Archivo de la categoría: Sin clasificar

Ecuaciones Diferenciales I – Videos: Ecuación diferencial de Euler

Por Eduardo Vera Rosales

Introducción

En la entrada anterior desarrollamos la teoría de soluciones en series de potencias alrededor de un punto ordinario de la ecuación diferencial $$a_{0}(t)\frac{d^{2}{y}}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0.$$ En cierta forma el teorema de existencia de soluciones con desarrollo en series de potencias alrededor del punto ordinario que probamos nos facilitó las cosas.

Sin embargo, cuando tenemos puntos singulares la teoría falla. Es por eso que debemos encontrar un método alternativo para estudiar soluciones alrededor de puntos singulares a nuestra ecuación diferencial. Antes de comenzar de manera general, lo primero que haremos será considerar una ecuación diferencial en particular, con $t_{0}=0$ como punto singular, la cual es bastante sencilla de resolver: esta es la ecuación de Euler, debido al famoso matemático Leonhard Euler (si no lo conoces o quieres saber acerca de él, te dejo el siguiente enlace a su biografía), y que tiene la forma $$t^{2}\frac{d^{2}{y}}{dt^{2}}+\alpha t\frac{dy}{dt}+\beta y=0$$ donde $\alpha$ y $\beta$ son constantes.

Resolveremos esta ecuación y en la próxima entrada trataremos de generalizar este mismo resultado a una clase más general de ecuaciones con puntos singulares.

Vamos a comenzar!

Leonhard Euler
Leonhard Euler. Blog de matemática y TIC’s (2018).

Ecuación de Euler

En el primer video resolvemos de manera general la ecuación de Euler para cualquier intervalo que no contenga al punto singular $t_{0}=0$, y en el segundo video resolvemos un ejemplo particular de este tipo de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que si $(\alpha -1)^{2}-4\beta=0$ entonces $W[t^{r_{1}}, t^{r_{1}}\ln{t}]\neq0$, donde $r_{1}$ es la única raíz de la ecuación cuadrática $r^{2}+(\alpha -1)r+\beta=0$. Por tanto, la solución general a la ecuación de Euler cuando $(\alpha -1)^{2}-4\beta=0$ y $t>0$ es $y(t)=c_{1}t^{r_{1}}+c_{2}t^{r_{1}}\ln{t}$.
  • Si $(\alpha -1)^{2}-4\beta<0$ entonces las raíces $r_{1}$ y $r_{2}$ a la ecuación $r^{2}+(\alpha -1)r+\beta=0$ son complejas. Prueba que $t^{r_{1}}$ y $t^{r_{2}}$ son efectivamente soluciones a la ecuación de Euler, y que además son linealmente independientes. Por tanto, la solución general a la ecuación de Euler cuando $(\alpha -1)^{2}-4\beta<0$ y $t>0$ es $y(t)=c_{1}t^{r_{1}}+c_{2}t^{r_{2}}$. (Sigue el hint dado en el video para hacer las cuentas más sencillas).
  • La solución general encontrada en el problema anterior es una función de variable compleja. Haz elecciones adecuadas de $c_{1}$ y $c_{2}$ para ver que si $r_{1}=a+bi$ y $r_{2}=a-bi$, entonces $t^{a}cos(b\ln{t})$ y $t^{a}sin(b\ln{t})$ son soluciones a la ecuación de Euler para el caso del ejercicio anterior. Prueba que éstas son soluciones linealmente independientes, y por tanto $y(t)=k_{1}t^{a}cos(b\ln{t})+k_{2}t^{a}sin(b\ln{t})$ es solución general a la ecuación de Euler, donde $y$ es una función de valores reales.
  • Resolver la ecuación $$t^{2}\frac{d^{2}{y}}{dt^{2}}+2t\frac{dy}{dt}+4y=0$$ tanto para $t>0$ como para $t<0$.
  • Resuelve el problema de condición inicial $$t^{2}\frac{d^{2}{y}}{dt^{2}}-7t\frac{dy}{dt}+9y=0; \,\,\,\,\, y((1)=0, \frac{dy}{dt}(1)=2, t>0.$$

Más adelante

Una vez que hemos encontrado la solución general a la ecuación de Euler, lo siguiente tratar de utilizar este mismo método para resolver una clase más general de ecuaciones diferenciales con puntos singulares. Dado que algunas de estas ecuaciones serán bastante complicadas de resolver, clasificaremos los puntos singulares en dos tipos: regulares e irregulares, y nos enfocaremos exclusivamente a resolver ecuaciones diferenciales alrededor de puntos singulares regulares.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales de segundo orden con coeficientes variables. Solución por series de potencias cerca de un punto ordinario

Por Eduardo Vera Rosales

Introducción

A lo largo de las entradas anteriores que forman parte de la segunda unidad hemos estudiado a detalle ecuaciones lineales de segundo orden con coeficientes constantes, es decir, ecuaciones de la forma $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t), \,\,\,\,\, a\neq 0$$ y hemos desarrollado diversos métodos para resolverlas. Es momento de revisar ecuaciones lineales de segundo orden, pero ahora con coeficientes variables, es decir, del tipo $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t).$$

Hallar soluciones para este tipo de ecuaciones no resulta tan sencillo como para el caso con coeficientes constantes, y en ocasiones no podremos encontrar soluciones en términos de funciones elementales como polinomios, exponenciales, trigonométricas, etc., por lo que una manera de hallar soluciones es suponiendo que la solución puede escribirse como una serie de potencias alrededor de un punto dado.

Estudiaremos entonces soluciones por series de potencias en dos tipos de puntos: cuando los coeficientes tienen desarrollo en series de Taylor alrededor del punto dado, y cuando lo anterior no ocurre. En particular, en esta entrada revisaremos el primer caso. Definiremos los conceptos de puntos ordinarios y singulares, y demostraremos la existencia de soluciones en series de potencias cerca de un punto ordinario,.

¡Manos a la obra!

Soluciones en series de potencias cerca de un punto ordinario

En el primer video ofrecemos la definición de puntos ordinarios y puntos singulares, y probamos la existencia de soluciones en series de potencias cerca de un punto ordinario, a la ecuación diferencial $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0.$$ La solución encontrada será, además, la solución general a la ecuación diferencial.

Radio de convergencia de la solución en serie de potencias cerca de un punto ordinario

En el segundo video de la entrada encontramos el radio de convergencia para la solución en serie de potencias cerca de un punto ordinario.

Ejemplos

En el último video de la entrada resolvemos un par de ejemplos de ecuaciones diferenciales con coeficientes variables, con el método desarrollado a lo largo de esta misma entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Qué sucede si suponemos que $a_{0}=0$ en la demostración del primer video?
  • ¿Qué pasa si suponemos que $c=1$ en la demostración del primer video?
  • Prueba que las series de potencias que aparecen en la solución general a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}-ty=0$$ son soluciones particulares a la misma ecuación, y que estas son linealmente independientes. Por tanto, la solución general efectivamente lo es para la ecuación diferencial.
  • Encuentra la solución general a la ecuación $$\frac{d^{2}y}{dt^{2}}-y=0$$ usando series de potencias alrededor de $t_{0}=0$.
  • Encuentra la solución al problema de valor inicial $$\frac{d^{2}y}{dt^{2}}-ty=0$$ $$y(1)=0; \,\,\,\,\, \frac{dy}{dt}(1)=2$$ calculando una solución por serie de potencias alrededor de $t_{0}=1$.

Más adelante

Terminamos de estudiar las soluciones cerca de un punto ordinario. Lo siguientes será revisar el caso cuando el punto en cuestión no es un punto ordinario, es decir, es un punto singular de nuestra ecuación diferencial $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0.$$

Pero antes analizaremos un caso particular sencillo de resolver: la ecuación de Euler que tiene la forma $$t^{2}\frac{d^{2}y}{dt^{2}}+\alpha t\frac{dy}{dt}+\beta y=0.$$

A partir de la solución para esta ecuación podremos generalizar más adelante el método a una clase más general de ecuaciones diferenciales con puntos singulares.

¡No se lo pierdan!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de segundo orden. Solución por coeficientes indeterminados

Por Eduardo Vera Rosales

Introducción

En la entrada anterior resolvimos ecuaciones lineales no homogéneas de segundo orden por el método de variación de parámetros. Como pudiste advertir después de resolver algunas ecuaciones por dicho método, las integrales que se deben resolver para encontrar la solución particular $y_{P}$ a la ecuación diferencial no homogénea son, en muchos casos, bastante complicadas. Es por eso que debemos hallar otros métodos para solucionar este problema.

El método que presentaremos en esta entrada recurre a la forma que presenta la función $g(t)$ en la ecuación diferencial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t)$$ donde $a$, $b$ y $c$ son constantes y $a\neq0$. Si $g(t)$ es el producto de funciones polinómicas, exponenciales, $\cos{\beta t}$ o $\sin{\beta t}$, entonces podremos conjeturar la forma de la solución particular gracias a que las derivadas de dichas funciones tienen la misma forma. A este método lo llamaremos coeficientes indeterminados.

Vamos a comenzar!

Consideraciones generales y caso cuando $g$ es un polinomio

En el video describimos de manera general el método de coeficientes indeterminados, y revisamos el caso cuando $g(t)$ es un polinomio de grado $n$. Finalizamos el video con un ejemplo.

Caso cuando $g$ es producto de un polinomio y una función exponencial

En el video encontramos una solución particular a la ecuación diferencial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=(\sum_{k=0}^{n} a_{k}t^{k})e^{rt}, \,\,\,\,\, r\neq0$$ y resolvemos un ejemplo referente al caso.

Caso cuando $g$ es producto de un polinomio y una función seno o coseno

Finalizamos el tema considerando el caso cuando la función $g(t)$ es el producto de un polinomio y una función $\sin{\beta t}$ o una función $\cos{\beta t}$. En el segundo video aplicamos el método de coeficientes indeterminados para resolver la ecuación diferencial $$m\frac{d^{2}y}{dt^{2}}+ky=F_{0}\cos{\omega t}$$ donde $\omega=\sqrt{\frac{k}{m}}$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que si $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}=\sum_{k=0}^{n} a_{k}t^{k}$$ entonces $$y_{P}(t)=t[\sum_{k=0}^{n} A_{k}t^{k}]$$ es solución particular a la ecuación diferencial, mostrando también que se pueden encontrar expresiones para cada $A_{k}$.
  • Encuentra una solución particular $y_{P}(t)$ para la ecuación $$\frac{d^{2}y}{dt^{2}}-5\frac{dy}{dt}=2t^{3}-4t^{2}-t+6$$ por el método de coeficientes indeterminados.

Considera la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=(\sum_{k=0}^{n} a_{k}t^{k})e^{rt}, r\neq0.$$ Muestra lo siguiente:

  • Si $$ar^{2}+br+c\neq0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
  • Cuando $$ar^{2}+br+c=0, \,\,\,\,\, 2ar+b\neq0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=t(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
  • Si $$ar^{2}+br+c=0, \,\,\,\,\, 2ar+b=0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=t^{2}(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$

Hint: Supón que $y_{P}(t)=e^{rt}u(t)$ es solución particular, y considera la ecuación $$a\frac{d^{2}u}{dt^{2}}+(2ar+b)\frac{du}{dt}+(ar^{2}+br+c)u=\sum_{k=0}^{n} a_{k}t^{k}$$ (revisa el segundo video para mayor detalle). Posteriormente recuerda cómo son las soluciones a la ecuación homogénea asociada (te sugiero revisar la siguiente entrada en caso necesario) y concluye la forma de $y_{P}$.

  • Encuentra una solución particular a la ecuación $$\frac{d^{2}y}{dt^{2}}-y=t^{2}e^{t}.$$
  • Encuentra la solución general a la ecuación diferencial $$4\frac{d^{2}y}{dt^{2}}+16y=10\cos{2t}.$$

Más adelante

Hemos concluido el estudio a las ecuaciones lineales con coeficientes constantes, tanto homogéneas como no homogéneas. Es momento de revisar el caso cuando las funciones $a_{0}$, $a_{1}$ y $a_{2}$ de la ecuación $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t)$$ son no constantes. A este tipo de ecuaciones les llamaremos ecuaciones lineales de segundo orden con coeficientes variables.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Probabilidad I-Videos: Definición de variable aleatoria

Por Aurora Martínez Rivas

Introducción

En muchos experimentos estaremos interesados más que en el experimento en sí mismo, en alguna consecuencia de su resultado aleatorio. Tales consecuencias pueden valorarse en términos numéricos, es decir podemos asociar a los resultados aleatorios un número real y esto puede considerarse como una función que mapea al espacio muestral en la recta real.

Estas funciones se denominan «variables aleatorias».

Variables aleatorias

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $X:\Omega\rightarrow\mathbb{R}$ una función y sean $x\le\ y$ dos números reales. Demuestre que $(X\le\ x)\subseteq(X\le\ y)$.
  • Sea $\mathcal{F}$ la familia de todos los subconjuntos de $\Omega$, Demuestra cualquier función $X:\Omega\rightarrow\mathbb{R}$ es una variable aleatoria.
  • Sea $\Omega=\left \{ a,b,c,d,e,f \right \}$ con $\mathcal{F}=\left \{ \emptyset,\left \{ a.c.e \right \} ,\left \{ b,d,f \right \} ,\Omega \right \}$ y sea $X(\omega)=\omega$. Determina si $X$ es una variable aleatoria y justifica por qué.
  • Sea $A$ un evento, es decir, $A\in\mathcal{F}$ y sea $X$ una función tal que $$\\ X(\omega)= \left \{ \begin{matrix} 1 & \mbox{si }\omega\in A \\ 0 & \mbox{si }\omega\notin A \end{matrix} \right.$$ demuestra que $X$ es una variable aleatoria..
  • Sean $X$ y $Y$ variables aleatorias, demuestra que:
    • $X+Y$ es una variable aleatoria.
    • $XY$ es una variable aleatoria.
    • Si $Y\neq0$ entonces $X/Y$ es variable aleatoria.

Más adelante…

Para especificar las probabilidades de los valores de las variables aleatorias tan diversificadas y poder especificarlas de la misma manera, introducimos a continuación en la teoría de la probabilidad el concepto de función de distribución de una variable aleatoria.

Entradas relacionadas

Probabilidad I-Videos: Axiomas de la probabilidad y propiedades

Por Aurora Martínez Rivas

Introducción

Anteriormente vimos que los eventos pueden verse como subconjuntos del espacio muestral , sin embargo, no necesariamente todos los subconjuntos del espacio muestral son eventos. En este video se analizaran varias definiciones que nos permitirán formalizar ideas que hasta el momento son muy vagas, entre estas las condiciones que se deben cumplir para poder hablar de un evento, una medida de probabilidad, un espacio de probabilidad y algunas propiedades elementales.

Axiomas de la probabilidad y propiedades

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Si $P(A)$ es la probabilidad de que un evento A ocurra, prueba que para $A_1,A_2,\ldots, A_n$ eventos, se cumple que: $\begin{multline*}P\left(\bigcup_{i=1}^{n}A_i\right)=\sum_{i=1}^{n}P\left(A_i\right)- \sum_{i<j\le n}P\left(A_i\bigcap A_j\right)+\\ \sum_{i<j<k\le n }P\left(A_i\bigcap A_j\bigcap A_k\right)+\ldots+\left(-1\right)^{n+1}P(A_1\bigcap A_2\bigcap\ldots\bigcap A_n)\end{multline*}$.
  • Muestra que $P\left(\bigcup_{i=1}^{n}A_i\right)\le\sum_{i=1}^{n}P\left(A_i\right)$.
  • Sean $A_r,\ \ r\geq1$, eventos tales que $P\left(A_r\right)=1$ para toda $r$. Prueba que $P\left(\bigcap_{r=1}^{\infty}A_r\right)=1$.
  • Prueba que $P\left(\bigcap_{i=1}^{\infty}A_i\right)\geq\ \sum_{i=1}^{n}P\left(A_i\right)-(n-1)$.
  • Prueba que $P\left(A\cap B\right)-P\left(A\right)P\left(B\right)=P\left(\left(A\cup B\right)^c\right)-P\left(A^c\right)P\left(B^c\right)$.

Más adelante…

Cuando nos interesa la probabilidad de un evento asociado a un experimento aleatorio, en ocasiones es necesario encontrar dicha probabilidad, dada la condición suplementaria de que ha ocurrido algún otro evento asociado al experimento aleatorio. Llamaremos a tales probabilidades condicionales, hablaremos más de estas en el siguiente video.

Entradas relacionadas