Álgebra Lineal I: Formas bilineales, propiedades, ejemplos y aclaraciones

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hemos platicado de dualidad, ortogonalidad y transformaciones transpuestas. Es importante que repases esas entradas y nos escribas si tienes dudas, pues ahora pasaremos a un tema un poco diferente: formas bilineales y cuadráticas. Estas nociones nos permitirán seguir hablando acerca de la geometría de espacios vectoriales en general.

Para esta parte del curso, nos vamos a enfocar únicamente en espacios vectoriales sobre $\mathbb{R}$. Se pueden definir los conceptos que veremos para espacios vectoriales en otros campos. Sobre todo, es posible definir conceptos análogos en $\mathbb{C}$ y obtener una teoría muy rica. Pero por ahora consideraremos sólo el caso de espacios vectoriales reales.

Aunque hablaremos de formas bilineales en general, una subfamilia muy importante de ellas son los productos interiores, que nos permiten hablar de espacios euclideanos. El producto interior es el paso inicial en una cadena muy profunda de ideas matemáticas:

  • Un producto interior nos permite definir la norma de un vector.
  • Con la noción de norma, podemos definir la distancia entre dos vectores.
  • A partir de un producto interior y su norma podemos mostrar la desigualdad de Cauchy-Schwarz, con la cual podemos definir ángulos entre vectores (por ejemplo, ¡podremos definir el ángulo entre dos polinomios!).
  • De la desigualdad de Cauchy-Schwarz, podemos probar que la noción de norma satisface la desigualdad del triángulo, y que por lo tanto la noción de distancia define una métrica.
  • Aunque no lo veremos en este curso, más adelante verás que una métrica induce una topología, y que con una topología se puede hablar de continuidad.

En resumen, a partir de un producto interior podemos hacer cálculo en espacios vectoriales en general.

Una forma bilineal con la cual probablemente estés familiarizado es el producto punto en $\mathbb{R}^n$, que a dos vectores $(x_1,x_2,\ldots,x_n)$ y $(y_1,y_2,\ldots,y_n)$ los manda al real $$x_1y_1+x_2y_2+\ldots+x_ny_n.$$ Este es un ejemplo de una forma bilineal que es un producto interior. También puede que estés familiarizado con la norma en $\mathbb{R}^n$, que a un vector $(x_1,\ldots,x_n)$ lo manda al real $$\sqrt{x_1^2+x_2^2+\ldots+x_n^2}.$$ Lo que está dentro de la raíz es un ejemplo de una forma cuadrática positiva definida. Incluyendo la raíz, este es un ejemplo de norma en espacios vectoriales.

Hay muchas otras formas bilineales y formas cuadráticas, pero los ejemplos mencionados arriba te pueden ayudar a entender la intuición detrás de algunos de los conceptos que mencionaremos. Para marcar algunas cosas en las que la intuición puede fallar, pondremos algunas «Aclaraciones» a lo largo de esta entrada.

En el futuro, tener una buena noción de la geometría de espacios vectoriales te ayudará a entender mucho mejor los argumentos de cursos de análisis matemático, de variable compleja y de optativas como geometría diferencial. Dentro de este curso, entender bien el concepto de forma bilineal te será de gran utilidad para cuando más adelante hablemos de formas multilineales y determinantes.

Formas bilineales

La definición fundamental para los temas que veremos en estas entradas es la siguiente, así que enunciaremos la definición, veremos varios ejemplos y haremos algunas aclaraciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Una forma bilineal es una función $b:V\times V \to \mathbb{R}$ tal que:

  • Para todo $x$ en $V$, la función $b(x,\cdot):V\to \mathbb{R}$ que manda $v\in V$ a $b(x,v)$ es una forma lineal.
  • Para todo $y$ en $V$, la función $b(\cdot, y):V\to \mathbb{R}$ que manda $v\in V$ a $b(v,y)$ es una forma lineal.

Ejemplo 1. Considera el espacio vectorial de polinomios $\mathbb{R}_3[x]$ y considera la función $$b(p,q)=p(0)q(10)+p(1)q(11).$$ Afirmamos que $b$ es una forma bilineal. En efecto, fijemos un polinomio $p$ y tomemos dos polinomios $q_1$, $q_2$ y un real $r$. Tenemos que
\begin{align*}
b(p,q_1+rq_2)&=p(0)(q_1+rq_2)(10)+p(1)(q_1+rq_2)(11)\\
&= p(0)q_1(10)+p(1)q_1(11) + r ( p(0)q_2(10)+p(1)q_2(11))\\
&= b(p,q_1)+rb(p,q_2),
\end{align*}

De manera similar se puede probar que para $q$ fijo y $p_1$, $p_2$ polinomios y $r$ real tenemos que $$b(p_1+rp_2,q)=b(p_1,q)+rb(p_2,q).$$ Esto muestra que $b$ es una forma bilineal.

$\triangle$

Si $v=0$, entonces por el primer inciso de la definición, $b(x,v)=0$ para toda $x$ y por el segundo $b(v,y)=0$ para toda $y$, en otras palabras:

Proposición. Si $b$ es una forma bilineal en $b$, y alguno de $x$ o $y$ es $0$, entonces $b(x,y)=0$.

De la linealidad de ambas entradas de $b$, se tiene la siguiente proposición.

Proposición. Tomemos $b:V\times V\to \mathbb{R}$ una forma bilineal, vectores $x_1,\ldots,x_n$, $y_1,\ldots,y_m$ y escalares $a_1,\ldots,a_n,c_1,\ldots,c_m$. Tenemos que $$b\left(\sum_{i=1}^n a_ix_i, \sum_{j=1}^m c_j y_j\right)=\sum_{i=1}^n\sum_{j=1}^m a_ic_jb(x_i,y_j).$$

La proposición anterior muestra, en particular, que para definir una forma bilineal en un espacio vectorial $V$ de dimensión finita $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ de $V$ y definir $b(e_i,e_j)$ para toda $1\leq i,j \leq n$.

Hagamos algunas aclaraciones acerca de las formas bilineales.

Aclaración 1. No es lo mismo una forma bilineal en $V$, que una transformación lineal de $V\times V$ a $\mathbb{R}$.

Ejemplo 2. La transformación $b((w,x),(y,z))=w+x+y+z$ sí es una transformación lineal de $\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$, lo cual se puede verificar fácilmente a partir de la definición. Sin embargo, no es una forma bilineal. Una forma de verlo es notando que $$b((0,0),(1,1))=0+0+1+1=2.$$ Aquí una de las entradas es el vector cero, pero el resultado no fue igual a cero.

$\triangle$

Aclaración 2. Puede pasar que ninguna de las entradas de la forma bilineal sea $0$, pero que evaluando en ella sí de $0$.

Ejemplo 3. Consideremos la transformación $b:\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$ tal que $$b((w,x),(y,z))=wy-xz.$$ Verificar que esta es una forma bilineal es sencillo y se deja como tarea moral. Además, se tiene que $b((1,0),(0,1))=0$.

$\triangle$

Más adelante, cuando definamos producto interior, nos van a importar mucho las parejas de vectores $v$, $w$ para las cuales $b(v,w)=0$.

Aclaración 3. Si $b$ es una forma bilineal, no necesariamente es cierto que $b(x,y)=b(y,x)$.

Ejemplo 4. Consideremos la transformación $b:\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$ tal que $$b((w,x),(y,z))=wz-xy.$$ Verificar que esta es una forma bilineal es sencillo y se deja como tarea moral. Notemos que $b((2,1),(2,3))=6-2=4$, mientras que $b((2,3),(2,1))=2-6=-4$.

$\triangle$

Aquellas formas para las que sí sucede que $b(x,y)=b(y,x)$ son importantes y merecen un nombre especial.

Definición. Una forma bilineal $b:V\times V\to \mathbb{R}$ es simétrica si $b(x,y)=b(y,x)$ para todo par de vectores $x,y$ en $V$.

Para definir una forma bilineal $b$ simétrica en un espacio $V$ de dimensión finita $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ y definir $b$ en aquellas parejas $b(e_i,e_j)$ con $1\leq i \leq j \leq n$.

Más ejemplos de formas bilineales

A continuación enunciamos más ejemplos de formas bilineales, sin demostración. Es un buen ejercicio verificar la definición para todas ellas.

Ejemplo 1. Si $a_1, a_2,\ldots, a_n$ son números reales y $V=\mathbb{R}^n$, entonces podemos definir $b:V\times V \to \mathbb{R}$ que manda a $x=(x_1,\ldots,x_n)$ y $y=(y_1,\ldots,y_n)$ a $$b(x,y)=a_1x_1y_1+\ldots+a_nx_ny_n.$$

Este es un ejemplo de una forma bilineal simétrica. Si todos los $a_i$ son iguales a $1$, obtenemos el producto punto o producto interior canónico de $\mathbb{R}^n$.

Ejemplo 2. Tomemos $V$ como el espacio vectorial de matrices $M_n(\mathbb{R})$. La transformación $b:V\times V\to \mathbb{R}$ tal que $b(A,B)=\text{tr}(AB)$ es una forma bilineal. Además, es simétrica, pues la traza cumple la importante propiedad $\text{tr}(AB)=\text{tr}(BA)$, cuya verificación queda como tarea moral.

Ejemplo 3. Tomemos $V$ el conjunto de funciones continuas y de periodo $2\pi$ que van de $\mathbb{R}$ a sí mismo. Es decir, $f:\mathbb{R}\to \mathbb{R}$ está en $V$ si es continua y $f(x)=f(x+2 \pi)$ para todo real $x$. Se puede mostrar que $V$ es un subespacio del espacio de funciones continuas, lo cual es sencillo y se queda como tarea moral. La transformación $b:V\times V \to \mathbb{R}$ tal que $$b(f,g)=\int_{-\pi}^\pi f(x) g(x)\, dx$$ es una forma bilineal.

Ejemplo 4. Consideremos $V=\mathbb{R}[x]$, el espacio vectorial de polinomios con coeficientes reales. Para $P$ y $Q$ polinomios definimos $$b(P,Q)=\sum_{n=1}^\infty \frac{P(n)Q(2n)}{2^n}.$$

La serie de la derecha converge absolutamente, de modo que esta expresión está bien definida. Se tiene que $b$ es una forma bilineal, pero no es simétrica.

Formas cuadráticas

Otra definición fundamental es la siguiente

Definición. Una forma cuadrática es una transformación $q:V\to \mathbb{R}$ que se obtiene tomando una forma bilineal $b:V\times V \to \mathbb{R}$ y definiendo $$q(x)=b(x,x).$$

Aclaración 4. Es posible que la forma bilineal $b$ que define a una forma cuadrática no sea única.

Ejemplo. Consideremos a la forma bilineal de $\mathbb{R}^2$ tal que $$b((x,y),(w,z))=xz-yw.$$ La forma cuadrática dada por $b$ es $$q(x,y)=b((x,y),(x,y))=xy-yx=0.$$ Esta es la misma forma cuadrática que la dada por la forma bilineal $$b'((x,y),(w,z))=yw-xz.$$ Pero $b$ y $b’$ son formas bilineales distintas, pues $b((1,0),(0,1))=1$, mientras que $b'((1,0),(0,1))=-1$.

$\triangle$

La aclaración anterior dice que puede que haya más de una forma bilineal que de una misma forma cuadrática. Sin embargo, resulta que la asignación es única si además pedimos a la forma bilineal ser simétrica. Este es el contenido del siguiente resultado importante.

Teorema (identidad de polarización). Sea $q:V\to \mathbb{R}$ una forma cuadrática. Existe una única forma bilineal simétrica $b:V\times V \to \mathbb{R}$ tal que $q(x)=b(x,x)$ para todo vector $x$. Esta forma bilineal está determinada mediante la identidad de polarización $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.$$

En la siguiente entrada mostraremos el teorema de la identidad de polarización. Por el momento, para tomar más intuición, observa como la identidad se parece mucho a la igualdad $$xy=\frac{(x+y)^2-x^2-y^2}{2}$$ en números reales.

Más adelante…

En esta entrada estudiamos una extensión de la noción de transformaciones lineales que ya habíamos discutido en la unidad anterior. Enunciamos algunos teoremas muy importantes sobre las transformaciones bilineales e hicimos algunos ejemplos de cómo podemos verificar si una transformación es bilineal. La noción de transformación bilineal, nos permitirá abordar un concepto muy importante: el producto interior.

En las siguientes entradas hablaremos del producto interior y cómo éste nos ayuda a definir ángulos y distancias entre vectores de un espacio vectorial.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Completa los detalles de la segunda parte del primer ejemplo.
  • Verifica que en efecto las transformaciones de los ejemplos de las aclaración 2 y 3 son formas bilineales.
  • Muestra que el subconjunto de funciones continuas $\mathbb{R}$ a $\mathbb{R}$ y de cualquier periodo $p$ es un subespacio del espacio vectorial $\mathcal{C}(\mathbb{R})$ de funciones continuas reales.
  • Demuestra que para $A$ y $B$ matrices en $M_{n}(F)$ se tiene que $\text{tr}(AB)=\text{tr}(BA)$.
  • Encuentra una forma cuadrática en el espacio vectorial $\mathbb{R}_3[x]$ que venga de más de una forma bilineal.
  • Muestra que el conjunto de formas bilineales de $V$ es un subespacio del espacio de funciones $V\times V \to \mathbb{R}$. Muestra que el conjunto de formas bilineales simétricas de $V$ es un subespacio del espacio de formas bilineales de $V$.
  • Piensa en cómo la igualdad $$xy=\frac{(x+y)^2-x^2-y^2}{2}$$ de números reales está relacionada con la identidad de polarización para el producto punto en $\mathbb{R}^n$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: La integral

Por Leonardo Ignacio Martínez Sandoval

Introducción

Ya hemos cubierto varios temas de cálculo y resolución de problemas. Comenzamos platicando acerca de continuidad y de dos teoremas importantes para funciones continuas: el teorema del valor intermedio y el teorema del valor extremo. Después, hablamos acerca de derivadas y de dos teoremas importantes para funciones diferenciables: el teorema de Rolle y el teorema del valor medio. Luego, vimos que la diferenciabilidad también nos ayuda a encontrar límites de cocientes y potencias de formas indefinidas mediante la regla de L’Hôpital. En esta entrada y la siguiente hablaremos de la integral y cómo las ideas detrás de su construcción, así como sus propiedades, pueden ayudar a resolver problemas.

Para entender esta sección bien, es importante que conozcas la construcción de la integral de Riemann en una variable, así como sus propiedades principales. También supondremos que conoces las técnicas usuales para resolver integrales. Esto se hace durante el primer año de un curso de cálculo a nivel licenciatura. También puedes revisarlo en la literatura clásica, como el libro de Cálculo de Spivak.

Usar la integral como un área

La integral es por definición un límite de sumas superiores o inferiores. Hay problemas en los que podemos aprovechar esto para entender una suma o una sucesión. A grandes rasgos lo que hacemos es:

  • Interpretar la sucesión o serie como una suma de areas correspondiente a una suma superior o inferior de cierta integral $\int f(x) \,dx$.
  • Usar lo que sabemos de integración para poder decir algo del área dada por $\int f(x)\, dx$
  • Regresar esta información al problema original.

Veamos un ejemplo de esto.

Problema. Calcula el siguiente límite $$\lim_{n\to \infty} \left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2n-1}\right).$$

La cantidad de términos de este límite depende de $n$, así que no podemos hacerlos uno por uno. No hay una forma sencilla de hacer la suma. Tampoco parece que podamos usar la regla de L’Hôpital. Lo que haremos es entender a la expresión dentro del límite de manera geométrica.

Sugerencia pre-solución. Haz una figura con la que puedas relacionar el límite que buscamos con cierta área que puedas expresar en términos de una integral.

Solución. Consideremos la gráfica de la función $f(x)=\frac{1}{x}$ en el intervalo $[n,2n]$ y el área debajo de esta gráfica, que mostramos en verde a continuación.

Integral de 1/x en el intervalo de n a 2n.
Gráfica de $1/x$ en el intervalo $[n,2n]$

Notemos que la suma que aparece en el problemas corresponde a sumar las áreas de los rectángulos de base $1$ y alturas $\frac{1}{n}$, $\frac{1}{n+1}$, $\ldots$, $\frac{1}{2n-1}$, que podemos encontrar en azul en la siguiente figura.

Cota con suma superior
Dar una cota inferior para nuestra expresión.

Así, obtenemos que podemos acotar inferiormente nuestra suma de la siguiente manera:

\begin{align*}
\frac{1}{n}+\ldots+\frac{1}{2n-1} &> \int_n^{2n} \frac{1}{x}\, dx\\
&= (\log x) \Big|_n^{2n} \\
&= \log 2.
\end{align*}

De manera similar, podemos pensar ahora en rectángulos que queden por debajo de la gráfica de la función, y que en total su area es menor que el valor de la integral. Los mostramos a continuación en color rojo:

Cota con suma inferior
Dar una cota superior para nuestra expresión (un poco cambiada)

De aquí, podemos dar la siguiente cota:

\begin{align*}
\frac{1}{n+1}+\ldots+\frac{1}{2n} &< \int_n^{2n} \frac{1}{x}\, dx\\
&= (\log x) \Big|_n^{2n} \\
&= \log 2.
\end{align*}

Si juntamos ambas desigualdades, deducimos que $$\log 2< \frac{1}{n}+\ldots+\frac{1}{2n-1}<\left(\frac{1}{n}-\frac{1}{2n}\right) + \log 2.$$

Ahora sí podemos hacer $n\to \infty$. Como ambos lados de la desigualdad convergen a $\log 2$, tenemos que la sucesión que nos interesa también debe converger a $\log 2$.

$\square$

Traducir a una integral y usar técnicas de integración

Hay varias técnicas que podemos usar para realizar integrales: cambio de variable, integración trigonométrica, integración por partes, integración por fracciones parciales, etc. En algunas ocasiones podemos transformar un problema a una integral, aplicar una de estas técnicas, y luego regresar al contexto original. Veamos un ejemplo de esto.

Problema. Demuestra que para cualquier par de enteros positivos $m$ y $n$ tenemos que $$\sum_{k=0}^n (-1)^k \binom{n}{k}\frac{1}{k+m+1} = \sum_{k=0}^m (-1)^k \binom{m}{k} \frac{1}{k+n+1}.$$

Sugerencia pre-solución. Intenta formular un problema equivalente aprovechando que para cualquier entero no negativo $r$ se tiene que $\frac{1}{r+1}=\int_0^1 t^r \, dt$. Tendrás que usar esto varias veces, usar la fórmula de binomio de Newton y después aprovechar una simetría para hacer un cambio de variable.

Solución. Notemos que $$\frac{1}{k+m+1}=\int_0^1 t^{k+m} \, dt.$$ Substituyendo en la expresión de la izquierda, obtenemos que la suma buscada es $$\sum_{k=0}^n(-1)^k\binom{n}{k}\int_0^1t^{k+m}\, dt.$$ Usando la linealidad de la integral y la fórmula del binomio de Newton tenemos que esta suma es igual a
\begin{align*}
&\int_0^1 \sum_{k=1}^n (-1)^k \binom{n}{k} t^{k+m}\, dt \\
=& \int_0^1 t^m(1-t)^n \, dt.
\end{align*}

Con el cambio de variable $s=1-t$, la integral anterior es igual a $$\int_0^1 s^n(1-s)^m.$$ Pero por un argumento inverso al que hicimos para llegar a la primer integral, esta segunda integral es igual a $$\sum_{k=0}^m (-1)^k\binom{m}{k}\frac{1}{k+n+1}.$$

Esto es justo el lado derecho en la identidad que queríamos.

$\square$

El teorema de Lebesgue

No todas las funciones son integrables con la definición de Riemann (que aquí simplemente llamaremos «ser integrable»), pues puede ser que el límite de las sumas superiores no sea igual al de las sumas inferiores. Un resultado profundo en cálculo es el criterio de Lebesgue, que caracteriza aquellas funciones acotadas que tienen integral de Riemann en un intervalo.

Teorema (criterio de Lebesgue). Una función acotada $f:[a,b]\to \mathbb{R}$ es integrable si y sólo si su conjunto de discontinuidades tiene medida $0$.

El teorema de Lebesgue da una prueba sencilla de que si $f$ y $g$ son integrables, entonces su producto también, lo cual no es fácil de probar a partir de la definición. A continuación esbozamos esta prueba.

Las discontinuidades de $f^2$ están contenidas en las de $f$, de modo que si $f$ es integrable, por el teorema de Lebesgue $f^2$ también. Además, suma y resta de integrables es sencillo ver que es integrable, de modo que $(f+g)^2$ también lo es. Para concluir, notamos que $$fg=\frac{(f+g)^2-f^2-g^2}{2},$$ de modo que $fg$ es integrable.

Veamos un problema que combina varias de las ideas de cálculo que hemos visto.

Problema. Si $f:[a,b]\to \mathbb{R}$ es una función tal que $f+\sin(f)$ es integrable, entonces $f$ también es integrable.

Sugerencia pre-solución. Usa el criterio de Lebesgue. Necesitarás estudiar las discontinuidades con cuidado, para lo cual es útil recordar cómo interactúan las funciones continuas con las sucesiones convergentes.

Solución. Como $f+\sin(f)$ es integrable, entonces es acotada. Así, $f$ también lo es. La función $g(x)=x+\sin(x)$ tiene derivada $1+\cos(x)\geq 0$ y que es $0$ sólo en un conjunto discreto de puntos, de modo que es estrictamente creciente. Además, los límites en $-\infty$ y $\infty$ son $-\infty$ e $\infty$ respectivamente. Por el teorema del valor intermedio, pasa por todos los reales. Así, $g$ es una función biyectiva.

Mostraremos que las discontinuidades de $f$ están contenidas en las de $f+\sin(f)$, o bien, dicho de otra forma, que si $f+\sin(f)$ es continua en $x$, entonces $f$ también. Tomemos una sucesión $\{x_n\}$ que converge a $x$. Como $f+\sin(f)$ es continua en $x$, tenemos que $\{f(x_n)+\sin(f(x_n))\}$ converge a $f(x)+\sin(f(x))=g(f(x))$.

Como $f$ es una función acotada, la sucesión $\{f(x_n)\}$ es acotada, y para ver que converge a un límite, basta ver que toda subsucesión convergente converge al mismo límite. Tomemos una subsucesión convergente digamos, al límite $L$. Tendríamos que $g(L)=g(f(x))$, y como $g$ es biyectiva tendríamos que $L=f(x)$. En otras palabras, toda subsucesión convergente de $\{f(x_n)\}$ converge a $f(x)$. De esta forma, $\{f(x_n)\}$ converge a $f(x)$. Con esto concluimos que $f$ es continua en $x$.

Concluimos que el conjunto de discontinuidades de $f$ está contenido en el de $f+\sin(f)$, el cual tiene medida $0$. De este modo, el de $f$ también tiene medida $0$ y por el criterio de Lebesgue, es integrable.

$\square$

Más problemas

Hay más ejemplos de problemas relacionados con la integral en la Sección 6.8 del libro Problem Solving through Problems de Loren Larson.

Álgebra Superior II: Norma y distancia en los complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Ya definimos a $\mathbb{C}$ y sus operaciones. También definimos y dimos las propiedades de la conjugación compleja. Ahora hablaremos de la norma en los números complejos.

Definición. Dado el número complejo $w=a+bi$, su norma es $\sqrt{a^2+b^2}$. Denotamos a la norma de $w$ por $\Vert w \Vert$.

Ejemplo. La norma del complejo $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ es $$\sqrt{\left(\frac{1}{\sqrt 2}\right)^2+ \left(\frac{1}{\sqrt 2}\right)^2}=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)}=\sqrt{1}=1.$$ La norma del complejo $-3i$ es $$\sqrt{0^2+(-3)^2}=\sqrt{9}=3.$$

$\triangle$

Cuando pensamos a los números complejos como elementos del plano, identificando al complejo $a+bi$ con el punto $(a,b)$, la norma es una forma de medir qué tan alejado está del origen.

A partir de la noción de norma podemos definir la noción de distancia, que dice qué tan lejos están dos complejos entre sí.

Definición. Para dos números complejos $w$ y $z$ definimos la distancia entre $w$ y $z$ como la norma de $w-z$, es decir, $\Vert w-z\Vert$. La denotamos por $d(w, z)$

Propiedades básicas de la norma en los complejos

La norma en los complejos está relacionada con otras operaciones definidas como sigue:

Teorema 1. Sean $w$ y $z$ números complejos. Entonces:

  1. La norma es la raíz del producto de un complejo por su conjugado, es decir, $\Vert z \Vert = \sqrt{z\overline{z}}.$
  2. $\Vert z \Vert$ es un número real no negativo.
  3. $\Vert z \Vert = 0$ si y sólo si $z=0$.
  4. La norma es multiplicativa, es decir, $\Vert zw \Vert = \Vert z \Vert \Vert w \Vert$.

Demostración. Si $z=a+ib$, entonces $\overline{z}=a-ib$, y por lo tanto

\begin{align*}
\sqrt{z\overline{z}}&=\sqrt{a^2-(ib)^2}\\
&=\sqrt{a^2+b^2}\\
&=\Vert z \Vert.
\end{align*}

La norma de $z=a+ib$ es la suma del cuadrado de dos reales. Cada uno de ellos es no negativo, así que esa suma es no negativa. De este modo, al sacar raíz cuadrada obtenemos un número real y no negativo. Para que este número sea cero, necesitamos que $a^2=b^2=0$, es decir, que $a=b=0$, lo cual sucede justo cuando $z=0$.

Para mostrar la última propiedad, se pueden tomar dos números complejos explícitos y hacer las cuentas. Sin embargo, también podemos probarla usando la primer propiedad y la conmutatividad del producto, de números complejos, como sigue:

$$\Vert zw \Vert ^2= zw\overline{zw} = z\overline{z} w\overline{w}= \Vert z \Vert^2 \Vert w \Vert ^2.$$

Sacando raíz cuadrada de ambos lados obtenemos el resultado deseado.

$\square$

Ejercicios que usan las propiedades básicas

Veamos algunas formas en las que podemos usar las propiedades anteriores, de la norma, en los complejos.

Ejercicio 1. Muestra que $z$ y $\overline{z}$ tienen la misma norma.

Solución. Usando que $\overline{\overline{z}}=z$, la propiedad 1 del Teorema 1 y la conmutatividad del producto en $\mathbb{C}$ tenemos que $$\Vert \overline{z}\Vert = \sqrt{\overline{z}z}=\sqrt{z\overline{z}} = \Vert z \Vert.$$

$\triangle$

El siguiente es un corolario de la propiedad 4 del Teorema 1, que se puede mostrar usando inducción. La prueba de este corolario se deja como tarea moral.

Corolario. Para $z$ un complejo y $n$ un natural, se tiene que $$\Vert z^n \Vert = \Vert z \Vert ^n.$$

Ejercicio 2. Determina la norma del complejo $$\left(3+4i\right)^{20}.$$

Solución. Tomemos $u=3+4i$. El problema nos pide determinar $\Vert u^{20} \Vert$. Una forma de hacerlo es realizar primero la operación $u^{20}$, pero esto parece ser complicado. En vez de eso, usamos el Corolario anterior. Para ello, notamos que $$\Vert u \Vert = \sqrt{3^2+4^2}= \sqrt{25}=5.$$

De este forma, por el corolario, la norma que buscamos es $$\Vert u^{20} \Vert = \Vert u \Vert ^{20}= 5^{20}.$$

$\triangle$

Ejercicio 3. Sea $z$ un número complejo. Muestra que los siguientes números complejos tienen la misma norma: $$z, -z, iz, -iz.$$

Solución. Se sigue de la propiedad $4$ del Teorema 1 y de que $$\Vert -1 \Vert = \Vert i \Vert = \Vert -i \Vert = 1.$$

$\square$

Ejercicio 4. Muestra que para un número real, $r$, su norma compleja coincide con su valor absoluto.

Solución. Usando la propiedad 1 del Teorema 1 y que $\overline{r}=r$, tenemos que $$\Vert r \Vert = \sqrt{\overline{r}r}=\sqrt{r^2}=|r|.$$

$\square$

La desigualdad del triángulo

¿Cómo se comporta la norma con la suma de los complejos? Lo responderemos en esta sección. Pero antes, de pasar al teorema 2 que contiene la respuesta, veamos un pequeño resultado auxiliar.

Lema. Si $z$ es un número complejo, entonces $|\text{Re}(z)| \leq \Vert z \Vert$ y $|\text{Im}(z)|\leq \Vert z \Vert$. La primer igualdad se da si y sólo si $z$ es un número real y la segunda si y sólo si $z$ es un número imaginario puro, es decir, si su parte real es $0$.

Demostración. Tomemos $z=a+ib$. Tenemos que $a^2\leq a^2+b^2$, de modo que sacando raíces cuadradas tenemos que $$|\text{Re}(z)| = |a| = \sqrt{a^2}\leq \sqrt{a^2+b^2}=\Vert z \Vert.$$ La igualdad se da si y sólo si $b=0$, lo cual sucede si y sólo si $z$ es real.

$\square$

La demostración de la segunda parte es análoga, y queda como tarea moral.

Teorema 2 (desigualdad del triángulo). Para dos números complejos $w$ y $z$ se tiene que $$\Vert w+z \Vert \leq \Vert w \Vert + \Vert z \Vert.$$ La igualdad se da si y sólo si $w$ es un múltiplo real de $z$, es decir, si y sólo si existe un real $r$ tal que $w=rz$.

Demostración. Tenemos que:
\begin{align*}
\Vert w+z \Vert^2 &= (w+z)\overline{(w+z)}\\
&=(w\overline{w}+w\overline{z}+\overline{w}z+z\overline{z})\\
&=\Vert w \Vert^2 + 2\text{Re}(w\overline{z}) + \Vert z \Vert^2.
\end{align*}

Podemos continuar usando la desigualdad del Lema anterior (notemos que se obtiene la igualdad si y sólo si $w\overline{z}$ es real)

\begin{align*}
&\leq \Vert w \Vert^2 + 2\Vert w\overline{z}\Vert + \Vert z \Vert^2\\
&=\Vert w \Vert ^2 + 2 \Vert w \Vert \Vert z \Vert + \vert z \Vert^2\\
&=\left(\Vert w \Vert + \Vert z \Vert \right)^2.
\end{align*}

Esta cadena de desigualdades se resume a $$ \Vert w+z \Vert^2 \leq \left(\Vert w \Vert + \Vert z \Vert \right)^2, $$ de donde sacando raíz cuadrada en ambos lados, obtenemos lo deseado.

Como observamos durante la demostración, la igualdad se da si y sólo si $w\overline{z}$ es un número real, es decir, si y sólo si existe un real $s$ tal que $w\overline{z}=s$. Multiplicando por $z$ de ambos lados, obtenemos que $$w\Vert z \Vert^2 = sz.$$ Si $z=0$, entonces $w=0$ y por lo tanto $w$ es trivialmente un múltiplo real de $z$. Si $z\neq 0$, entonces $w=\frac{s}{\Vert z \Vert ^2}\cdot z$ también es un múltiplo real de $z$, con $r=\frac{s}{\Vert z \Vert ^2}$. Esto termina el análisis, de los casos, de la igualdad.

$\square$

Propiedades de la distancia

En la introducción definimos la distancia entre dos números complejos $w$ y $z$ como la norma de $w-z$, en símbolos, $d(w,z)=\Vert w-z \Vert$. Para formalizar ideas veamos la siguiente definición.

Definición. Sea $X$ un conjunto y $e: X\times X\rightarrow \mathbb{R}^{+}\cup \lbrace 0\rbrace$ una función, $e$ es una métrica en $X$ si, para todo $x$, $y$ y $z\in X$, satisface que:

  1. $e(x, y)\geq 0$.
  2. $e(x, y)=0$ si, y sólo si, $x=y$.
  3. $e(x, y)=e(y, x)$.
  4. $e(x, y)\leq e(x, z) + e(y, z)$.

Observa que a partir de los teoremas 1 y 2, la distancia $d$ cumple las propiedades de esta definición, por lo que decimos que $d$ es una métrica en $\mathbb{C}$. Así tenemos el siguiente teorema.

Teorema 3. Sean $w$ y $z$ dos números complejos cualesquiera y $d(w, z)=\vert\vert w- z\vert\vert$. Entonces $d$ es una métrica en $\mathbb{C}$.

Demostrar este teorema es sencillo a partir de lo que ya vimos, así que su demostración queda como tarea moral.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra la propiedad 4 del Teorema 1 usando de manera explícita las partes reales e imaginarias de los complejos $z$ y $w$.
  2. Demuestra el corolario de normas de potencias de complejos.
  3. Determina la norma del complejo $(12-5i)^{10}$.
  4. Determina la norma del complejo $(1+2i)(-3+4i)(5-6i)(-7-8i)$.
  5. Demuestra la segunda parte del Lema.
  6. Demuestra el Teorema 3.
  7. Sean $w=(3+4i)(5-i)$ y $z=(5-i)(4+2i)$. Determina $d(w,z)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Ortogonalidad y transformación transpuesta

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya estudiamos la noción de espacio dual y la de ortogonalidad. También vimos cómo a partir de la ortogonalidad podemos definir subespacios como intersección de hiperplanos. Como veremos a continuación, la ortogonalidad también nos permite definir qué quiere decir que consideremos la «transformación transpuesta» de una transformación lineal.

Antes de comenzar, vale la pena recordar también que cada transformación lineal entre espacios de dimensión finita puede ser expresada mediante una matriz que depende de la elección de bases de los espacios vectoriales. Como tal vez te imaginarás, la transformación transpuesta tendrá como matriz a la matriz transpuesta de la transformación original.

Esta intuición nos dice que hay que tener cuidado. Supongamos que estamos trabajando sobre un campo $F$. Si tenemos espacios vectoriales $V$ de dimensión $n$, $W$ de dimensión $m$ y una tranformación lineal $T:V\to W$, recordemos que, tras elegir bases, $T$ está representada por una matriz $A$ en $M_{m,n}(F)$, es decir, con $m$ filas y $n$ columnas.

Pero la matriz transpuesta $^t A$ es de $n$ filas y $m$ columnas, así que típicamente no representará a una transformación de $V$ a $W$, pues las dimensiones no necesariamente coinciden. Podríamos intentar construir una transformación de $W$ a $V$ para que las dimensiones coincidan, pero resulta que esto no es «tan natural», por razones en las que no profundizaremos.

Lo que sí resulta muy natural y fácil de definir es una transformación de $W^\ast$ a $V^\ast$, lo cual tendrá sentido pues ya probamos que $\dim W^\ast = \dim W$ y $\dim V^\ast = \dim V$, así que será representada por una matriz en $M_{n,m}$. Es un poco más difícil conceptualmente, pero las consecuencias matemáticas son más bonitas y útiles. Sin decir más, comenzamos con la teoría.

Definición y ejemplo de transformación transpuesta

Para definir «transformación transpuesta», le hacemos como sigue.

Definición. Sean $V$ y $W$ espacios vectoriales sobre un campo $F$ y sea $T:V\to W$ una transformación lineal. Definimos la transformación transpuesta de $T$, como la transformación $^tT:W^\ast \to V^\ast$ tal que a cada forma lineal $l$ en $W^\ast$ la manda a la forma lineal $^tT(l)$ en $V^\ast$ para la cual $$(^tT(l))(v)=l(T(v)).$$

Otra forma de escribir a la definición es mediante la notación de emparejamiento canónico: $$\langle ^tT(l),v\rangle=\langle l, T(v)\rangle.$$

Veamos un ejemplo para entender mejor la definición.

Ejemplo. Considera a $V=M_{2}(\mathbb{R})$ y $W=\mathbb{R}^2$. Considera la transformación lineal $T:V\to W$ dada por $$T\begin{pmatrix} a& b\\ c&d\end{pmatrix}=(a+b,c+d).$$

La transformación $^t T$ va a mandar a una forma lineal $l$ de $W$ a una forma lineal $^tT(l)$ de $V$. Las formas lineales $l$ en $W$ se ven de la siguiente forma $$l(x,y)=rx+sy.$$ La forma lineal $^tT(l)$ en $V$ debe satisfacer que $^tT(l)=l\circ T$. En otras palabras, para cualquier matriz $\begin{pmatrix} a& b\\ c&d\end{pmatrix}$ se debe tener
\begin{align*}
(^t T(l)) \begin{pmatrix} a& b\\ c&d\end{pmatrix} &= l(a+b,c+d)\\
&=r(a+b)+s(c+d)\\
&=ra+rb+sc+sd.
\end{align*}

Si tomamos la base canónica $E_{11}$, $E_{12}$, $E_{21}$, $E_{22}$ de $V$ y la base canónica $e_1,e_2$ de $W$, observa que la transformación $T$ tiene como matriz asociada a la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\end{pmatrix}$$ (recuerda que se obtiene poniendo como columnas a los vectores coordenada de las imágenes de la base).

Por otro lado, los vectores de la base dual $e_1^\ast$ y $e_2^\ast$ «leen las coordenadas», de modo que $e_1^\ast(x,y)=x$ y $e_2^\ast(x,y)=y$. Por lo que vimos arriba, $(^t T)(e_1)$ es entonces la forma lineal $a+b$ y $(^t T)(e_2)$ es la forma lineal $c+d$. En términos de la base dual en $V^\ast$, estos son $E_{11}^\ast + E_{12}^\ast$ y $E_{21}^\ast+ E_{22}^\ast$ respectivamente. De esta forma, la transformación $^t T$ tiene matriz asociada $$\begin{pmatrix}1&0\\1&0\\0&1\\0&1\end{pmatrix}.$$

$\triangle$

Nota que en el ejemplo la transformación transpuesta tiene como matriz a la matriz transpuesta de la transformación original. Esto es algo que queremos que pase siempre, y más abajo lo demostramos.

Propiedades básicas de transformación transpuesta

Observa que la definición no necesita que $V$ y $W$ sean de dimensión finita. A continuación enunciamos y probamos algunos resultados que se valen también en el contexto de dimensión infinita.

Teorema 1. Tomemos $V$,$W$,$Z$ espacios vectoriales sobre un campo $F$ y $c$ en $F$. Sean $T_1,T_2: V \to W$ transformaciones lineales. Sea $T_3:W\to Z$ una transformación lineal. Se cumple todo lo siguiente:

  1. $^tT_1$ es una transformación lineal.
  2. $^t(T_1+cT_2)= {^tT_1} + c^tT_2$.
  3. $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$.
  4. Si $V=W$ y $T_1$ es invertible, entonces $^t T_1$ también lo es y $(^t T_1)^{-1}= {^t (T_1^{-1})}$.

Para tener un poco más de intuición, observa cómo estas propiedades son análogas a las de transposición para matrices.

Demostración. Las partes 1 y 2 se demuestran usando cuidadosamente las definiciones. Haremos la demostración de $1$ y la demostración de $2$ queda como tarea moral. Para probar $1$, necesitamos probar que $^tT_1:W^\ast \to V^\ast$ es lineal, así que tomemos $l_1$, $l_2$ en $W^\ast$ y $a$ un escalar en $F$. Tenemos que demostrar que $$ ^tT_1(l_1+a l_2)= {^tT_1(l_1)}+ a ^tT_1(l_2).$$

Ésta es una igualdad de formas lineales en $V^\ast$, y para mostrar su validez tenemos que mostrar que se vale en cada $v\in V$. Por un lado,
\begin{align*}
^tT_1(l_1+a l_2)(v) &= (l_1+a l_2)(T_1(v))\\
&=l_1(T_1(v))+a l_2(T_1(v)).
\end{align*}

Por otro lado,
\begin{align*}
(^tT_1(l_1)+ a ^tT_1(l_2))(v)&= {^tT_1(l_1)(v)}+ a ^tT_1(l_2)(v)\\
&= l_1(T_1(v)) + a l_2(T_1(v)).
\end{align*}

En ambos casos obtenemos el mismo resultado, así que $^tT_1(l_1+a l_2)$ y $^tT_1(l_1)+ a ^tT_1(l_2)$ son iguales, mostrando que $^t T_1$ es lineal.

Pasemos a la parte 3. La igualdad $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$ es una igualdad de transformaciones de $Z^\ast$ a $V^\ast$. Para verificar su veracidad, hay que ver que son iguales en cada elemento en su dominio. Tomemos entonces una forma lineal $l$ en $Z^\ast$. Queremos verificar la veracidad de $$ ^t(T_3\circ T_1)(l) = (^t T_1 \circ ^t T_3)(l),$$ que es una igualdad de formas lineales en $V^\ast$, de modo que tenemos que verificarla para cada $v$ en $V$. Por un lado,

\begin{align*}
^t(T_3\circ T_1)(l)(v)&=l((T_3\circ T_1)(v))\\&=l(T_3(T_1(v))),
\end{align*}

Por otro,
\begin{align*}
(^t T_1 \circ ^t T_3)(l)(v)&=(^tT_1(^t T_3 (l)))(v)\\&=(^t T_3 (l))(T_1(v))\\&=l(T_3(T_1(v))).
\end{align*}

En ambos casos obtenemos el mismo resultado.

Para la parte 4 basta notar que si $V=W$ y $T_1$ es invertible, entonces tiene una inversa $S:V\to V$, y por la parte $3$ tenemos que $$^t S\circ ^t T_1 = {^t(T_1\circ S)} = {^t \text{Id}_V} = \text{Id}_{V^\ast},$$

mostrando que $^t T_1$ tiene inversa $^tS$. Observa que estamos usando que la transpuesta de la transformación identidad es la identidad. Esto no lo hemos probado, pero lo puedes verificar como tarea moral.

$\square$

La matriz transpuesta es la matriz de la transformación transpuesta

Cuando estamos trabajando en espacios de dimensión finita, podemos mostrar que la matriz que le toca a la transformación transpuesta es precisamente la transpuesta de la matriz que le toca a la transformación original. Hacemos esto más preciso en el siguiente resultado.

Teorema 2. Sea $T:V\to W$ una transformación lineal entre espacios de dimensión finita y $B$ y $B’$ bases de $V$ y $W$ respectivamente. Si $A$ es la matriz de $T$ con respecto a $B$ y $B’$, entonces $^t A$ es la matriz de la transformación $^t T:W^\ast \to V^\ast$ con respecto a las bases duales $B’^\ast$ y $B^\ast$.

Demostración. Necesitamos definir algo de notación. Llamemos $n=\dim V$, $m=\dim W$, $B=\{b_1,\ldots, b_n\}$, $B’=\{c_1,\ldots, c_m\}$ y $A=[a_{ij}]$. Recordemos que la matriz $A$ está hecha por las coordenadas de las imágenes de la base $B$ en términos de la base $B’$, es decir, que por definición tenemos que para toda $j=1,\ldots, n$: \begin{equation}T(b_j)=\sum_{i=1}^{m} a_{ij} c_i.\end{equation}

La transformación $^t T:W^\ast \to V^\ast$ va de un espacio de dimensión $m$ a uno de dimensión $n$, así que en las bases $B’^\ast$ y $B^\ast$ se puede expresar como una matriz de $n$ filas y $m$ columnas. Afirmamos que ésta es la matriz $^t A$. Para ello, basta mostrar que las coordenadas de las imágenes de la base $B’^\ast$ en términos de la base $B^\ast$ están en las filas de $A$, es decir, que para todo $i=1, \ldots, m$ tenemos que $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast.$$

La anterior es una igualdad de formas lineales en $V^\ast$, de modo que para ser cierta tiene que ser cierta evaluada en todo $v$ en $V$. Pero por linealidad, basta que sea cierta para todo $b_j$ en la base $B$. Por un lado, usando (1),

\begin{align*}
^tT(c^\ast_i)(b_j)&=c^\ast_i(T(b_j))\\
&=c^\ast_i \left(\sum_{k=1}^{m} a_{kj} c_i\right)\\
&=\sum_{k=1}^{m} a_{kj} c^\ast_i(c_k)\\
&=a_{ij},
\end{align*}

en donde estamos usando que por definición de base dual $c_i^\ast (c_i)= 1$ y $c_j^\ast (c_i)=0$ si $i\neq j$. Por otro lado,

\begin{align*}
\left(\sum_{k=1}^{n} a_{ik} b_k^\ast\right)(b_j)&= \sum_{k=1}^{n} a_{ik} b_k^\ast(b_j)\\
&=a_{ij},
\end{align*}

en donde estamos usando linealidad y la definición de base dual para $B$.

Con esto concluimos la igualdad $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast,$$ que muestra que podemos leer las coordenadas de las evaluaciones de $^t T$ en $B’^\ast$ en términos de la base $B^\ast$ en las filas de $A$, por lo tanto podemos leerlas en las columnas de $^t A$. Esto muestra que $^t A$ es la matriz correspondiente a esta transformación en términos de las bases duales.

$\square$

Kernel e imagen de la transformación transpuesta

Finalmente, el siguiente resultado nos habla acerca de cómo están relacionadas las transformaciones transpuestas y la ortogonalidad.

Teorema 3. Sea $T:V\to W$ una transformación lineal entre espacios vectoriales de dimensión finita. Entonces

$$\ker (^t T) = (\Ima (T))^\bot,\quad \ker (T)=(\Ima (^t T))^\bot$$

y

$$\Ima (^t T) = (\ker(T))^\bot\,\quad \Ima (T)=(\ker(^t T))^\bot.$$

Demostración. Demostraremos la igualdad $\ker (^t T) = (\Ima (T))^\bot$. Notemos que $l \in \ker(^t T)$ si y sólo si $(^t T)(l)=0$, lo cual sucede si y sólo si $l\circ T = 0$. Pero esto último sucede si y sólo si para todo $v$ en $V$ se tiene que $l(T(v))=0$, que en otras palabras quiere decir que $l(w)=0$ para todo $w$ en $\Ima (T)$. En resumen, $l\in \ker(^t T)$ pasa si y sólo si $l$ se anula en todo $\Ima (T)$ es decir, si y sólo si está en $(\Ima (T))^\bot$.

El resto de las igualdades se demuestran de manera análoga, o alternativamente, usando la bidualidad canónica. Es un buen ejercicio hacerlo y se deja como tarea moral.

$\square$

Más adelante…

En esta entrada enunciamos un resultado muy importante: dada una transformación lineal $T$, su transformación transpuesta tiene como matriz asociada la matriz transpuesta de la matriz asociada de $T$. Este resultado nos permitirá calcular fácilmente la transpuesta de una transformación, como veremos en la entrada de problemas de este tema.

En la siguiente entrada del blog hablaremos por primera vez de formas bilineales: vamos a ver cómo nuestra discusión de transformaciones lineales facilitará mucho abordar este tema.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la transpuesta de la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=T(7x+8y,6x+7y)$ es invertible. Encuentra a su transpuesta y a la inversa de la transpuesta explícitamente.
  • Muestra la parte $2$ del Teorema 1.
  • Muestra que la transpuesta de la transformación identidad es la identidad.
  • Demuestra el resto de las igualdades del Teorema 3.
  • Encuentra la transpuesta de la transformación traza que va de $M_n(\mathbb{R})$ a los reales. Recuerda que esta transformación manda a una matriz $A=[a_{ij}]$ a la suma de sus entradas en la diagonal principal, es decir $$A\mapsto a_{11}+a_{22}+\ldots+a_{nn}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Ejercicios de conjugados complejos

Por Claudia Silva

Introducción

Aquí van los vídeos de hoy, en donde vemos ejemplos resueltos de conjugación compleja. Expliqué con un poco más de detalle el ejemplo 132 del libro de Bravo, Rincón y Rincón. Resolví el ejercicio 325 completo, así como otros 3 ejercicios de conjugados complejos del libro Álgebra Superior II de Antonio Lascurain. Más adelante les pondré en foto para los que no tengan facilidad para ver los vídeos de YouTube.

Ejemplos y ejercicios de conjugados complejos del Bravo, Rincón, Rincón

Primero, resolvemos el ejemplo 132 del libro:

Problema. Calcular $z$ si $iz+(2-i)\overline{z}=10+6i$.

Ejemplo 132 detallado

Inciso 1 del ejercicio 325:

Problema. Resuelve $(1+i)z+(1-i)\overline{z}=4$.

Inciso 1 del ejercicio 325

Inciso 2 del ejercicio 325:

Problema. Resuelve $z\overline{z}+3(z+\overline{z})=7$

Inciso 2 del ejercicio 325

Inciso 3 del ejercicio 325. Nota importante de este ejercicio: Alrededor del 7:09 me equivoqué en un signo, el término $6d$ de la parte imaginaria debería ser negativo. Eso puede que cambie el resultado final, pero esa es la idea de la resolución del problema.

Problema. Resuelve el sistema \begin{align*}iz+(1+i)&=3+i\\ (1+i)\overline{z}-(6+i)\overline{w}&=4\end{align*}

Ejercicios del libro de Lascurain

Los siguientes ejercicios fueron tomados del libro de Álgebra Superior II de Antonio Lascurain.

Problema. Realiza la siguiente operación de números complejos: $$\overline{\left(\frac{2-4i}{5-5i}\right)}$$.

Una división con conjugados complejos

Problema. Encuentra las parejas $u,v$ de números complejos para las cuales sucede que $u \overline{\overline{v}u}=v$.

Problema 1 de conjugación compleja

Problema. Encuentra las parejas $u,v$ de números complejos para las cuales sucede que $v+iu=-\overline{v}+i\overline{u}$.

Problema 2 de conjugación compleja

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»