior (la ecuación correspondiente a la única variable dependiente que nos queda), la cual es posible resolver aplicando alguno de los métodos vistos en la unidad anterior, la solución de dicha ecuación diferencial servirá para obtener el resto de funciones solución del sistema lineal.

Es importante mencionar que para que este método sea práctico y sencillo se requiere que los coeficientes de las ecuaciones que conforman al sistema lineal sean constantes y como el problema se reduce a resolver una ecuación de orden superior es conveniente usar este método sólo cuando tenemos dos ecuaciones diferenciales en el sistema, ya que esto involucrará resolver una ecuación diferencial de segundo orden con coeficientes constantes.

Desarrollemos el método de manera general.

Método de eliminación de variables

Los sistemas de ecuaciones diferenciales que estamos estudiando son de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + \cdots + a_{1n}(t)y_{n} + g_{1}(t) \\
y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + \cdots + a_{2n}(t)y_{n} + g_{2}(t) \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}(t)y_{1} + a_{n2}(t)y_{2} + \cdots + a_{nn}(t)y_{n} + g_{n}(t) \label{1} \tag{1}
\end{align*}

Este método lo desarrollaremos para un sistema lineal de dos ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas. De manera general desarrollemos el caso no homogéneo, el caso homogéneo será un caso particular.

Consideremos el siguiente sistema de ecuaciones diferenciales en su forma normal.

$$\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + g_{1}(t) \\
y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + g_{2}(t)
\end{align*} \label{2} \tag{2}$$

Debido a que se trata de un sistema pequeño regresemos a nuestra notación usual de derivada y sean $x$ y $y$ las variables dependientes de la variable independiente $t$. Así mismo, usemos una distinta notación para los coeficientes $a_{i, j}$, $i, j \in \{1, 2\}$, de tal manera que el sistema lineal (\ref{2}) lo podamos escribir de la siguiente forma.

$$\begin{align*}
\dfrac{dx}{dt} &= ax + by + g_{1}(t) \\
\dfrac{dy}{dt} &= cx + dy + g_{2}(t)
\end{align*}\label{3} \tag{3}$$

Con $a$, $b$, $c$ y $d$ constantes. El método que desarrollaremos es para sistema de la forma (\ref{3}).

De la primer ecuación del sistema despejamos a la variable $y$.

$$y = \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \label{4} \tag{4}$$

Sustituyamos en la segunda ecuación.

$$\dfrac{d}{dt} \left[ \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \right] = cx + d \left[ \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \right] + g_{2}$$

Derivemos en el lado izquierdo y operemos en el lado derecho de la ecuación.

\begin{align*}
\dfrac{1}{b} \left[ \dfrac{d^{2}x}{dt^{2}} -a \dfrac{dx}{dt} -\dfrac{dg_{1}}{dt} \right] &= cx + \dfrac{1}{b} \left( d \dfrac{dx}{dt} -adx -dg_{1} \right) + g_{2} \\
\dfrac{d^{2}x}{dt^{2}} -a \dfrac{dx}{dt} -\dfrac{dg_{1}}{dt} &= bcx + d \dfrac{dx}{dt} -adx -dg_{1} + bg_{2}
\end{align*}

Reordenando los términos se tiene lo siguiente.

$$\dfrac{d^{2}x}{dt^{2}} -(a + d) \dfrac{dx}{dt} + (ad -bc) x = \dfrac{dg_{1}}{dt} -dg_{1} + bg_{2} \label{5} \tag{5}$$

Si definimos

$$p = -(a + d), \hspace{1cm} q = (ad -bc) \hspace{1cm} y \hspace{1cm} g(t) = \dfrac{dg_{1}}{dt} -dg_{1} + bg_{2}$$

entonces el resultado (\ref{5}) se puede escribir como

$$\dfrac{d^{2}x}{dt^{2}} + p \dfrac{dx}{dt} + q x = g(t) \label{6} \tag{6}$$

Con $p$ y $q$ constantes. En esta forma es claro que tenemos una ecuación diferencial lineal de segundo orden con coeficientes constantes, basta resolver la ecuación usando los métodos desarrollados en la unidad anterior para obtener la función $x(t)$. Una vez obtenida la solución de (\ref{6}) sustituimos en el despeje inicial que hicimos para $y(t)$ (\ref{4}) y resolvemos, con ello estaremos obteniendo la solución del sistema lineal (\ref{3}).

Caso homogéneo

El caso homogéneo es un caso particular del desarrollo anterior, pues el sistema a resolver es

$$\begin{align*}
\dfrac{dx}{dt} &= ax + by \\
\dfrac{dy}{dt} &= cx + dy
\end{align*}\label{7} \tag{7}$$

El desarrollo es exactamente el mismo considerando que $g_{1}(t) = 0$ y $g_{2}(t) = 0$.

Despejando a $y$ de la primer ecuación, obtenemos

$$y = \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax \right) \label{8} \tag{8}$$

Sustituyendo en la segunda ecuación y siguiendo el mismo procedimiento obtendremos que la ecuación diferencial de segundo orden homogénea para $x$ es

$$\dfrac{d^{2}x}{dt^{2}} -(a + d) \dfrac{dx}{dt} + (ad -bc)x = 0 \label{9} \tag{9}$$

Si nuevamente definimos

$$p = -(a + d), \hspace{1cm} y \hspace{1cm} q = (ad -bc)$$

entonces podemos escribir

$$\dfrac{d^{2}x}{dt^{2}} + p \dfrac{dx}{dt} + qx = 0 \label{10} \tag{10}$$

Resolvamos un par de ejemplos, comencemos con un sistema lineal homogéneo.

Ejemplo: Resolver el siguiente sistema lineal homogéneo.

\begin{align*}
\dfrac{dx}{dt} &= 2x -y \\
\dfrac{dy}{dt} &= 5x -2y
\end{align*}

Solución: Comencemos por despejar a la variable $y$ de la primer ecuación.

$$y = 2x -\dfrac{dx}{dt}$$

Sustituimos en la segunda ecuación.

$$\dfrac{d}{dt} \left( 2x -\dfrac{dx}{dt} \right) = 5x -2 \left( 2x -\dfrac{dx}{dt} \right)$$

Operando, se tiene

\begin{align*}
2 \dfrac{dx}{dt} -\dfrac{d^{2}x}{dt^{2}} &= 5x -4x + 2 \dfrac{dx}{dt} \\
-\dfrac{d^{2}x}{dt^{2}} &= x
\end{align*}

La ecuación de segundo orden a resolver es

$$\dfrac{d^{2}x}{dt^{2}} + x = 0$$

Por supuesto esta ecuación se puede obtener sustituyendo los coeficientes directamente en la ecuación (\ref{9}).

Resolvamos la ecuación. La ecuación auxiliar es

$$k^{2} + 1 = 0$$

cuyas raíces son $k_{1} = i$ y $k_{2} = -i$.

Recordemos que la forma de la solución para raíces complejas $k_{1} = \alpha + i \beta$ y $k_{2} = \alpha -i \beta$ es

$$x(t) =e^{\alpha t}(c_{1} \cos(\beta t) + c_{2} \sin(\beta t)) \label{11} \tag{11}$$

En nuestro caso $\alpha =0$ y $\beta = 1$, entonces la solución es

$$x(t) = c_{1} \cos(t) + c_{2} \sin(t)$$

Vemos que

$$\dfrac{dx}{dt} = -c_{1} \sin(t) + c_{2} \cos(t)$$

Sustituimos en el despeje de $y$.

\begin{align*}
y(x) &= 2(c_{1} \cos(t) + c_{2} \sin(t)) -(-c_{1} \sin(t) + c_{2} \cos(t)) \\
&= 2c_{1} \cos(t) + 2c_{2} \sin(t) + c_{1} \sin(t) -c_{2} \cos(t)
\end{align*}

Esta solución la podemos escribir de dos formas.

$$y(x) = c_{1}(2 \cos(t) + \sin(t)) + c_{2}(2 \sin(t) -\cos(t))$$

o bien,

$$y(x) = (2c_{1} -c_{2})\cos(t) + (c_{1} + 2c_{2})\sin(t)$$

Por lo tanto, la solución general del sistema homogéneo es

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = c_{1} \begin{pmatrix}
\cos(t) \\ 2 \cos(t) + \sin(t)
\end{pmatrix} + c_{2} \begin{pmatrix}
\sin(t) \\ 2 \sin(t) -\cos(t)
\end{pmatrix}$$

o bien,

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ 2c_{1} -c_{2}
\end{pmatrix} \cos(t) + \begin{pmatrix}
c_{2} \\ c_{1} + 2c_{2}
\end{pmatrix} \sin(t)$$

$\square$

Ahora resolvamos un sistema no homogéneo como ejemplo.

Ejemplo: Resolver el siguiente sistema lineal no homogéneo.

\begin{align*}
\dfrac{dx}{dt} &= 4x -y + t + 1 \\
\dfrac{dy}{dt} &= 2x + y + t + 1
\end{align*}

Solución: En este caso no homogéneo se tiene que

$$g_{1}(t) = t + 1 = g_{2}(t)$$

De la primer ecuación despejamos a $y$.

$$y = 4x + t + 1 -\dfrac{dx}{dt}$$

Sustituimos en la segunda ecuación.

$$\dfrac{d}{dt} \left( 4x + t + 1 -\dfrac{dx}{dt} \right) = 2x + \left( 4x + t + 1 -\dfrac{dx}{dt} \right) + t + 1$$

En el lado izquierdo aplicamos la derivada y en el lado izquierdo operamos.

\begin{align*}
4 \dfrac{dx}{dt} + \dfrac{d}{dt}(t + 1) -\dfrac{d^{2}x}{dt^{2}} &= 6x -\dfrac{dx}{dt} + 2t + 2 \\
4 \dfrac{dx}{dt} + 1 -\dfrac{d^{2}x}{dt^{2}} &= 6x -\dfrac{dx}{dt} + 2t + 2
\end{align*}

Reordenando los términos, se tiene

\begin{align*}
5 \dfrac{dx}{dt} -\dfrac{d^{2}x}{dt^{2}} &= 6x + 2t + 1 \\
-\dfrac{d^{2}x}{dt^{2}} + 5 \dfrac{dx}{dt} -6x &= 2t + 1 \\
\end{align*}

La ecuación diferencial de segundo orden no homogénea a resolver es

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = -2t -1$$

Para obtener la función $x(t)$ primero resolveremos el caso homogéneo y posteriormente aplicaremos el método de coeficientes indeterminados para resolver el caso no homogéneo. Recordemos que la solución general será la superposición de ambos resultados.

$$x(t) = x_{c}(t) + x_{p}(t) \label{12} \tag{12}$$

Para el caso homogéneo la ecuación a resolver es

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = 0$$

La ecuación auxiliar es

$$k^{2} -5k + 6 = 0$$

Resolviendo para $k$ se obtiene que $k_{1} = 2$ y $k_{2} = 3$. Como las raíces son reales y distintas, la forma de la solución es

$$x_{c}(t) = c_{1}e^{k_{1}t} + c_{2}e^{k_{2}t} \label{13} \tag{13}$$

Por lo tanto, la solución complementaria es

$$x_{c}(t) = c_{1}e^{2t} + c_{2}e^{3t}$$

Ahora resolvamos la ecuación no homogénea.

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = -2t -1$$

En este caso la función $g$ es

$$g(x) = -2t -1$$

la cual corresponde a un polinomio de grado $1$, entonces proponemos que la solución particular tiene, de igual manera, la forma de un polinomio de grado $1$, esto es

$$x_{p}(t) = At + B$$

Con $A$ y $B$ constantes por determinar. La primera y segunda derivada están dadas como

$$\dfrac{dx_{p}}{dt} = A \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}x}{dt^{2}} = 0$$

Sustituimos en la ecuación diferencial.

$$0 -5A + 6(At + B) = -2t -1$$

Reordenando, se tiene

$$6At + 6B -5A = -2t -1$$

Para que se cumpla la igualdad es necesario que ocurra lo siguiente.

\begin{align*}
6A &= -2 \\
6B -5A &= -1
\end{align*}

De la primer igualdad se obtiene que

$$A = -\dfrac{1}{3}$$

Sustituyendo este resultado en la segunda igualdad se obtiene que

$$B = \dfrac{1}{9}$$

Por lo tanto, la solución particular es

$$x_{p}(t) = -\dfrac{1}{3}t + \dfrac{1}{9}$$

Entonces concluimos que la solución general de la ecuación diferencial de segundo orden para $x$ es

$$x(t) = c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9}$$

Sustituimos este resultado en la ecuación de $y$.

$$y = 4 \left( c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9} \right) + t + 1 -\dfrac{d}{dt} \left( c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9} \right)$$

Operando, se tiene

$$y = 4c_{1}e^{2t} + 4c_{2}e^{3t} -\dfrac{4}{3}t + \dfrac{4}{9} + t + 1 -2c_{1}e^{2t} -3c_{2}e^{3t} + \dfrac{1}{3}$$

De donde se obtiene finalmente que la solución $y(t)$ es

$$y(x) = 2c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{16}{9}$$

Por lo tanto, la solución general del sistema lineal no homogéneo es

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} -\begin{pmatrix}
\dfrac{1}{3} \\ \dfrac{1}{3}
\end{pmatrix}t + \begin{pmatrix}
\dfrac{1}{9} \\ \dfrac{16}{9}
\end{pmatrix}$$

$\square$

Hemos concluido con esta entrada. Este método resulta sencillo y práctico para resolver sistemas lineales de este tipo, sin embargo está limitado a sistemas pequeños y realmente estamos interesados en resolver sistemas mucho más complejos.

En las siguientes entradas desarrollaremos otros métodos más generales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\begin{align*}
    \dfrac{dx}{dt} &= x + 2y \\
    \dfrac{dy}{dt} &= 4x + 3y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= 2x -y \\
    \dfrac{dy}{dt} &= 3x -2y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= x -4y \\
    \dfrac{dy}{dt} &= -x + 2y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} = 2x -3y \\
    \dfrac{dy}{dt} = 3x + 2y
    \end{align*}$
  1. Resolver los siguientes sistemas lineales no homogéneos.
  • $\begin{align*}
    \dfrac{dx}{dt} &= 2x -y + 3t \\
    \dfrac{dy}{dt} &= 3x -2y + 2t + 4
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= x + 2y + e^{t} \\
    \dfrac{dy}{dt} &= 3x -2y + 3e^{2t} + 2
    \end{align*}$

Más adelante…

En esta entrada presentamos un método sencillo para resolver sistemas lineales compuestos por dos ecuaciones diferenciales lineales de primer orden con coeficientes constantes tanto homogéneas como no homogéneas.

En la siguiente entrada comenzaremos a desarrollar otros métodos de resolución a sistemas lineales, sin embargo estos métodos suelen ser tratados desde una perspectiva del álgebra lineal, así que será importante hacer una pequeño repaso de algunos conceptos y teoremas de álgebra lineal. Unos de los conceptos más importantes que utilizaremos es el de valores y vectores propios.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Calculo Diferencial e Integral II: Series de Taylor y de Maclaurin

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series de potencias, en esta sección veremos las series de Taylor y de Maclaurin que tienen como base las series de potencias.

Series de Taylor y Maclaurin

Definición. Sea $f$ una función tal que $f^{1}(a)…f^{(k)}(a)$ existen, es decir, la k-esima derivada de la función $f$ existe. Si $p(x)=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+…+a_{n}(x-a)^{n}$ entonces decimos que $p(x)$ es el polinomio de Taylor de grado $n$ alrededor de $a$ para $f$, denotado como:

$$P^{(k)}_{n,a}=\sum_{n=0}^{\infty}\frac{f^{(k)}(a)}{n!}(x-a)^{n}$$

En el caso cuando $a=0$ la serie es conocida como serie de Maclaurin:

$$P^{(k)}_{n}=\sum_{n=0}^{\infty}\frac{f^{(k)}(0)}{n!}(x)^{n}$$

Vemos que estas series aproximan una función $f(x)$ por medio de polinomios, es decir, para $x=a$ los polinomios de Taylor o series de Taylor por medio de polinomios proporcionan un ajuste a $f(x)$.

Veamos unos ejemplos.

Ejemplos

  • Calcule el polinomio de Taylor de grado $2n+1$ alrededor de $0$ para la función $\sin(x)$.

Calculando las derivadas, se tiene que:

$\sin'(x)=\cos(x), \sin^{\prime \prime}(x)=-\sin(x), \sin^{\prime \prime \prime}(x)=-\cos(x), \sin^{\prime \prime \prime \prime}(x)=\sin(x)$.

Observación: Vemos que las derivadas de orden impar involucra el término de coseno y las de orden par a los términos de seno, por lo que $\sin^{2n+1}(0)=(-1)^{n}$

Asi tenemos que:

$$p_{2n+1, 0} \space \sin(x)=\frac{\sin(0)(x-0)}{0!}+\frac{\sin'(0)(x-0)}{1!}+\frac{\sin^{\prime \prime}(0)(x-0)^{2}}{2!}+\frac{\sin^{\prime \prime \prime}(0)(x-0)^{3}}{3!}+…$$

$$…+\frac{\sin^{2n+1}(0)(x-0)^{2n+1}}{(2n+1)!}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+….+\frac{(-1)^{n}x^{2n+1}}{(2n+1)!}$$

  • Calcule el polinomio de Taylor de grado $2n+1$ alrededor de $0$ para $\cos(x)$

Tenemos que $\cos'(x)=-\sin(x), \cos^{\prime \prime}(x)=-\cos(x), \cos’^{\prime \prime \prime}x)=\sin(x), \cos^{\prime \prime \prime \prime}(x)=\cos(x)$

Observación: Vemos que las derivadas de orden impar involucra el término de seno y las de orden par al coseno, por lo que $\cos^{2n}(0)=(-1)^{n}$.

Así tenemos que:

$$p_{2n, 0} \space \cos(x)=\frac{\cos(0)(x-0)}{0!}+\frac{\cos'(0)(x-0)}{1!}+\frac{\cos^{\prime \prime}(0)(x-0)^{2}}{2!}+\frac{\cos^{\prime \prime \prime}(0)(x-0)^{3}}{3!}+…$$

$$…+\frac{\cos^{2n}(0)(x-0)^{2n}}{(2n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4}+….+\frac{(-1)^{n}x^{2n}}{(2n)!}$$

Observamos que los polinomios de Taylor se aproxima a una función $f(x)$ mediante sus derivadas hasta el orden enésimo. Veamos el siguiente teorema.

Residuo

Teorema de Taylor:

Supongamos que $f'(x), f^{\prime \prime}(x),…., f^{n+1}(x)$ existen, es decir, la $n+1$ derivadas existen, definimos en el intervalo cerrado $[a, x]$ al residuo o el resto $R_{n, a, f}(x)$ que está definida por $f(x)=f(a)+f'(a)(x-a)+….+\frac{f^{(n)}(a)}{n!}+R_{n,a}(x)$ entonces el residuo se puede definir de 3 maneras distintas:

  • Forma de cauchy:

$$R_{n,a,f}(x)=\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}(x-a)$$

Para algún $t$ en $[a, x]$.

  • Forma de Lagrange:

$$R_{n,a, f}(x)=\frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}$$

Para algún $t$ en $[a, x]$ y $f^{n+1}$ es integrable en $[a, x]$.

  • Forma integral:

$$R_{n,a, f}(x)=\int_{a}^{x}\frac{f^{(n+1)}(t)}{n!}(t)(x-t)^{n}dt$$

Demostración:

Demostremos la forma de Cauchy, sea $S:[a, x]\rightarrow \mathbb{R}$ definida como:

$$S(t)=f(x)-(f(t)+f'(t)(x-t)+….+\frac{f^{n}(t)(x-t)}{n!}) \tag{3}$$

La función $S$ es continua en $[a, x]$ y diferenciable en $(a ,x)$, por el teorema del valor medio $\exists \space t^{*}\epsilon \space (a, x)$ tal que:

$$\frac{S(x)-S(a)}{x-a}=S'(t^{*}) \tag{1}$$

Sea $S(x)$ definida anteriormente como:

$$S(x)=f(x)-(f(x)+f'(x)(x-x)+….+\frac{f^{n}(x)(x-x)^{n}}{n!})=0$$

y $S(a)$:

$$S(a)=f(x)-(f(a)+f'(a)(x-a)+….+\frac{f^{n}(a)(x-a)^{n}}{n!}=f(x)-p_{n, a, f}(x))=R_{n, a, f}(x)$$

Entonces por $(1)$:

$$S'(t^{*})=\frac{0-R_{n, a, f}(x)}{x-a}$$

Con $t^{*} \epsilon (a, x)$, por otro lado, derivamos la relación $(3)$ con respecto a $t$ como:

$$ S'(t)= 0-(f'(t)+f'(t)(-1)+f^{\prime \prime}(t)(x-t)+\frac{f^{\prime \prime}(t)^{2}}{2!}(x-t)(-1))+ \frac{f^{\prime \prime}(t)^{2}}{2!}(x-t)^{2}….)$$

$$=-\frac{f^{(n+1)}(t^{})(x-t)^{n}}{n!} \space \forall \space t \space \epsilon (0,x) \tag{2}$$

$$\Rightarrow S'(t^{*})=\frac{0-R_{n, a, f}(x)}{x-a} =\frac{-S(a)}{x-a}$$

Pero:

$$ S'(t)=-\frac{f^{(n+1)}(t^{})(x-t)^{n}}{n!}$$

$$\Rightarrow -S(a)=-\frac{f^{(n+1)}(t)(x-t)^{n}}{n!}(x-a)$$

$$\therefore R_{n, a, f(x)}=\frac{f^{(n+1)}(t)(x-t)^{n}}{n!}(x-a)$$

$\square$

Ahora demostremos la forma de Lagrange.

Apliquemos el teorema de valor medio de Cauchy a las funciones $S:[a, x] \rightarrow \mathbb{R}$ y $g(x)=(x-t)^{n+1}$, observemos que $g$ es continua en el intervalo $[a, x]$ y diferenciable en $(a, x), \space \exists \space t^{*} \space\epsilon \space (a, b)$ tal que:

$$\frac{ S'(t^{*})}{ g'(x) }=\frac{ S(x)-S(a) }{ (g(x)-g(a)) }$$

$$ \Rightarrow (g(x)-g(a))S'(t^{*})=(S(x)-S(a))g'(x)$$

$$\Rightarrow (g(x)-g(a))S'(t^{*})=(S(x)-S(a))(n+1)(x-t)^{n}$$

Donde:

$$g(x)=(x-x)^{n+1}=0$$

$$ \Rightarrow (0-g(a))S'(t^{*})=(0-S(a))(n+1)(x-t)^{n}$$

Utilizando la relación $(2)$, la evaluación correspondiente de $g(a)$ y $S(a)$, se tiene que:

$$\Rightarrow -(x-a)^{n+1}\frac{f^{(n+1)}(t^{})(x-t)^{n}}{n!}=R_{n, a, f(x)}(n+1)(x-t)^{n}(-1)$$

$$\therefore R_{n, a, f(x)}=\frac{f^{(n+1)}(t^{})(x-a)^{n+1}}{(n+1)!}$$

$\square$

Demostremos la última forma que es la forma de la integral. Tenemos que:

$$\int_{a}^{x}S'(t)dt=S(x)-S(a)=0-R_{n, a, f(x)}$$

Donde $s(x)=0$ y nuevamente utilizamos la relación $(2)$, por tanto:

$$\therefore R_{n, a, f(x)} = \int_{x}^{a}\frac{f^{n+1}(x)}{n!}(x-t)^{n}dt$$

$\square$

Una de las aplicaciones de las series de Taylor y Maclaurin es en la resolución de la ecuación diferencial para un péndulo no lineal, que viene dada como:

$$\ddot{\theta}=-\frac{g}{l}\sin(\theta )$$

Esta ecuación diferencial no se resuelve tan fácil y no hay solución que se pueda escribir en términos de funciones elementales, se puede solucionar esta ecuación para valores pequeños de $\theta$ con $\theta <<1$, aproximamos la función $\sin(\theta)$ en términos de una serie de Taylor:

$$\sin(\theta) \approx \theta-\frac{\theta^{3}}{3}+\frac{\theta^{5}}{5}+….+\frac{(-1)^{n}\theta^{2n+1}}{(2n+1)!}$$

Como queremos solamente valores pequeños de $\theta$, entonces:

$$\sin(\theta) \approx \theta$$

Así la ecuación diferencial se reescribe como:

$$\ddot{\theta}=-\frac{g}{l}\theta $$

Y la solución a esta ecuación diferencial está dada como:

$$\theta(t)=\theta_{0}\cos\left ( \sqrt{\frac{g}{l}}t \right )$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Aproxime las siguientes funciones con serie de Taylor.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $f(x)=e^{x}$ al grado $n$ y alrededor de $0$.
  2. $f(x)=log(x)$ al grado $n$ y alrededor de $1$.
  3. Escriba la serie de Maclaurin de la función $f(x)=log(x+1)$ hasta grado $n$.
  4. $f(x)=x^{5}$ al grado $n$ alrededor de $1$ y calcule su residuo.
  5. $f(x)=\sqrt{x}$ al grado $n=3$ alrededor de $0$ y calcule su residuo.

Más adelante…

En esta sección vimos la definición de las series de Taylor y las series de Maclaurin que es un caso particular de las series de Taylor, también vimos los residuos en el caso de las series de Taylor. Con esta entrada acabamos con la unidad 7, en la siguiente entrada veremos las series de Fourier con el cual comenzaremos la unidad 8.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series de potencia

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos el criterio de la convergencia absoluta para las series alternantes, en esta sección veremos las series de potencia, que, como bien dice el nombre, son series polinómicas, veamos la siguiente definición.

Series de potencia

Definición. Una serie de potencia es la serie de la siguiente forma:

$$\sum_{n=0}^{\infty}c_{n}x^{n}=c_{0}+c_{1}x+c_{2}x^{2}+…..$$

A la serie anterior, se le dice que es una serie de potencias alrededor de $x=0$, mientras que, la series de potencias alrededor de $x=a$ se le conoce como series de potencias centradas en $a$, y es de la siguiente forma:

$$\sum_{n=0}^{\infty}c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+…..$$

Donde $c_{n}$ son coeficientes en ambos casos.

Un ejemplo de estas series son las series geométricas que ya hemos visto, al hacer los n-coeficientes $c_{n}$ igual a 1:

$$\sum_{n=0}^{\infty}x^{n}=1+x+x^{2}+x^{3}…..$$

Veamos el siguiente teorema de convergencia llamado el teorema de Abel para las series de potencias.

Teorema de Abel:

Sea la siguiente serie: $\sum_{n=0}^{\infty}c_{n}(x-a)^{n}$, entonces se cumple una y solo una de las siguientes afirmaciones:

$a)$ La serie converge solo cuando $x=a$.

$b)$ Existe un número positivo $R$ tal que la serie converge $|x-a|<R$ y diverge si $|x-a|>R$.

$c)$ La serie converge para toda $x$.

La demostración de este teorema es extensa, por lo que sería más conveniente analizarla que demostrarla.

Al número $R$ se le llama el radio de convergencia de la serie, notemos que la serie converge en el intervalo $(a-R, \space a+R)$, si $R=0$ tenemos el primer caso $a)$, es decir, el intervalo consta de un solo punto $x=a$, si $R \to \infty$ entonces tenemos el caso $c)$, es decir, el intervalo de convergencia en este caso es $(-\infty, \infty)$, en el intervalo $b)$ se tiene 4 casos posibles:

$$(a-R, \space a+R)$$

$$[a-R, \space a+R]$$

$$(a-R, \space a+R]$$

$$[a-R, \space a+R)$$

Es decir, la serie puede diverger en ambos extremos o solo un extremo, al igual que la convergencia de la serie.

El teorema de Cauchy-Hadamard nos permite conocer la convergencia de la serie de potencias:

Teorema de Cauchy-Hadamard:

Consideremos la serie de potencias $\sum_{n=0}^{\infty}c_{n}(x-a)^{n}$ y consideremos a $A$ como:

$$A=\lim_{n \to \infty}\sqrt[n]{|c_{n}|}$$

Entonces la serie de potencias converge si el radio de convergencia $R$ se define como:

$$R=\frac{1}{A}$$

De este teorema podemos concluir lo siguiente, dependiendo del valor de $A$ podemos decir que si:

  • $$A=0 \Rightarrow R \to \infty$$
  • $$A \to \infty \Rightarrow R=0$$
  • $$0<A<\infty \Rightarrow R=\frac{1}{A}$$

Demostración:

Sin perdida de generalidad podemos suponer que $a=0$. Supongamos que $|x|<R$, entonces:

$$|c_{n}x^{n}|\leq |c_{n}|R^{n} \tag{1}$$

Ahora, como:

$$\lim_{n \to \infty}\sqrt[n]{|c_{n}|}=A= \frac{1}{R}$$

Para casi todos los índices de $n$, ya que:

$$ \sqrt[n]{|c_{n}|} \leq \frac{1}{R} \Rightarrow |c_{n}| \leq R^{-n}$$

Por lo que en $(1)$:

$$|c_{n}x^{n}|\leq |c_{n}|R^{n} \leq R^{n} R^{-n}=1 $$

Lo cual vemos que es una serie absolutamente convergente, por el criterio de la absoluta convergencia:

$$ \sum_{n=0}^{\infty}c_{n}(x-a)^{n} \space converge $$

Para el caso cuando $|x|>R $, de la misma manera anterior obtendremos que:

$$ |c_{n}x^{n}| \geq 1 $$

Lo que significa que no puede convergir a cero, lo que significa que la serie diverge.

$$ \sum_{n=0}^{\infty}c_{n}(x-a)^{n} \space diverge $$

$\square$

El teorema nos dice que podemos usar el criterio de la raíz, también podemos usar el criterio de la razón.

Veamos unos ejemplos.

Ejemplos

  • $$\sum_{n=0}^{\infty}(n!)x^{n}$$

En esta serie notamos que $c_{n}=n!$, entonces calculamos al valor $A$ como sigue:

$$A=\lim_{n \to \infty}\frac{|a_{n}+1|}{|a_{n}|}=\lim_{n \to \infty}\frac{|(n+1)!|}{|n!|}=\lim_{n \to \infty}(n+1) \rightarrow \infty \Rightarrow R=0$$

Por lo que el radio de convergencia es $R=0$ y la serie solo converge cuando $x=0$ según el teorema de Abel.

  • $$\sum_{n=0}^{\infty}\frac{n^{2n+1}}{2^{n^{2}+1}}x^{n}$$

Vemos en este caso que $c_{n}=\frac{n^{2n+1}}{2^{n^{2}+1}}$, utilizamos el criterio de la raíz como sigue:

$$A=\lim_{n \to \infty}\sqrt[n]{|c_{n}|}=\lim_{n \to \infty}\sqrt[n]{\frac{n^{2n+1}}{2^{n^{2}+1}}}=\lim_{n \to \infty}\frac{n^{2+1/n}}{2^{n+1/n}}=0 \Rightarrow R\rightarrow \infty$$

Por lo que el intervalo de convergencia es: $R \space \epsilon \space (-\infty, \infty)$ y la serie es convergente para cualquier valor de $x$.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Diga si la siguientes series convergen o diverge.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\sum_{n=0}^{\infty}\frac{n^{3}}{4^{n}}x^{n}$$
  2. $$\sum_{n=1}^{\infty}\frac{x^{n}}{n}$$
  3. $$\sum_{n=1}^{\infty}\frac{(2x)^{n}}{n^{2}}$$
  4. $$\sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^{n}}{n}$$
  5. $$\sum_{n=1}^{\infty}\frac{(-3)^{n}x^{n}}{\sqrt{n+1}}$$

Más adelante…

En esta sección vimos las series de potencias y dos teoremas importantes para la convergencia de estas series que son el teorema de Abel y el teorema de Cauchy-Hadamard, en la siguiente sección veremos los polinomios de Taylor y de Mclaurin que están relacionados con estas series de potencias.

Entradas relacionadas

Cálculo Diferencial e Integral II: Criterio de la convergencia absoluta

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series alternantes y el criterio de Leibniz que es un teorema de convergencia para estas series alternantes, en esta sección veremos el criterio de la convergencia absoluta, para esto definiremos lo que es una serie absolutamente convergente en la siguiente definición.

Definición. La serie $\sum_{n=1}^{\infty }a_{n}$ es absolutamente convergente si $\sum_{n=1}^{\infty }|a_{n}|$ es convergente.

Veamos un ejemplo.

Ejemplo

  • $$\sum_{n=1}^{\infty }\frac{(-1)^{n}}{5}$$

Sea la sucesión: $a_{n}=\frac{(-1)^{n}}{n^{5}}$, tomando el valor absoluto de la sucesión obtenemos que:

$$\sum_{n=1}^{\infty }|a_{n}|=\sum_{n=1}^{\infty }\bigg|\frac{(-1)^{n}}{n^{5}}\bigg|=\sum_{n=1}^{\infty }\frac{1}{n^{5}}$$

Sabemos que la sucesión $b_{n}=\frac{1}{n^{5}}$ es positiva, decreciente y continua en el intervalo $[1, \infty]$, por lo que por el criterio de la integral:

$$\int_{1}^{\infty}\frac{1}{x^{5}}dx=-\frac{1}{4x^{4}}\bigg{|}_{1}^{\infty}=0+\frac{1}{4}=\frac{1}{4}$$

Como la integral converge, entonces:

$$\Rightarrow \sum_{n=1}^{\infty }\frac{1}{n^{5}} \space converge $$

$\therefore \sum_{n=1}^{\infty }\frac{(-1)^{n}}{n^{5}}$ La serie es absolutamente convergente.

Ahora veamos cuando una serie se dice que se define como condicionalmente convergente.

Definición: La serie $\sum_{n=1}^{\infty }a_{n}$ se llama condicionalmente convergente si es convergente, pero no es absolutamente convergente.

Esto sucede cuando $\sum_{n=1}^{\infty }|a_{n}|$ es divergente.

Veamos un ejemplo.

Ejemplo

  • $$ \sum_{n=1}^{\infty } \frac{(-1)^{n-1}}{n}$$

Sabemos que la serie por $b_{n}=\frac{1}{n}$ es monótonamente decreciente y que:

$$\lim_{n \to \infty} \frac{1}{n} =0$$

Por el criterio de Leibniz:

$$ \sum_{n=1}^{\infty } \frac{(-1)^{n-1}}{n} \space converge.$$

Por otro lado, tomando el valor absoluto de la serie:

$$ \sum_{n=1}^{\infty } \bigg{|} \frac{(-1)^{n-1}}{n} \bigg{|}= \sum_{n=1}^{\infty } \frac{1}{n}$$

Por P-series como $p=1$ entonces:

$$\sum_{n=1}^{\infty } \frac{1}{n} \space diverge$$

$$\therefore \sum_{n=1}^{\infty } \frac{(-1)^{n-1}}{n} \space es \space condicionalmente \space convergente$$

Veamos el criterio de la absoluta convergencia.

Criterio de la absoluta convergencia

Teorema. (Criterio de la absoluta convergencia)

Si $\sum_{n=1}^{\infty }a_{n}$ es absolutamente convergente $\Rightarrow \sum_{n=1}^{\infty }a_{n}$ es convergente.

Demostración:

Por hipótesis tenemos que $\sum_{n=1}^{\infty }a_{n}$ es absolutamente convergente $\Rightarrow \sum_{n=1}^{\infty }|a_{n}|$ converge.

Sea $\epsilon > 0$, como $\sum_{n=1}^{\infty }|a_{n}|$ converge $\Rightarrow \exists \space k \space \varepsilon \space \mathbb{N} $, tal que:

$$\forall \space n \space \epsilon \space \mathbb{N} \space \Rightarrow \bigg||a_{k+1}|+|a_{k+2}|+…+|a_{k+m}|\bigg|<\epsilon$$

Por la desigualdad del triángulo, se tiene que:

$$|a_{k+1}+a_{k+2}+…+a_{k+m}|\leq \bigg||a_{k+1}|+|a_{k+2}|+…+|a_{k+m}|\bigg|$$

$$\therefore |a_{k+1}+a_{k+2}+…+a_{k+n}|<\epsilon$$

Por el teorema de Cauchy se tiene que:

$$\sum_{n=1}^{\infty }a_{n} \space converge$$

$\square$

Otra manera de ver este teorema es el siguiente:

Si $\sum_{n=1}^{\infty }|a_{n}|$ es convergente, entonces $\Rightarrow \sum_{n=1}^{\infty }a_{n}$ también es convergente.

Ejemplos

  • $$\sum_{n=1}^{\infty}\frac{\cos(n)}{n^{2}}$$

Si aplicamos el valor absoluto, tenemos que:

$$\sum_{n=1}^{\infty}\bigg{|}\frac{\cos(n)}{n^{2}}\bigg{|}=\sum_{n=1}^{\infty}\frac{|\cos(n)|}{n^{2}}$$

Puesto que $|\cos(n)|\leq 1$ para toda $n$, entonces tenemos que:

$$\frac{\cos(n)}{n^{2}}\leq \frac{1}{n^{2}}$$

Sabemos que $\frac{1}{n^{2}}$ es convergente, ya que es una p-serie, por el criterio de comparación:

$$\sum_{n=1}^{\infty}\bigg| \frac{\cos(n)}{n^{2}} \bigg| \space converge$$

Por tanto:

$$\sum_{n=1}^{\infty}\frac{\cos(n)}{n^{2}}$$

Es absolutamente convergente, por el teorema visto anteriormente:

$$\therefore \sum_{n=1}^{\infty}\frac{\cos(n)}{n^{2}} \space converge$$

  • $$\sum_{n=1}^{\infty}(-1)^{n}\frac{1}{n^{2}}$$

Tomando el valor absoluto tenemos que:

$$\sum_{n=1}^{\infty}(-1)^{n}\frac{1}{n^{2}}=\sum_{n=1}^{\infty}|(-1)^{n}\frac{1}{n^{2}}|=\sum_{n=1}^{\infty}\frac{1}{n^{2}}$$

Sabemos que la serie $\sum_{n=1}^{\infty}\frac{1}{n^{2}}$ converge por p-series y, por tanto:

$\sum_{n=1}^{\infty}(-1)^{n}\frac{1}{n^{2}}$ es absolutamente convergente, por lo que:

$$\sum_{n=1}^{\infty}(-1)^{n}\frac{1}{n^{2}} \space converge$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Diga si la siguientes series convergen o divergen.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\sum_{n=1}^{\infty}\frac{\sin(n)}{n^{2}}$$
  2. $$\sum_{n=1}^{\infty}(-1)^{n}\frac{n^{3}}{3^{n}}$$
  3. $$\sum_{n=1}^{\infty}(-1)^{n}\frac{\arctan(n)}{n^{2}}$$
  4. $$\sum_{n=1}^{\infty}(-1)^{n}\frac{(2n)!}{2^{n}n!n}$$
  5. $$\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^{p}}$$

Más adelante…

En esta sección vimos la definición de cuando serie es absolutamente convergente y condicionalmente en el cual $|a_{n}|$ converge o no, además, vimos el criterio de convergencia absoluta que nos dice que si una serie es absolutamente convergente entonces la serie converge, en la siguiente sección veremos otro tipo de series que son las series de potencias.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series alternantes y el criterio de Leibniz

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos unas series especiales llamadas p-series, en esta sección veremos otras series especiales llamadas series alternantes, que, como bien dice su nombre, son series cuyos términos van alternando el valor de su signo.

Series alternantes

Una serie alternante puede tener la forma siguiente:

$$\sum_{n=1}^{\infty}a_{n}=\sum_{n=1}^{\infty}(-1)^{n-1}b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-…..$$

Como vemos, la serie va alternando sus signos para cada $n$.

Existe un teorema de convergencia para estas series alternantes y se llama el teorema de Leibniz, el criterio de Leibniz o el criterio de la serie alternante, enunciado por el siguiente teorema.

Teorema. (Criterio de Leibniz o criterio de la serie alternante)

Si $\left \{ a_{n} \right \}$ es una sucesión monótona decreciente tal que $\lim_{n \to \infty}a_{n}=0$, entonces $\sum_{n=1}^{\infty}(-1)^{n-1}a_{n}$ converge.

Demostración:

Consideramos $\left \{ S_{2n} \right \}$ donde $\left \{ S_{n} \right \}$ son las sumas parciales de $a_{n}$, como $a_{n}$ es una serie alternante entonces:

$$S_{1}=a_{1}$$

$$S_{2}=a_{1}-a_{2}$$

$$S_{3}=a_{1}-a_{2}+a_{3}$$

$$S_{4}=a_{1}-a_{2}+a_{3}-a_{4}, …. ,$$

$$S_{2n}=(a_{1}-a_{2})+(a_{3}-a_{4})+, …., +(a_{2n-1}-a_{2n})$$

Por otro lado:

$$S_{2n+2}=(a_{1}-a_{2})+(a_{3}-a_{4})+, …., +(a_{2n-1}-a_{2n})+(a_{2n+1}-a_{2n+2})$$

Como la sucesión es monótona decreciente:

$$\Rightarrow a_{2n+1}\geq a_{2n+2} \Rightarrow a_{2n+1}-a_{2n+2} \geq 0$$.

Ya que estamos sumando un número positivo entonces:

$$\Rightarrow S_{2n+2} \geq S_{2n}$$

$\Rightarrow \left \{ S_{2n} \right \}$ es decreciente, ahora:

$$S_{2n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}+….$$

$$=a_{1}-(a_{2}-a_{3})-, …., – (a_{2n-2}-a_{2n-1})-a_{2n} \tag{1}$$

Como $a_{n} \geq a_{n+1}$ de la anterior relación $(1)$ vemos que las suma parcial $S_{n}$ es más pequeña, ya que es una serie decreciente, entonces:

$$S_{2n} \leq a_{1} \space \forall \space n$$

Por lo que $a_{1}$ es una cota superior de $\left \{ S_{2n} \right \} \Rightarrow S_{2n}$ converge, por lo que consideremos a $L$ como:

$$\lim_{n\to \infty}S_{2n}=L$$

Observemos que $\forall \space n \space S_{2n+1}=S_{2n}+a_{2n+1}$, y que:

$$\lim_{n\to \infty}a_{n}=0 \Rightarrow \lim_{n\to \infty}a_{2n+1}=0$$

Por hipótesis, por lo que:

$$\Rightarrow \lim_{n\to \infty}S_{2n+1}=\lim_{n\to \infty}(S_{2n}+a_{2n+1})$$

$$=\lim_{n\to \infty}S_{2n}+\lim_{n\to \infty}a_{2n+1}=L+0=L$$

$$\therefore \lim_{n\to \infty}S_{2n+1}=L \space y \space \lim_{n\to \infty}S_{2n}=L \Rightarrow \lim_{n\to \infty}S_{n}=L$$

$$\therefore \sum_{n=1}^{\infty}(-1)^{n+1}a_{n} \space converge$$

$\square$

Ejemplos

Diga si las siguientes series convergen o divergen.

  • $$\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n}$$

Para utilizar el criterio de Leibniz tenemos que ver que sea decreciente, pero claramente la sucesión $\frac{1}{n}$ es decreciente, entonces tomando el límite tenemos que:

$$\lim_{n \to \infty}\frac{1}{n}=0$$

$$\therefore \sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n} \space converge$$

  • $$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{2}+1}$$

Veamos si es decreciente:

Sea $a_{n}= \frac{1}{n^{2}+1}$, Como $n>0$ entonces:

$$n^{2}<(n+1)^{2} \Rightarrow n^{2}+1<(n+1)^{2}+1 \Rightarrow \frac{1}{ (n+1)^{2} } > \frac{1}{ (n+1)^{2}+1 } $$

$$ \therefore a_{n}>a_{n+1} $$

Por tanto, $a_{n}$ es decreciente, sabemos que el límite:

$$ \lim_{n \to \infty}\frac{1}{n^{2}+1}=0 $$

Por el criterio de leibniz:

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{2}+1} \space converge$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Diga si la siguientes series convergen o divergen.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{2n+1}$$
  2. $$\sum_{n=1}^{\infty}(-1)^{n}\frac{3n-1}{2n+1}$$
  3. $$\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{ln(n+4)}$$
  4. $$\sum_{n=1}^{\infty}(-1)^{n}\frac{n}{\sqrt{n^{3}+2}}$$
  5. $$\sum_{n=1}^{\infty}(-1)^{n}\frac{n}{10^{n}}$$

Más adelante…

En esta sección vimos el criterio de Leibniz que se aplica a las series alternantes y que estas series tiene que ser monótonamente decreciente y que su límite cuando $n \to \infty$ sea cero para decir si la serie es convergente o divergente, en la siguiente sección veremos más criterios de convergencia que se pueden aplicar a las series alternantes, estos criterios son el criterio de convergencia absoluta.

Entradas relacionadas