Álgebra Superior II: Algoritmo de la división, teorema del factor y teorema del residuo

Por Leonardo Ignacio Martínez Sandoval

Introducción

Tal vez te hayas dado cuenta de que ya hablamos de suma, producto y resta de polinomios, pero aún no hemos hablado de la división. Una razón es que no todos los polinomios tienen inverso multiplicativo. Sin embargo, los polinomios sí tienen un algoritmo de la división parecido al que estudiamos para el conjunto $\mathbb{Z}$ de enteros. A partir de él podemos extender varios de los conceptos aritméticos de $\mathbb{Z}$ a $\mathbb{R}[x]$: divisibilidad, máximo común divisor, factorización, etc. Luego, estos aspectos se pueden conectar a evaluación de polinomios mediante el un teorema clave: el teorema del factor.

Como recordatorio, hasta ahora, ya construimos el anillo $\mathbb{R}[x]$ de polinomios con coeficientes reales y vimos que era un dominio entero. También, vimos que una copia de $\mathbb{R}$ vive en $\mathbb{R}[x]$, con lo justificamos pasar de la notación de sucesiones, a la notación usual de polinomios usando el símbolo $x$ y sus potencias. En la entrada anterior también hablamos del grado de un polinomio (cuando no es el polinomio cero), de la evaluación de polinomios y de raíces.

Algoritmo de la división

Recordemos que en $\mathbb{Z}$ tenemos un algoritmo de la división que dice que para enteros $a$ y $b\neq 0$ existen únicos enteros $q$ y $r$ tales que $a=qb+r$ y $0\leq r < |b|$.

En $\mathbb{R}[x]$ hay un resultado similar. Pero hay que tener cuidado al generalizar. En $\mathbb{R}[x]$ no tenemos una función valor absoluto que nos permita decir que encontramos un «residuo más chiquito». Para la versión polinomial del algoritmo de la división tenemos que usar una función que diga «qué tan grande es un polinomio»: el grado.

Teorema (algoritmo de la división en $\mathbb{R}[x]$). Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$, donde $g(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $q(x)$ y $r(x)$ en $\mathbb{R}[x]$ tales que $$f(x)=q(x)g(x)+r(x),$$ en donde $r(x)$ es el polinomio cero, o $\deg(r(x))<\deg(g(x))$.

Demostración. Probaremos la parte de existencia. La parte de unicidad queda como tarea moral. Para probar la existencia, haremos inducción fuerte sobre el grado de $f(x)$. Sin embargo, antes de poder hacer esto, necesitamos hacer el caso en el que $f(x)$ no tiene grado, es decir, cuando es el polinomio cero.

Si $f(x)$ es el polinomio cero, entonces $q(x)=0$ y $r(x)=0$ son polinomios que funcionan, pues $0=0\cdot g(x)+0$, para cualquier polinomio $g(x)$.

Asumamos entonces a partir de ahora que $f(x)$ no es el polinomio cero. Hagamos inducción sobre el grado de $f(x)$. Si $f(x)$ es de grado $0$, entonces es un polinomio de la forma $f(x)=a$ para $a$ en $\mathbb{R}$. Hay dos casos de acuerdo al grado de $g(x)$:

  • Si $g(x)$ es de grado $0$, es de la forma $g(x)=b$ para un real no cero y podemos tomar $q(x)=a/b$ y $r(x)=0$.
  • Si $g(x)$ es de grado mayor a $0$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$. Esta es una elección válida pues se cumple \begin{align*}\deg(r(x))&=\deg(f(x))\\& =0\\& <\deg(g(x)).\end{align*}.

Esto termina la demostración de la base inductiva.

Supongamos que el resultado es cierto para cuando $f(x)$ tiene grado menor a $n$ y tomemos un caso en el que $f(x)$ tiene grado $n$. Hagamos de nuevo casos con respecto al grado de $g(x)$, al que llamaremos $m$. Si $m>n$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$, que es una elección válida pues $$\deg(r(x))=n<m.$$

En el caso de que $m\leq n$, escribamos explícitamente a $f(x)$ y a $g(x)$ en términos de sus coeficientes como sigue: \begin{align*}f(x)&=a_0+\ldots+a_nx^n\\g(x)&=b_0+\ldots+b_mx^m.\end{align*}

Consideremos el polinomio $$h(x):=f(x)-\frac{a_n}{b_m}x^{n-m}g(x).$$ Notemos que en $h(x)$ el coeficiente que acompaña a $x^n$ es $a_n-\frac{a_nb_m}{b_m}=0$, así que el grado de $h(x)$ es menor al de $f(x)$ y por lo tanto podemos usar la hipótesis inductiva para escribir $$h(x)=t(x)g(x)+u(x)$$ con $u(x)$ el polinomio $0$ o $\deg(u(x))<\deg(g(x))$. De esta forma,
\begin{align*}
f(x)&=t(x)g(x)+u(x)+\frac{a_n}{b_m}x^{n-m}g(x)\\
&=\left(t(x)+\frac{a_n}{b_m}x^{n-m}\right)g(x)+u(x).
\end{align*}

Así, eligiendo $q(x)=t(x)+\frac{a_n}{b_m}x^{n-m}$ y $r(x)=u(x)$, terminamos la hipótesis inductiva.

$\square$

Aplicando el algoritmo de la división de forma práctica

Veamos ahora un ejemplo de cómo se puede aplicar este teorema anterior de forma práctica. A grandes rasgos, lo que podemos hacer es «ir acumulando» en $q(x)$ a los términos $\frac{a_n}{b_m}x^{n-m}$ que van apareciendo en la inducción, y cuando $h(x)$ se vuelve de grado menor a $q(x)$, lo usamos como residuo. Hagamos un ejemplo concreto.

Ejemplo. Tomemos $f(x)=x^5+x^4+x^3+x^2+2x+3$ y $g(x)=x^2+x+1$. Vamos a aplicar iteradamente las ideas de la demostración del teorema anterior para encontrar los polinomios $q(x)$ y $r(x)$ tales que $$f(x)=q(x)g(x)+r(x),$$ con $r(x)$ el polinomio $0$ o de grado menor a $g(x)$.

Como el grado de $f(x)$ es $5$, el de $g(x)$ es $2$ y $5>2$, lo primero que hacemos es restar $x^{5-2}g(x)=x^3g(x)$ a $f(x)$ y obtenemos:

$$h_1(x)=f(x)-x^3g(x)=x^2+2x+3.$$

Hasta ahora, sabemos que $q(x)=x^3+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_1(x)=x^2+2x+3$. Como el grado de $h_1(x)$ es $2$, el de $g(x)$ es $2$ y $2\geq 2$, restamos $x^{2-2}g(x)=1\cdot g(x)$ a $h_1(x)$ y obtenemos.

$$h_2(x)=h_1(x)-g(x)=x+2.$$

Hasta ahora, sabemos que $q(x)=x^3+1+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_2(x)=x+2$. Como el grado de $h_2(x)$ es $1$, el de $g(x)$ es $2$ y $2>1$, entonces el cociente es $0$ y el residuo es $h_2(x)=x+2$.

De esta forma, concluimos que $$q(x)=x^3+1$$ y $$r(x)=x+2.$$

En conclusión,
\begin{align*}
x^5+ & x^4+x^3+x^2+2x+3\\
&= (x^3+1)(x^2+x+1) + x+2.
\end{align*}

Esto se puede verificar fácilmente haciendo la operación polinomial.

$\triangle$

Hay una forma más visual de hacer divisiones de polinomios «haciendo una casita». Puedes ver cómo se hace esto en el siguiente video en Khan Academy, y los videos que le siguen en la lista.

Divisibilidad en polinomios

Cuando trabajamos en $\mathbb{Z}$, estudiamos la noción de divisibilidad. Si en el algoritmo de la división obtenemos que $r(x)$ es el polinomio $0$, entonces obtenemos una noción similar para $\mathbb{R}[x]$.

Definición. Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$. Decimos que $g(x)$ divide a $f(x)$ si existe un polinomio $q(x)$ tal que $f(x)=q(x)g(x)$.

Ejemplo 1. El polinomio $x^3-1$ divide al polinomio $x^4+x^3-x-1$, pues $$x^4+x^3-x-1 = (x^3-1)(x+1).$$

$\triangle$

Ejemplo 2. Si $g(x)$ es un polinomio no cero y constante, es decir, de la forma $g(x)=a$ para $a\neq 0$ un real, entonces divide a cualquier otro polinomio en $\mathbb{R}[x]$. En efecto, si $$f(x)=a_0+a_1x+\ldots + a_nx^n$$ es cualquier polinomio y tomamos el polinomio $$q(x)=\frac{a_0}{a}+\frac{a_1}{a}x+\ldots + \frac{a_n}{a}x^n,$$ entonces $f(x)=g(x)q(x)$.

$\triangle$

El último ejemplo nos dice que los polinomios constantes y no cero se comportan «como el $1$ se comporta en los enteros». También nos dice que cualquier polinomio tiene una infinidad de divisores. Eso nos pone en aprietos para definir algo así como los «polinomios primos» en términos del número de divisores. En la siguiente sección hablaremos de cómo hacer esta definición de manera adecuada.

Polinomios irreducibles

Cuando trabajamos con enteros, vimos que es muy útil poder encontrar la factorización en términos de números primos. En polinomios no tenemos «polinomios primos», pero tenemos un concepto parecido.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante, y no es posible escribirlo como producto de dos polinomios no constantes en $\mathbb{R}[x]$.

Ejemplo. El polinomio $$x^4+x^2+1$$ no es irreducible en $\mathbb{R}[x]$ pues $$x^4+x^2+1=(x^2+x+1)(x^2-x+1).$$

Los polinomios $x^2+x+1$ y $x^2-x+1$ sí son irreducibles en $\mathbb{R}[x]$. Más adelante veremos por qué.

$\triangle$

La razón por la cual quitamos a los polinomios constantes es parecida a la cual en $\mathbb{Z}$ no consideramos que $1$ sea primo: ayuda a enunciar algunos teoremas más cómodamente.

Hay unos polinomios que fácilmente se puede ver que son irreducibles: los de grado $1$.

Proposición. Los polinomios de grado $1$ en $\mathbb{R}[x]$ son irreducibles.

Demostración. Si $f(x)$ es un polinomio de grado $1$, entonces no es constante. Además, no se puede escribir a $f(x)$ como el producto de dos polinomios no constantes pues dicho producto tiene grado al menos $2$.

$\square$

Hay otros polinomios en $\mathbb{R}[x]$ que no son de grado $1$ y que son irreducibles. Por ejemplo, con la teoría que tenemos ahora te debe ser fácil mostrar de tarea moral que $x^2+1$ es irreducible en $\mathbb{R}[x]$.

La razón por la que siempre insistimos en que la irreducibilidad sea en $\mathbb{R}[x]$ es por que a veces un polinomio no se puede factorizar en polinomios con coeficientes reales, pero sí con coeficientes complejos. Aunque $x^2+1$ sea irreducible en $\mathbb{R}[x]$, si permitimos coeficientes complejos se puede factorizar como $$x^2+1=(x+i)(x-i).$$

Más adelante seguiremos hablando de irreducibilidad. Por ahora, nos enfocaremos en los polinomios de grado $1$.

Teorema del factor

Una propiedad clave de los polinomios de grado $1$ es que, es lo mismo que $x-a$ divida a un polinomio $p(x)$, a que $a$ sea una raíz de $p(x)$.

Teorema (del factor). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El polinomio $x-a$ divide a $p(x)$ si y sólo si $p(a)=0$.

Demostración. De acuerdo al algoritmo de la división, podemos escribir $$p(x)=(x-a)q(x)+r(x),$$ en donde $r(x)$ es $0$ o un polinomio de grado menor estricto al de $x-a$. Como el grado de $x-a$ es $1$, la única posibilidad es que $r(x)$ sea un polinomio constante $r(x)=r$. Así, $p(x)=(x-a)q(x)+r$, con $r$ un real.

Si $p(a)=0$, tenemos que $$0=p(a)=(a-a)q(a)+r=r,$$ de donde $r=0$ y entonces $p(x)=(x-a)q(x)$, lo que muestra que $x-a$ divide a $p(x)$.

Si $x-a$ divide a $p(x)$, entonces $p(x)=(x-a)q(x)$, de donde $p(a)=(a-a)q(a)=0$, por lo que $a$ es raíz de $p(x)$.

$\square$

Ejemplo. Consideremos el polinomio $p(x)=x^3-6x^2+11x-6$. ¿Podremos encontrar algunos polinomios lineales que lo dividan? A simple vista, notamos que la suma de sus coeficientes es $1-6+11-6=0$. Esto nos dice que $p(1)=0$. Por el teorema del factor, tenemos que $x-1$ divide a $p(x)$. Tras hacer la división, notamos que $$p(x)=(x-1)(x^2-5x+6).$$

Veamos si podemos seguir factorizando polinomios lineales que no sean $x-1$. Si un polinomio $x-a$ divide a $p(x)$, por el teorema del factor debemos tener $$0=p(a)=(a-1)(a^2-5a+6).$$ Como $a\neq 1$, entonces $a-1\neq 0$, de modo que tiene que pasar $$a^2-5a+6=0,$$ en otras palabras, hay que encontrar las raíces de $x^2-5x+6$.

Usando la fórmula general cuadrática, tenemos que las raíces de $x^2-5x+6$ son
\begin{align*}
x_1&=\frac{5+\sqrt{25-24}}{2}=3\\
x_2&=\frac{5-\sqrt{25-24}}{2}=2.
\end{align*}

Usando el teorema del factor, concluimos que tanto $x-2$ como $x-3$ dividen a $p(x)$. Hasta ahora, sabemos entonces que $$p(x)=(x-1)(x-2)(x-3)h(x),$$ donde $h(x)$ es otro polinomio. Pero $(x-1)(x-2)(x-3)$ ya es un polinomio de grado $3$, como $p(x)$ y su coeficiente de $x^3$ es $1$, como el de $p(x)$. Concluimos que $h(x)=1$ y entonces $$p(x)=(x-1)(x-2)(x-3).$$

$\triangle$

Teorema del residuo

En realidad, la técnica que usamos para el teorema del factor nos dice algo un poco más general. Cuando escribimos $$p(x)=(x-a)q(x)+r$$ y evaluamos en $a$, obtenemos que $p(a)=r$. Reescribimos esta observación como un teorema.

Teorema (del residuo). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El residuo de dividir $p(x)$ entre $x-a$ es $p(a)$.

Problema. Encuentra el residuo de dividir el polinomio $p(x)=x^8-x^5+2x^3+2x$ entre el polinomio $x+1$.

Solución. Se podría hacer la división polinomial, pero esto es largo y no nos piden el polinomio cociente, sólo el residuo. Así, podemos resolver este problema más fácilmente usando el teorema del residuo.

Como $x+1=x-(-1)$, el residuo de la división de $p(x)$ entre $x+1$ es $p(-1)$. Este número es
\begin{align*}
p(-1)&=(-1)^8-(-1)^5+2(-1)^3+2(-1)\\
&=1+1-2-2\\
&=-2.
\end{align*}

$\square$

Más adelante…

Los teoremas que hemos visto en esta entrada serán las principales herramientas algebraicas que tendremos en el estudio de los polinomios así como en la búsqueda de las raíces de los polinomios y en resolver la pregunta sobre su irreductibilidad.

El algoritmo de la división nos servirá (como nos sirvió en $\mathbb{Z}$ para poder precisar el algoritmo de Euclides y definir el máximo común divisor de dos polinomios.

Por ahora, en la siguiente entrada, nos encargaremos de practicar lo aprendido y resolver ejercicios sobre raíces y residuos de polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que el polinomio $x$ no tiene inverso multiplicativo.
  2. Demuestra la parte de unicidad del algoritmo de la división.
  3. Muestra que el polinomio $x^2+1$ es irreducible en $\mathbb{R}[x]$. Sugerencia. Procede por contradicción. Una factorización tiene que ser de la forma $x^2+1=p(x)q(x)$ con $p$ y $q$ de grado $1$.
  4. Factoriza en términos lineales al polinomio $p(x)=x^3-12x^2+44x-48$. Sugerencia. Intenta enteros pequeños (digamos de $-3$ a $3$) para ver si son raíces. Uno de ellos funciona. Luego, usa el teorema del factor para expresar a $p(x)$ como un polinomio lineal por uno cuadrático. Para encontrar el resto de factores lineales, encuentra las raíces del cuadrático.
  5. Encuentra el residuo de dividir el polinomio $x^5-x^4+x^3-x^2+x-1$ entre el polinomio $x-2$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Determinantes de vectores e independencia lineal

Por Leonardo Ignacio Martínez Sandoval

Introducción

En este cuarto y último bloque del curso comenzamos hablando de transformaciones multilineales y de permutaciones. Luego, nos enfocamos en las transformaciones multilineales antisimétricas y alternantes. Con la teoría que hemos desarrollado hasta ahora, estamos listos para definir determinantes de vectores, de transformaciones lineales y de matrices.

En esta entrada comenzaremos con la definición de determinantes de vectores. En la siguiente entrada hablaremos acerca de determinantes de matrices y de transformaciones lineales. Después de definir determinantes, probaremos varias de las propiedades que satisfacen. Posteriormente, hablaremos de varias técnicas que nos permitirán calcular una amplia variedad de determinantes para tipos especiales de matrices.

Determinantes de vectores

Para empezar, definiremos qué es el determinante de un conjunto de vectores en un espacio de dimensión finita con respecto a una base.

Definición. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ de dimensión finita $n$ y $x_1,\ldots,x_n$ vectores de $V$. Cada uno de los $x_i$ se puede escribir como $$x_i=\sum_{j=1}^n a_{ji}b_j.$$

El determinante de $x_1,\ldots,x_n$ con respecto a $(b_1,\ldots,b_n)$ es $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ y lo denotamos por $\det_{(b_1,\ldots,b_n)} (x_1,\ldots,x_n)$.

Observa que estamos sumando tantos términos como elementos en $S_n$. Como existen $n!$ permutaciones de un conjunto de $n$ elementos, entonces la suma de la derecha tiene $n!$ sumandos.

Ejemplo. Consideremos la base $b_1=1$, $b_2=1+x$ y $b_3=1+x+x^2$ del espacio vectorial $\mathbb{R}_2[x]$ de polinomios con coeficientes reales y grado a lo más $2$. Tomemos los polinomios $v_1=1$, $v_2=2x$ y $v_3=3x^2$. Vamos a calcular el determinante de $v_1, v_2, v_3$ con respecto a la base $(b_1,b_2,b_3)$.

Para hacer eso, lo primero que tenemos que hacer es expresar a $v_1, v_2, v_3$ en términos de la base. Hacemos esto a continuación:
\begin{align*}
v_1&= 1\cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3\\
v_2&= -2\cdot b_1 + 2 \cdot b_2 + 0 \cdot b_3\\
v_3&= 0 \cdot b_1 – 3 \cdot b_2 +3 b_3.
\end{align*}

De aquí, obtenemos
\begin{align*}
a_{11}&=1, a_{21}=0, a_{31}=0,\\
a_{12}&=-2, a_{22}=2, a_{32}=0,\\
a_{13}&=0, a_{23}=-3, a_{33}=3.
\end{align*}

Si queremos calcular el determinante, tenemos que considerar las $3!=3\cdot 2 \cdot 1 = 6$ permutaciones en $S_3$. Estas permutaciones son

\begin{align*}
\sigma_1 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 2 & 3\end{pmatrix}\\
\sigma_2 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 3 & 2\end{pmatrix}\\
\sigma_3 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 1 & 3\end{pmatrix}\\
\sigma_4 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 1\end{pmatrix}\\
\sigma_5 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 2 & 1\end{pmatrix}\\
\sigma_6 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 1 & 2\end{pmatrix}.
\end{align*}

Los signos de $\sigma_1,\ldots,\sigma_6$ son, como puedes verificar, $1$, $-1$, $-1$, $1$, $-1$ y $1$, respectivamente.

El sumando correspondiente a $\sigma_1$ es
\begin{align}
\text{sign}(\sigma_1) &a_{1\sigma_1(1)}a_{2\sigma_1(2)}a_{3\sigma_1(3)}\\
&= 1 \cdot a_{11}a_{22}a_{33}\\
&=1\cdot 1\cdot 2 \cdot 3 = 6.
\end{align}

El sumando correspondiente a $\sigma_2$ es
\begin{align}
\text{sign}(\sigma_2) &a_{1\sigma_2(1)}a_{2\sigma_2(2)}a_{3\sigma_2(3)}\\
&= (-1) \cdot a_{11}a_{23}a_{32}\\
&=(-1) \cdot 1\cdot (-3) \cdot 0 = 0.
\end{align}

Continuando de esta manera, se puede ver que los sumandos correspondientes a $\sigma_1,\ldots,\sigma_6$ son $$+6,-0,-0,+0,-0,+0,$$ respectivamente de modo que el determinante es $6$.

$\triangle$

La expresión de determinante puede parecer algo complicada, pero a través de ella podemos demostrar fácilmente algunos resultados. Consideremos como ejemplo el siguiente resultado.

Proposición. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ de dimensión finita $n$. El determinante de $B$ con respecto a sí mismo es $1$.

Demostración. Cuando escribimos a $b_i$ en términos de la base $b$, tenemos que $$b_i=\sum_{j=1}^n a_{ji} b_j.$$ Como la expresión en una base es única, debemos tener $a_{ii}=1$ y $a_{ji}=0$ si $j\neq i$. Ahora, veamos qué le sucede al determinante $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$

Si $\sigma$ es una permutación tal que $\sigma(i)\neq i$ para alguna $i$, entonces en el producto del sumando correspondiente a $\sigma$ aparece $a_{i\sigma(i)}=0$, de modo que ese sumando es cero. En otras palabras, el único sumando no cero es cuando $\sigma$ es la permutación identidad.

Como el signo de la identidad es $1$ y cada $a_{ii}$ es $1$, tenemos que el determinante es
\begin{align*}
\sum_{\sigma \in S_n} \text{sign}&(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)} \\
&=a_{11}\cdot\ldots\cdot a_{nn}\\
&= 1\cdot\ldots\cdot 1 \\
& = 1.
\end{align*}

$\square$

El determinante es una forma $n$-lineal alternante

La razón por la cual hablamos de transformaciones $n$-lineales antisimétricas y alternantes antes de hablar de determinantes es que, en cierto sentido, los determinantes de vectores son las únicas transformaciones de este tipo. Los siguientes resultados formalizan esta intuición.

Teorema. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ sobre $F$. Entonces la transformación $\det_{(b_1,\ldots,b_n)}:V^n \to F$ es una forma $n$-lineal y alternante.

Demostración. La observación clave para demostrar este resultado es que $\det_{(b_1,\ldots,b_n)}$ se puede reescribir en términos de la base dual $b_1^\ast, \ldots, b_n^\ast$. En efecto, recuerda que $b_i^\ast$ es la forma lineal que «lee» la coordenada de un vector $v$ escrito en la base $B$. De esta forma,

\begin{align*}
\det_{(b_1,\ldots,b_n)}&(v_1,\ldots,v_n)\\
&=\sum_{\sigma\in S_n}\left(\text{sign}(\sigma) \prod_{j=1}^n b_j^\ast(v_{\sigma(j)})\right)\\
\end{align*}

Para cada permutación $\sigma$, el sumando correspondiente es una forma $n$-lineal, pues es producto de $n$ formas lineales evaluadas en los distintos vectores. Así que $\det_{(b_1,\ldots,b_n)}$ es suma de formas $n$-lineales y por lo tanto es forma $n$-lineal.

Para mostrar que el determinante es alternante, tenemos que mostrar que es igual a $0$ cuando algún par de sus entradas son iguales. Supongamos que $i\neq j$ y que $v_i=v_j$. Tomemos $\tau$ a la transposición que intercambia a $i$ y a $j$. Cuando se compone una permutación con una transposición, su signo cambia. Así, para cualquier permutación $\sigma$, tenemos que $\sigma\tau$ tiene signo diferente.

Además, para cualquier $\sigma$ tenemos que $$a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}$$ y $$a_{1\sigma\tau(1)}\cdot\ldots\cdot a_{n\sigma\tau(n)}$$ son iguales, pues $v_i=v_j$. Combinando ambas ideas, podemos emparejar a cada sumando del determinante con otro con el cual sume cero. Esto muestra que el determinante es $0$.

$\square$

Usando la teoría que desarrollamos en la entrada anterior, tenemos el siguiente corolario.

Corolario. La forma $n$-lineal $\det_{(b_1,\ldots,b_n)}$ es antisimétrica.

Los determinantes de vectores son las «únicas» formas $n$-lineales alternantes

Ya vimos que el determinante es una forma $n$-lineal alternante. Veamos ahora por qué decimos que es «la única». El siguiente resultado dice que cualquier otra forma $n$-lineal alternante varía de $\det_{(b_1,\ldots,b_n)}$ únicamente por un factor multiplicativo.

Teorema. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$. Si $f:V^n \to F$ es cualquier forma $n$-lineal y alternante, entonces $$f=f(b_1,\ldots,b_n)\det_{(b_1,\ldots,b_n)}.$$

Demostración. Para mostrar la igualdad del teorema, que es una igualdad de transformaciones, tenemos que ver que es cierta al evaluar en cualesquiera vectores $x_1,\ldots,x_n$. Escribamos a cada $x_i$ en términos de la base $B$: $$x_i=\sum_{j=1}^n a_{ij}b_j.$$

Usando la $n$-linealidad de $f$ en cada una de las entradas, tenemos que
\begin{align*}
f(x_1,\ldots,x_n)&=\sum_{i=1}^n a_{1i} f(b_i,x_2,\ldots,x_n)\\
&=\sum_{i,j=1}^n a_{1i}a_{2i} f(b_i,b_j,x_3,\ldots,x_n)\\
&=\ldots\\
&=\sum_{i_1,\ldots,i_n = 1}^n a_{1i_1}\ldots a_{ni_n} f(b_{i_1},\ldots,b_{i_n}).
\end{align*}

Aquí hay muchos términos, pero la mayoría de ellos son $0$. En efecto, si $b_{i_k}=b_{i_l}$, como $f$ es alternante tendríamos que ese sumando es $0$. Así, los únicos sumandos que pueden ser no cero son cuando la elección de subíndices es una permutación, es decir cuando existe $\sigma$ en $S_n$ tal que para $i_k=\sigma(k)$.

Por lo tanto, podemos simplificar la expresión anterior a
$$f(x_1,\ldots,x_n)=\sum_{\sigma \in S_n}a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_{\sigma(1)},\ldots,b_{\sigma(n)}).$$

Como $f$ es alternante, entonces es antisimétrica. De este modo, podemos continuar la igualdad anterior como
\begin{align*}
&=\sum_{\sigma \in S_n} \text{sign}(\sigma) a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_1,\ldots,b_n)\\
&=f(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots, x_n).
\end{align*}

Esto es justo lo que queríamos probar.

$\square$

Los determinantes de vectores caracterizan bases

Como consecuencia del último teorema de la sección anterior, los determinantes de vectores caracterizan totalmente a los conjuntos de vectores que son bases. A continuación enunciamos esto formalmente.

Corolario. En un espacio vectorial $V$ de dimensión $n$ son equivalentes las siguientes tres afirmaciones para vectores $x_1,\ldots,x_n$ de $V$:

  1. El determinante de $x_1,\ldots,x_n$ con respecto a toda base es distinto de $0$.
  2. El determinante de $x_1,\ldots,x_n$ con respecto a alguna base es distinto de $0$.
  3. $x_1,\ldots,x_n$ es una base de $V$.

Demostración. La afirmación (1) es más fuerte que la (2) y por lo tanto la implica.

Ahora, probemos que la afirmación (2) implica la afirmación (3). Como $x_1,\ldots,x_n$ son $n$ vectores y $n$ es la dimensión de $V$, para mostrar que forman una base basta mostrar que son linealmente independientes. Anteriormente, vimos que cualquier forma alternante manda vectores linealmente dependientes a $0$. Como la hipótesis de (2) es que existe alguna forma alternante que no se anula en $x_1,\ldots, x_n$, entonces deben ser linealmente independientes y por lo tanto formar una base.

Finalmente, probemos que (3) implica (1). Tomemos $B=(b_1,\ldots,b_n)$ otra base de $V$. Como $\det_{(x_1,\ldots,x_n)}$ es una forma $n$-lineal, podemos aplicar el teorema anterior y evaluar en $x_1,\ldots,x_n$ para concluir que
\begin{align*}
\det_{(x_1,\ldots,x_n)}&(x_1,\ldots,x_n)&\\
&=\det_{(x_1,\ldots,x_n)}(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots,x_n).
\end{align*}

El término de la izquierda es igual a $1$, de modo que ambos factores a la derecha deben ser distintos de $0$.

$\square$

Ejemplo. En el ejemplo que dimos de polinomios vimos que el determinante de $1$, $2x$ y $3x^2$ con respecto a la base $1$, $1+x$ y $1+x+x^2$ es igual a $6$. De acuerdo al teorema anterior, esto implica que $1$, $2x$ y $3x^2$ es un conjunto linealmente independiente de polinomios, y de hecho una base.

Además, el teorema anterior también implica que sin importar que otra base $B$ de $\mathbb{R}_2[x]$ tomemos, el determinante de $1$, $2x$ y $3x^2$ con respecto a $B$ también será distinto de $0$.

$\triangle$

Más adelante…

A lo largo de esta entrada estudiamos la definición de determinantes para un conjunto de vectores y enunciamos sus principales propiedades. En las siguientes entradas vamos a hablar cómo se define el determinante para matrices y para transformaciones lineales. Después de las definiciones, pasaremos a estudiar cómo se calculan los determinantes y veremos cómo se aplican a diferentes problemas de álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cuántos sumandos tendrá el determinante de $5$ vectores en un espacio vectorial de dimensión $5$ con respecto a cualquier base? Da el número de manera explícita.
  • Verifica que en el primer ejemplo de determinantes de esta entrada, en efecto los sumandos correspondientes a $\sigma_1,\ldots,\sigma_6$ son los que se enuncian.
  • Encuentra el determinante de los vectores $(3,1)$ y $(2,4)$ con respecto a la base $((5,1), (2,3))$ de $\mathbb{R}^2$.
  • Muestra que los vectores $(1,4,5,2)$, $(0,3,2,1)$, $(0,0,-1,4)$ y $(0,0,0,1)$ son linealmente independientes calculando por definición su determinante con respecto a la base canónica de $\mathbb{R}^4$.
  • Usa un argumento de determinantes para mostrar que los vectores $(1,4,3)$, $(2,-2,9)$, $(7,8,27)$ de $\mathbb{R}^3$ no son linealmente independientes. Sugerencia. Calcula su determinante con respecto a la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: Series geométricas

Por Fabian Ferrari

Introducción

En esta entrada y en otras subsecuentes, trataremos el tema de series aplicado a la resolución de problemas matemáticos. Recordemos que en entradas anteriores ya se estudiaron los conceptos de sucesiones. Para esta entrada aprovecharemos lo que hemos aprendido de sucesiones geométricas.

Series geométricas

Si consideramos una sucesión geométrica $\{a_i\}_{i\in\mathbb{N}}$, recordemos que se cumple que existe una razón $r$ de tal manera que $a_n=ra_{n-1}$, expresado en el primer término, tenemos que $a_n=r^{n}a_0$. Ahora bien, nos interesará saber o conocer las suma de los elementos de una sucesión geométrica. A esta suma se le conoce como serie geométrica y puede realizarse considerando una cantidad finita de elementos de la sucesión, así como una cantidad infinita de elementos de la sucesión.

Si queremos obtener la serie geométrica de los primeros $n+1$ elementos de la sucesión $\{a_i\}_{i\in\mathbb{N}}$, tenemos lo siguiente

\begin{equation*}
\sum_{i=0}^n a_i=a_0+a_1+a_2 +a_3+\ldots+a_n.
\end{equation*}

Al multiplicar ambos lados de la igualdad por la razón de la sucesión tenemos que

\begin{align}
\sum_{i=0}^n a_i&=a_0+a_1+a_2 +a_3+\ldots+a_n\\
r\sum_{i=0}^n a_i&=ra_0+ra_1+ra_2 +ra_3+\ldots+ra_n\\
&=a_1+a_2+\ldots+a_{n+1}
\end{align*}

Y si calculamos $r\sum_{i=0}^n a_i-\sum_{i=0}^n a_i$, se cancelan todos los términos excepto el último de la primer suma, y el primero de la segunda. Obtenemos entonces:

\begin{align*}
r\sum_{i=0}^n a_i-\sum_{i=0}^n a_i&=a_{n+1}-a_0.
\end{align*}

Así,
\begin{equation*}
\sum_{i=0}^na_i=\frac{a_{n+1}-a_0}{r-1}=a_0\frac{r^{n+1}-1}{r-1}.
\end{equation*}

Ahora bien, si tenemos la sucesión geométrica $\{a_i\}_{i\in\mathbb{N}}$ y queremos calcular la serie infinita de todos sus elementos basta con que calculemos el límite cuando $n\to \infty$ tiende a infinito de $$\sum_{i=0}^na_i=a_0\frac{r^{n+1}-1}{r-1}.$$

Supogamos que $a_0\neq 0$, pues en otro caso la suma de los términos es igual a $0$. Si $|r|>1$, el numerador diverge y por lo tanto la serie también. Cuando $r=1$, la serie diverge pues cada sumando es igual a $a_0\neq 0$. Cuando $r=-1$, tenemos una serie de términos alternante que no converge, pues es, iteradamente, $a_0,0,a_0,0,\ldots$.

Por otro lado, si $|r|<1$, entonces $r^{n+1}\to 0$. En este caso, la serie converge a $\frac{a_0}{1-r}$.

Aplicación de series geométricas a áreas

Si consideramos la sucesión $\{x^i\}_{i\in\mathbb{N}}$ tenemos que dicha sucesión está dada por $\left\{1, x, x^2, x^3,\ldots\right\}$ la sucesión es geométrica, dado que la razón es $r=x$.

De acuerdo al análisis que hicimos arriba, la serie geométrica finita está dada por

\begin{equation*}
\sum_{i=0}^n x^i=(1)\frac{x^{n+1}-1}{x-1}=\frac{1-x^{n+1}}{1-x}
\end{equation*}

A partir de aquí deducimos que la serie geométrica infinita está dada por

\begin{equation*}
\sum_{i=0}^{\infty} x^i=\lim_{n\to\infty}\frac{1-x^{n+1}}{1-x}=\frac{1}{1-x}
\end{equation*}

solo si $|x|< 1$. En otro caso, la serie diverge.

$\square$

Un problema aplicado a la geometría

Consideremos la siguiente figura, en donde $\triangle ABC$ es un triángulo equilatero y $OA=16$.


Imaginemos que la figura continúa internamente de manera infinita, resultando en una cantidad infinita de triángulos, todos ellos equiláteros. ¿Cuál sería la suma de las áreas de todos los triángulos?

Para ello, primero tendríamos que ver el área de cada triángulo como elemento de una sucesión, la cual parece que será geométrica.

Comencemos calculando el área del $\triangle ABC$. Para ello tenemos que determinar el valor de la altura. Notemos que $CE$ es altura del triángulo, a su vez, $CE=OC+OE$. Como $OC$ es radio de la circunferencia, tenemos que $OC=16$. Sólo falta determinar el valor del segmento $OE$.

Si nos fijamos en $\triangle AOE$, tenemos que es un triángulo rectángulo, además que $AO$ es bisectriz del $\angle A$, así que $\angle OAE=30^o$. Como $\sin30^o=OE/16=1/2$ tenemos entonces que $OE=8$.

Por lo anterior, tenemos que que la altura del $\triangle ABC$ está dada por $h=24$. De una manera similar podemos calcular la base del triángulo, la cual está dada por $b=16\sqrt{3}$. Así, el área del $\triangle ABC$ es $A_0=192\sqrt{3}$.

El área del triángulo inscrito en el $\triangle ABC$ es la cuarta parte de $A_0$, es decir $A_1=\frac{1}{4}A_0$. De manera sucesiva $A_2=\frac{1}{4}A_1$, $A_3=\frac{1}{4}A_2, \ldots$.

Si nos fijamos en la sucesión de las áreas de los triángulos$\{A_i\}_{i\in\mathbb{N}$ tenemos que es geométrica de razón $r=1/4$.

De esta forma, la suma de las áreas de todos los triángulos es una serie geométrica dada por

\begin{align*}
\sum_{i=0}^{\infty} A_i&=\lim_{x\to\infty}(192\sqrt{3})\frac{1-(1/4)^{n+1}}{1-(1/4)}\\
&=(192\sqrt{3})\frac{1}{1-(1/4)}=(192\sqrt{3})(4/3)\\
&=256\sqrt{3}
\end{align*}

$\square$

Aplicación de series geométricas a números perfectos

Un número entero positivo $n$ se dice que es perfecto si la suma de sus divisores sin incluir al mismo $n$ da como resultado $n$. Por ejemplo, el número $6$ es un número perfecto ya que sus divisores sin incluir al mismo $6$ son $1, 2, 3$ y su suma $1+2+3=6$.

Ahora veamos un problema que relaciona a los números perfectos y a las series geométricas.

Problema: Sea $n=2^{p-1}(2^p-1)$, donde $2^p-1$ es primo. Prueba que $n$ es un número perfecto.

Solución: Tenemos que todos los divisores de $n$ sin contar al mismo $n$ están conformados por la unión de las siguientes dos sucesiones finitas.

\begin{align*}
&\{2^i\}_{i=0}^{p-1}=1, 2, 2^2,…,2^{p-1}\\
&\{(2^p-1)2^i\}_{i=0}^{p-2}=(2^p-1), 2^2(2^p-1), 2^3(2^p-1),…, 2^{p-2}(2^p-1)
\end{align*}

Si consideramos la suma de los elementos de cada sucesión

\begin{align*}
&\sum_{i=0}^{p-1}2^i=\frac{2^p-1}{2-1}=2^p-1\\
&\sum_{i=0}^{p-2}2^i(2^p-1)=(2^p-1)\frac{2^p-1}{2-1}=(2^p-1)(2^{p-1}-1)
\end{align*}

Así la suma de todos los divisores de $n$ sin incluir al propio $n$ es

\begin{align*}
(2^p-1)+(2^p-1)(2^{p-1}-1)&=(2^p-1)(1+2^{p-1}-1)\\
&=2^{p-1}(2^p-1)\\
&=n.
\end{align*}

Por lo tanto, tenemos que $n$ es un número perfecto.

$\square$

Otro problema interesante

Problema: Una sucesión está definida por $a_1=2$ y $a_n=3a_{n-1}+1$, encuentra el valor de la suma $$a_1+a_2+a_3+\ldots+a_n.$$

Solución: Notemos que la sucesión que nos dan no es geométrica, dado que no es posible encontrar un número $r$ que funcione como razón. Así que busquemos un patrón que aparezca al realizar las primeras sumas.

\begin{align*}
a_1&=2\\
a_2&=3a_1+1\\
&=3(2)+1\\
a_3&=3a_2+1\\
&=3(3(2)+1)+1\\
&=3^2(2)+3+1\\
a_4&=3a_3+1\\
&=3(3^2(2)+3+1)+1\\
&=3^3(2)+3^2+3+1\\
a_5&=3a_4+1\\
&=3(3^3(2)+3^2+3+1)\\
&=3^4(2)+3^3+3^2+3+1.
\end{align*}

De manera sucesiva, podemos conjeturar y mostrar por inducción que
\begin{align*}
a_n&=3^{n-1}(2)+3^{n-2}+\ldots+3+1\\
&=3^{n-1}(2)+\frac{3^{n-1}-1}{2}\\
&=\frac{5\cdot 3^{n-1}-1}{2}.
\end{align*}

Así que

\begin{align*}
\sum_{i=1}^na_i&=\sum_{i=1}^n \frac{5\cdot 3^{i-1}-1}{2}\\
&=\frac{1}{2}\sum_{i=1}^n 5\cdot 3^{i-1}-1\\
&=\frac{1}{2}\left(5\cdot \frac{3^n-1}{2} – n\right).
\end{align*}

$\square$

Más problemas

Puedes encontrar más problemas de series geométricas en la sección 5.2 del libro Problem Solving through Problems de Loren Larson.

Álgebra Superior II: Problemas de operaciones con polinomios

Por Claudia Silva

Introducción

En una entrada anterior ya construimos el anillo de polinomios con coeficientes reales. Para hacer esto, tomamos las sucesiones que consisten casi de puros ceros, después les definimos las operaciones de suma y producto. Ahora practicaremos estos nuevos conceptos, resolviendo algunos problemas de operaciones con polinomios.

Problema de suma de polinomios

Comenzamos con un ejemplo de suma de polinomios del libro de Álgebra Superior de Bravo, Rincón y Rincón.

Ejercicio 399. Haz la suma de los siguientes polinomios:
\begin{align*}
p(x)&=(-85,0,-37,-35, 97, 50, \overline{0})\\
q(x)&=(56,49,0,57,\overline{0}).
\end{align*}

En el video se hace la suma de dos formas distintas. Primero, se hace la suma directamente de la definición, es decir, sumando los polinomios entrada a entrada como sucesiones. Después, se hace la suma en la notación de $x$ y potencias, que tal vez conozcas mejor.

Es importante entender que la notación de sucesiones sirve para establecer los fundamentos de los polinomios, pero no es práctica para hacer operaciones con polinomios concretas. Dependiendo del tipo de problema que se quiere resolver, a veces hay que usar una notación u otra.

Suma de polinomios

Problemas de producto de polinomios

A continuación se resuelven dos ejercicios de producto de polinomios.

Ejercicio. Multiplicar los polinomios $(2,0,3,\overline{0})$ y $(0,1,\overline{0})$.

En el vídeo se hace la multiplicación usando directamente la definición, paso a paso. Sin embargo, los pasos para realizar la multiplicación se pueden realizar en una tabla, como la que usamos en entradas anteriores. Después del vídeo ponemos la tabla correspondiente a la multiplicación.

Para hacer la multiplicación con una tabla, ponemos a las entradas del primer polinomio en la primer fila de una tabla, y a las del segundo polinomio en la primer columna de la tabla. Luego, hacemos las multiplicaciones «en cada casilla» como sigue:

$2$$0$$3$
$0$$0$$0$$0$
$1$$2$$0$$3$

De aquí, se puede leer el producto «por diagonales». La primer diagonal es $0$, la segunda $2+0=2$, la tercera $0+0=0$ y la cuarta $3$. Concluimos que el polinomio es $$(0,2,0,3,\overline{0}).$$

Veamos un ejemplo más, usando la notación de $x$ y sus potencias.

Ejercicio. Encuentra el producto de polinomios $(1+3x)(1-2x+3x^2)$.

Problema de división de polinomios

Finalmente, hacemos un ejemplo de división de polinomios. La técnica que se hace en el vídeo es la de «dividir con casita», que es una forma visual de representar el algoritmo de la división para polinomios. Hablaremos un poco más adelante de este algoritmo, y de por qué siempre nos da un residuo cero o de grado menor.

Cuando se hace la «división con casita», hay que recordar dejar los espacios correspondientes a los términos que tengan coeficiente $0$.

Ejercicio. Divide el polinomio $x^5+x^3+3x$ entre el polinomio $x^2-x+1$.

División de polinomios

Más adelante…

Aunque esta entrada la dedicamos para que pudieras practicar tus habilidades operando polinomios, te recomendamos seguir practicando, ya que estas operaciones serán la base de la teoría. A partir de aquí veremos los teoremas importantes sobre los polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Realiza la suma $(-10,0,3,-4,1,\overline{0})+(14,0,0,0,-5,0,3,\overline{0})$.
  2. Realiza el producto $(-1,1,\overline{0})(1,1,1,1,\overline{0})$.
  3. Realiza el producto $(x^3+4x^2-3)(2x^2+x-3)$.
  4. Realiza la división $(x^5+3x^4+x^3+5x^2-5x+1)/(x^2+3x-1)$.
  5. Realiza la división $(x^4+2x^3+2x^2+11x)/(x^2+3)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Inmersión de R en R[x], grado y evaluación de polinomios

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada comenzaremos mostrando que podemos usar «la notación de siempre» para los polinomios, usando un símbolo $x$ y potencias. Después de eso, hablaremos del grado de un polinomio y de cómo se comporta con las operaciones que hemos definido. Finalmente, haremos una distinción importante entre los polinomios, y las funciones que inducen.

Como recordatorio, en la entrada anterior definimos a los polinomios y sus operaciones de suma y multiplicación. Para ello, construimos a los polinomios como sucesiones en las que casi todos los términos son $0$. Vimos que bajo estas operaciones se obtiene un dominio entero, es decir, un anillo conmutativo con unidad multiplicativa en donde se vale la regla de cancelación.

Regresando a la notación con $x$ y potencias

Ya dimos cimientos sólidos para construir al anillo de polinomios con coeficientes reales y sus operaciones. Es momento de regresar a la «notación usual» usando $x$ y sus potencias, pues será más práctica en lo que viene.

Para empezar, notemos que a cada real $r$ podemos asociarle el polinomio $(r,\overline{0})$. Esta es una asociación en la que las operaciones de suma y producto de $\mathbb{R}$ se corresponden con las de $\mathbb{R}[x]$.

Observa además que tras esta asociación, el real $0$ es el polinomio $(\overline{0})$ y el real $1$ es el polinomio $(1,\overline{0})$, así que la asociación respeta los neutros de las operaciones. De manera similar se puede mostrar que la asociación respeta inversos aditivos y multiplicativos.

Por esta razón, para un real $r$ podemos simplemente usar el símbolo $r$ para el polinomio $(r,\overline{0})$, y todas las operaciones siguen siendo válidas. Para expresar a cualquier otro polinomio, nos bastará con introducir un símbolo más, y potencias.

Definición. Definimos $x$ como el polinomio $\{0,1,\overline{0}\}$. Para cada natural $n$ definimos $x^n$ como el polinomio $\{a_n\}$ tal que $a_j=1$ si $j=n$ y $a_j=0$ para $j\neq n$.

Ejemplo 1. La definición de arriba implica $x^0=1$ y $x^1=x$. El polinomio $x^3$ es el polinomio $$(0,0,0,1,\overline{0}).$$

$\triangle$

Ejemplo 2. Hagamos la multiplicación de los polinomios $x^2$ y $x^3$. Estos son, por definición, $(0,0,1,\overline{0})$ y $(0,0,0,1,\overline{0})$. Hagamos esta multiplicación con el método de la tabla:

$0$$0$$1$
$0$$0$$0$$0$
$0$$0$$0$$0$
$0$$0$$0$$0$
$1$$0$$0$$1$
Multiplicación de $x^2$ y $x^3$.

El producto es el polinomio $(0,0,0,0,0,1,\overline{0})$, que por definición es el polinomio $x^5$.

$\triangle$

En general, para $m$ y $n$ enteros no negativos se tiene que $x^mx^n = x^{m+n}$, como puedes verificar de tarea moral.

Ya que tenemos al símbolo $x$ y sus potencias, necesitaremos también agregar coeficientes para poder construir cualquier polinomio.

Definición. Dados un polinomio $a:=\{a_n\}$ y un real $r$, definimos al polinomio $ra$ como la sucesión $$ra:=\{ra_n\},$$ es decir, aquella obtenida de multiplicar cada elemento de $a$ por $r$.

Ejemplo 3. Si tomamos al polinomio $$a=\left(0,\frac{1}{2},0,\frac{1}{3},\overline{0}\right)$$ y al real $r=6$, tenemos que $$6a=\left(0,3,0,2,\overline{0}\right).$$

Observa que $3x$ es el polinomio $(0,3,\overline{0})$, que $2x^3$ es el polinomio $(0,0,0,2,\overline{0})$ y que la suma de los dos es precisamente el polinomio $6a$, de modo que podemos escribir $$6a=3x+2x^3.$$

Si tomamos cualquier polinomio $a$ y al real $ 0$, tenemos que $$0a=\{0,0,0,0,\ldots\}=(\overline{0}),$$ es decir, $0a$ es el polinomio cero.

$\triangle$

La siguiente proposición es sencilla y su demostración queda como tarea moral.

Proposición. Para cualquier polinomio $a=\{a_n\}$ en $\mathbb{R}[x]$, los reales $a_0,a_1,\ldots$ son los únicos reales tales que $$a=a_0+a_1x+a_2x^2+a_3x^3+\ldots.$$

Todo lo que hemos discutido en esta sección permite que ahora sí identifiquemos formalmente al polinomio $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ con la expresión $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots$$

y que realicemos las operaciones en $\mathbb{R}[x]$ «como siempre», es decir, sumando coeficientes de términos iguales y multiplicando mediante la distribución y reagrupamiento. Así, a partir de ahora ya no usaremos la notación de sucesiones y simplemente escribiremos a los polinomios con la notación de $x$ y sus potencias. También, favoreceremos llamarles a los polinomios $p(x),q(x),r(x),\ldots$ en vez de $a,b,c,\ldots$.

Ejercicio. Realiza la operación $6(\frac{1}{2}+x)(1+3x^2)$.

Solución. Por asociatividad, podemos hacer primero la primer multiplicación, que da $3+6x$. Luego, multiplicamos este polinomio por el tercer término. Podemos usar las propiedades de anillo para distribuir y agrupar, o bien, podemos seguir usando el método de la tabla.

Cuando hacemos lo primero, queda
\begin{align*}
(3+6x)(1+3x^2)&=3+9x^2+6x+18x^3\\
&=3+6x+9x^2+18x^3.
\end{align*}

Si hacemos lo segundo, tendríamos que hacer la siguiente tabla (¡cuidado con dejar el cero correspondiente al término $x$ del segundo factor!)

$3$$6$
$1$$3$$6$
$0$$0$$0$
$3$$9$$18$
Multiplicación de dos polinomios

Leyendo por diagonales, el resultado es $$3+6x+9x^2+18x^3,$$ tal y como calculamos con el primer método.

$\triangle$

Grado de polinomios

Vamos a definir «grado» para todo polinomio que no sea el polinomio $0$. Es muy importante recordar que el polinomio $0$ no tiene grado.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es de grado $n$ si es de la forma $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ para reales $a_0,\ldots,a_n$ y $a_n\neq 0$. Al grado de $p(x)$ lo denotamos por $\deg(p(x))$.

Por la discusión de la sección anterior, el grado está bien definido. En términos de la sucesión correspondiente al polinomio, su grado es el mayor entero que sea subíndice de una entrada no cero.

Ejemplo 1. El grado del polinomio $p(x)=3$ es $0$. De hecho, todo polinomio que viene de un real tiene grado $0$. Excepto el polinomio $0$.

El grado del polinomio $q(x)=1+2x^3+3x^7$ es $7$.

Sin embargo, el polinomio $r(x)=0$ no tiene grado, pues es el polinomio $0$.

Notemos que el polinomio $s(x)=2+4x$ se escribe como $(2,4,\overline{0})$ en notación de sucesión. La entrada $0 $ es $2$, la entrada $1$ es $4$ y el resto de las entradas son $0$. El grado de $s(x)$ es $1$, que es precisamente la posición de la última entrada distinta de $0$ en su notación de sucesión.

$\triangle$

El siguiente resultado habla de cómo interactúa el grado con operaciones de polinomios.

Proposición. Si $p(x)$ y $q(x)$ son polinomios en $\mathbb{R}[x]$ distintos de cero, entonces:

  • El grado del producto cumple $$\deg(p(x)q(x)) = \deg(p(x))+\deg(q(x)).$$
  • El grado de la suma cumple $$\deg(p(x)+q(x))\leq \max(\deg(p(x)),\deg(q(x))).$$
  • Si $\deg(p(x))>\deg(q(x))$, entonces $$\deg(p(x)+q(x))=\deg(p(x)).$$

Demostración. Supongamos que los grados de $p(x)$ y $q(x)$ son, respectivamente, $m$ y $n$, y que $p(x)$ y $q(x)$ son
\begin{align*}
p(x)&=a_0+a_1x+\ldots+a_mx^m\\
q(x)&=b_1+b_1x+\ldots+b_nx^n.
\end{align*}
La demostración de la primera parte ya la hicimos en la entrada anterior. En la notación que estamos usando ahora, vimos que el coeficiente de $x^{m+n}$ en $p(x)q(x)$ es justo $a_mb_n\neq 0$, y que este es el término de mayor exponente.

Para la segunda y tercera partes, podemos asumir que $m\geq n$. Tenemos que $p(x)+q(x)$ es $$\left(\sum_{i=0}^n (a_i+b_i)x^i\right) + a_{n+1}x^{n+1}+\ldots+a_mx^m.$$ De aquí, se ve que el máximo exponente que podría aparecer es $m$, lo cual prueba la segunda parte.

Para la tercer parte, cuando $m>n$ tenemos que el coeficiente de $x^m$ es $a_m\neq 0$, y que es el término con mayor exponente. Así, el grado de la suma es $m$.

$\square$

La hipótesis adicional del tercer punto es necesaria, pues en la suma de dos polinomios del mismo grado, es posible que «se cancele» el término de mayor grado.

Ejemplo 2. El producto de los polinomios $1+x+x^2+x^3$ y $1-x$ es $1-x^4$. Esto concuerda con lo que esperábamos de sus grados. El primero tiene grado $3$, el segundo grado $1$ y su producto grado $4=3+1$.

La suma de los polinomios $1+\pi x^3 + \pi^2 x^5$ y $1-\pi x^3$ es $2+\pi^2x^5$, que es un polinomio de grado $5$, como esperaríamos por la tercer parte de la proposición.

La suma de los polinomios $4x^5+6x^7$ y $6x^5+4x^7$ es $10x^5+10x^7$. Es de grado $7$, como esperaríamos por la segunda parte de la proposición.

Sin embargo, en la suma de polinomios el grado puede disminuir. Por ejemplo, los polinomios $1+x^3-x^7$ y $1+x^2+x^7$ tienen grado $7$, pero su suma es el polinomio $2+x^2+x^3$, que tiene grado $3$.

$\triangle$

Evaluación de polinomios e introducción a raíces

Es importante entender que hay una diferencia entre un polinomio, y la función que induce. Por la manera en que definimos a los polinomios, «en el fondo» son sucesiones, incluso con la nueva notación de $x$ y potencias. Sin embargo, cualquier polinomio define una función.

Definición. Si tenemos un polinomio $$p(x)=a_0+a_1x+\ldots+a_nx^n$$ en $\mathbb{R}$, éste define una función aplicar $p$ que es una función $f_p:\mathbb{R}\to \mathbb{R}$ dada por $$f_p(r)=a_0+a_1r+a_2r^2+\ldots+a_nr^n$$ para todo $r\in \mathbb{R}$.

Ejemplo 1. El polinomio $p(x)=3x^2+4x^3$ induce a la función $f_p:\mathbb{R}\to \mathbb{R}$ tal que $f_p(r)=3r^2+4r^3$. Tenemos, por ejemplo, que $$f_p(1)=3\cdot 1^2 + 4\cdot 1^3 = 7$$ y que $$f_p(2)=3\cdot 2^2 + 4\cdot 2^3=44.$$

$\triangle$

Como las reglas de los exponentes y la multiplicación por reales funciona igual en $\mathbb{R}$ que en $\mathbb{R}[x]$, la evaluación en un real $r$ obtiene exactamente lo mismo a que si simplemente reemplazamos $x$ por $r$ y hacemos las operaciones. Por ello, usualmente no distinguimos entre $p(x)$ y $f_p$, su función evaluación, y para un real $r$ usamos simplemente $p(r)$ para referirnos a $f_p(r)$.

De manera totalmente análoga, podemos pensar a $p(x)$ como una función $p:\mathbb{C}\to \mathbb{C}$. También, como comentamos al inicio, podemos definir a los polinomios con coeficientes complejos, es decir a $\mathbb{C}[x]$, y pensarlos como funciones.

Es momento de introducir una definición clave para lo que resta del curso.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ o $\mathbb{C}[x]$ y sea $r$ un real o complejo. Decimos que $r$ es una raíz de $p(x)$ si $p(r)=0$.

Ejemplo 2. El polinomio $p(x)=3$ no tiene raíces, pues para cualquier real o complejo $r$ se tiene $p(r)=3\neq 0$. Por otro lado, cualquier real o complejo es raíz del polinomio $z(x)=0$.

El polinomio $q(x)=x^2+1$ no tiene raíces en $\mathbb{R}$ pues $q(r)\geq 1$ para cualquier real $r$. Pero sí tiene raíces en $\mathbb{C}$, pues $$q(i)=i^2+1=-1+1=0.$$

El polinomio $s(x)=x(x-1)(x-1)=x^3-2x^2+x$ tiene como únicas raíces a $ 0$ y $1$, lo cual se puede verificar fácilmente antes de hacer la multiplicación. Esto debería darnos la intuición de que conocer a las raíces de un polinomio nos permite factorizarlo y viceversa. Esta intuición es correcta y la formalizaremos más adelante.

$\triangle$

Cuando hablamos de los números complejos, vimos cómo obtener las raíces de los polinomios de grado $2$, y de los polinomios de la forma $x^n-a$ en $\mathbb{C}$. La mayor parte de lo que haremos de aquí en adelante en el curso será entender a las raíces reales y complejas de más tipos de polinomios.

Más adelante…

Ya que hemos formalizado la notación estándar que conocemos de los polinomios, su estudio podrá ser más cómodo, hacemos énfasis en que casi todas las definiciones que dimos en esta sección se apoyaros simplemente en un uso adecuado de la notación; por lo que no hay que perder de vista que en el fondo, los polinomios siguen siendo sucesiones de números, y que el símbolo $x$ solo es una forma de representar la sucesión $(0,1,\overline{0})$.

Aun así, hemos justificado que este cambio de notación no tiene nada que envidiar a la notación original, por lo que en las siguientes entradas, ocuparemos la notación más familiar, lo cual será una pieza clave, para hacer más legibles las demostraciones en las siguientes entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Pasa el polinomio $(0,0,0,0,4,0,3,\overline{0})$ a notación con $x$ y potencias. Luego, pasa el polinomio $1-x^3+x^6-x^9$ a notación de sucesión. Suma ambos polinomios y exprésalos en notación con $x$. Multiplícalos usando distribución y agrupamiento. Multiplícalos usando una tabla.
  2. Prueba usando la definición de multiplicación y de $x^n$ que para $m$ y $n$ enteros no negativos se tiene que $x^{m+n}= x^m x^n$.
  3. Toma $P_1(x),\ldots,P_m(x)$ polinomios en $\mathbb{R}[x]$ de grado $n_1,\ldots,n_m$ respectivamente. ¿Cuál es el grado de $P_1(x)+\ldots+P_m(x)$? ¿Y el grado de $P_1(x)\cdot \ldots \cdot P_m(x)$?
  4. Usando distribución y agrupamiento, muestra que para cada entero positivo $n$ se cumple que $$(1-x)(1+x+x^2+\ldots+x^{n-1})=1-x^n.$$
  5. Justifica que si $r(x)$ es un polinomio y $f_r$ es la función aplicar $r$, entonces para cualesquiera polinomios $p(x)$ y $q(x)$, se tiene que $f_p+f_q=f_{p+q}$ y que $f_pf_q=f_{pq}$.

Para practicar la aritmética de polinomios, puedes ir a la sección correspondiente de Khan Academy.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»