Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Moderna I: Subgrupo Conmutador

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Vamos a ver una aplicación importante del grupo cociente. Sabemos que podemos dividir a los enteros en impares e impares. Esto se representa con $\z_2 = \{\bar{0}, \bar{1}\}$, donde todos los pares quedan identificados por $\bar{0}$ y los impares por $\bar{1}$. Esto es el objetivo del grupo cociente que definimos en la entrada anterior, identificar elementos en una misma clase lateral.

Ahora, si queremos traducir esto a un grupo general $G$, necesitamos sacar el cociente módulo un subgrupo $H$, entonces cada $h\in H$ es un representante de esta clase de equivalencia, de modo que todos los elementos de $H$ se identificarán entre sí, en particular, todos los elementos de $H$ quedarán identificados con el neutro $e$ de $H$ ya que $hH = eH$.

Por otro lado, recordemos que en general el grupo no es abeliano, es decir no sucede que $ab = ba$ para $a,b \in G$. Pero si tomamos $H \unlhd G$ de modo que $ab \in H$ y $ba \in H$, entonces $abH = baH$ y las clases representadas por $ab$ y $ba$ serán la misma, por lo que $aH$ y $bH$ conmutarán en el cociente. Si recordamos la relación de equivalencia definida en entradas anteriores podemos obtener las siguientes equivalencias,
\begin{align*}
abH = baH \Leftrightarrow (ab)^{-1}ba = b^{-1}a^{-1}ba \in H.
\end{align*}

Como nos interesa que $G/H$ sea abeliano, necesitamos que la palabra $b^{-1}a^{-1}ba \in H$ para toda $a,b \in G$. Esto nos obliga a que el conjunto $\{b^{-1}a^{-1}ba | a,b \in G \}$ esté contenido en $H$. En general, este conjunto no es necesariamente un grupo, pero podemos considerar el generado y así, nos interesaría que el generado esté contenido en $H$:
$$\left< b^{-1}a^{-1}ba | a,b \in G \right> \subseteq H.$$

El objetivo de esta entrada es definir primero al conmutador de $a$ y $b$. Luego, definir al generado por la colección de todos los conmutadores en el grupo. Todo esto con el objetivo de construir un grupo cociente abeliano, aunque $G$ no lo sea.

Subgrupo conmutador de $G$

Definción. Sea $G$ un grupo, $a,b\in G$. El conmutador de $a$ y $b$ es $$[a, b]= aba^{-1}b^{-1}.$$

El subgrupo conmutador de $G$ es $$G’ = \left< [a,b] | a, b\in G \right>.$$

Observación 1. $G’ = \{e\}$ si y sólo si $G$ es abeliano.

Demostración.

\begin{align*}
G’ = \{e\} &\Leftrightarrow [a,b]= e \quad \forall a,b \in G \Leftrightarrow aba^{-1}b^{-1} = e \quad \forall a,b \in G\\
&\Leftrightarrow ab = ba \quad \forall a,b\in G \Leftrightarrow G \text{ es abeliano.}
\end{align*}

$\blacksquare$

Esa observación nos dice intuitivamente que entre más grande sea el conmutador, $G$ está más alejado de ser abeliano.

Observación 2. El inverso de un conmutador es un conmutador.

La demostración queda como tarea moral.

Observación 3. El conmutador es un subgrupo normal de $G$, es decir, $G’\unlhd G$.

Demostración.
Para probar que el conmutador es un subgrupo normal, necesitamos ver que $G’$ es cerrado bajo conjugación. Pero como los elementos de $G’$ son palabras donde las letras son conmutadores o sus inversos, y por la observación anterior son palabras donde las letras son conmutadores, entonces basta ver que al conjugar un conmutador obtenemos un elemento en $G’$, es decir que $g[a,b]g^{-1} \in G’$ para todos $g,a,b\in G$.

Sean $a,b,g\in G$.

\begin{align*}
g[a,b] g^{-1} = gaba^{-1}b^{-1}g^{-1}.\\
\end{align*}
Para ver que este elemento está en $G’$ debemos ver a $gaba^{-1}b^{-1}g^{-1}$ como un producto de conmutadores, para eso agregaremos al neutro antes de $b^{-1}g^{-1}$, con el neutro expresado como $g^{-1}b^{-1}bg$. Luego, nos fijamos qué términos dan lugar a conmutadores y obtenemos lo siguiente:
\begin{align*}
g[a,b] g^{-1} &= gaba^{-1}b^{-1}g^{-1}\\
&= gaba^{-1}\,(g^{-1}b^{-1}bg)\,b^{-1}g^{-1} \\
&= (ga)b(ga)^{-1} b^{-1} bgb^{-1}g^{-1} \\
&= [ga,b]\,|\,[b,g]\in G’
\end{align*}

Por lo tanto $G’ \unlhd G$.

$\blacksquare$

Condiciones sobre un subgrupo para que el cociente sea abeliano

Teorema. Sea $G$ un grupo, $H$ un subgrupo de $G$. Tenemos que

$G’\subseteq H$ si y sólo si, $H \unlhd G$ y $G/H$ es abeliano.

Demostración.
Sea $G$ un grupo $H\leq G$.

$|\Rightarrow]$ Supongamos que $G’ \subseteq H.$

P.D. $H\unlhd G$.
Sean $h\in H$, $g\in G$.
P.D. $ghg^{-1}\in H$

Sabemos que $ghg^{-1}h^{-1} = [g, h] \in G’$ por definición de conmutador, y por hipótesis $G’ \subseteq H$. Así, $ghg^{-1}h^{-1}\in H$.

Luego, nombremos $ghg^{-1}h^{-1} = \tilde{h}$ con $ \tilde{h} \in H$. Despejando lo que nos interesa, obtenemos $ghg^{-1} = \tilde{h}h\in H$. Con esto probamos que todo conjugado de $H$ sigue viviendo en $H$.

Por lo tanto $H \unlhd G$.


P.D. $G/H$ es abeliano.

Sean $a,b\in G$.

\begin{align*}
a^{-1}b^{-1} ab &=a^{-1}b^{-1} (a^{-1})^{-1}(b^{-1})^{-1} = \lceil a^{-1}, b^{-1} \rceil \in G’ \subseteq H \Rightarrow a^{-1}b^{-1}ab\in H \\
& \Rightarrow (ba)^{-1} ab\in H \Rightarrow baH = ab H \\
& \Rightarrow bHaH=aHbH.
\end{align*}

Como $aH$ y $bH$ son clases arbitrarias en $G/H$, concluimos que $G/H$ es abeliano.

$[\Leftarrow|$ Supongamos que $H \unlhd G$ y $G/H$ es abeliano.

Tomemos $a,b\in G$ arbritrarios.

Como $G/H$ es abeliano, entonces $a^{-1}Hb^{-1}H = b^{-1}Ha^{-1}H$, es decir $a^{-1}b^{-1}H = b^{-1}a^{-1}H.$ Entonces $(b^{-1}a^{-1})^{-1}a^{-1}b^{-1}\in H$, pero $(b^{-1}a^{-1})^{-1}a^{-1}b^{-1}=aba^{-1}b^{-1}=[a, b]$, entonces $[a, b]\in H$ para todos $a,b\in G$.

Así $G’ \subseteq H$.

$\blacksquare$

Ejemplo

Para terminar, veamos un ejemplo sencillo pero importante.

Tomemos $S_3$ y $A_3$.

Sabemos que $A_3 \unlhd S_3$ y $S_3/A_3 = \{A_3, (1\;2) A_3\}$ que es abeliano. De hecho, en la entrada anterior analizamos el caso general, puedes verificar cómo es la operación del grupo cociente con la tabla que dimos y verificar que $S_3/A_3 $ que es abeliano.

Entonces $S_{3}’ \subseteq A_3 = \{(1), (1\;2\;3),(1\;3\;2)\}$.

Como $S_3$ no es abeliano, por la observación que dimos $S’_3 \neq \{(1)\}$. Concluimos que $S’_3=A_3.$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que el inverso de un conmutador también es un conmutador.
  2. Sea $D_{2(4)} = \{\text{id}, a, a^2, a^3, b, ab, a^2b, a^3b\}$ el grupo diédrico formado por las simetrías de un cuadrado, con $a$ la rotación de $\frac{\pi}{2}$ y $b$ la reflexión con respecto al eje x.
    1. Calcula el cociente de $D_{2(4)}$ módulo $\left< a^2 \right>$.
    2. Encuentra $D_{2(4)}’$.
  3. Sea $G$ un grupo, $H$ y $K$ subgrupos normales de $G$ tales que $G/H$ y $G/K$ son abelianos, ¿es entonces $G/H\cap K$ abeliano?

Más adelante…

¡Felicidades! Esta es la última entrada de la unidad 2. Esta unidad se trató de definir nuevas estructuras que nos ayudan para describir mejor a los grupos y subgrupos. Hablamos sobre el orden del grupo y extendimos propiedades de los enteros hacia la generalidad de los grupos, como separar un grupo en clases de equivalencia. La siguiente entrada introduce la tercera unidad de este curso y presenta un tema nuevo: unas funciones que «respetan» o «abren» operaciones.

Entradas relacionadas

Álgebra Moderna I: Grupo Cociente

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

La definición de subgrupos normales fue motivada porque queremos extraer las propiedades de los enteros a grupos más generales. Recordemos que en los enteros se define una relación de equivalencia (módulo $n$) de donde obtenemos clases de equivalencia. Estas clases no sólo inducen una partición, si no que conforman un subgrupo de $\z$. En esta entrada queremos generalizar esta idea y buscamos dar una operación en ciertas clases de equivalencia de modo que éstas formen también un grupo.

Grupo cociente $G$ módulo $N$

Teorema. Sea $G$ un grupo, $N$ un subgrupo normal de $G$.

El conjunto
$$G/N = \{aN | a\in G\}.$$
con la operación $$(aN)(bN) = ab N \qquad \forall a,b \in G$$
es un grupo de orden $[G : N ].$

Definición. Al conjunto $G/N$ de arriba se le conoce como el grupo cociente $G$ módulo $N$.

Demostración del teorema.

Sea $G$ un grupo, $N$ un subgrupo normal de $G$.

En $\{aN|a\in G\}$ consideremos la operación $$(aN)(bN) = ab N \qquad \forall a,b \in G.$$

Primero veamos que está bien definida.
Sean $a,a’,b,b’\in G$ con $aN = a’N$, $bN = b’N$.
P.D. $abN = a’b’N.$

Como $aN = a’N$, $a’ \in aN$ entonces $a’ = an$ con $n\in \n$.

Como $bN = b’N$, $b’ \in bN$ entonces $b’=b\tilde{n}$ con $\tilde{n} \in N$.

Sustituyendo $a’$ y $b’$ en $a’b’$ tenemos que $a’b’ = (an)(b\tilde{n}) = a(nb)\tilde{n}$.

Como $N \unlhd G$, por la conmutatividad parcial, $nb = b\hat{n}$ con $\hat{n}\in N$.
Entonces $a’b’ = a(b\hat{n})\tilde{n} = ab(\hat{n}\tilde{n}) \in abN$.

Por lo tanto $a’b’N = abN.$

Veamos ahora que con esta operación, $G/N$ es un grupo.

P.D. La operación es asociativa.
Sean $aN, bN, cN \in G/N$ con $a,b,c \in G$.

\begin{align*}
aN\,(bN \,cN) &= aN(bcN) = a(bc)N & \text{Definición del producto de clases}\\
&=(ab)c N &\text{Asociatividad en } G \\
&= (abN)cN = (aNbN)cN.
\end{align*}

Por lo tanto la operación en $G/N$ es asociativa.

P.D. El neutro de la operación existe y está en $G/N$.
Sea $aN\in G/N$,
\begin{align*}
&N(aN) = (eN)(aN) = eaN = aN &\text{Neutro en } G\\
&(aN)N = (aN)(eN) = aeN = aN&\text{Neutro en } G
\end{align*}

Por lo tanto $N$ es neutro en $G/N$.

P.D. Para cada elemento en $G/N$ existe un inverso bajo la operación y este inverso está en $G/N$.
Dado $aN\in G/N$, como $a\in G$ consideremos $a^{-1} \in G$ su inverso en $G$.

\begin{align*}
(aN)(a^{-1} N) = a a^{-1} N = eN = N\\
(a^{-1}N)(aN) = a^{-1} a N = eN = N.
\end{align*}

Así $a^{-1}N$ es inverso de $aN$. Por lo tanto $G/N$ es un grupo.

Finalmente,
$$|G/N| = \#\{aN | a\in G\} = [G : N ].$$

$\blacksquare$

Notemos que en la demostración de que $G/N$ con el producto es un grupo, usamos solamente las propiedades de que $G$ es grupo.

Primer y segundo ejemplo

Ahora veremos algunos ejemplos de grupo cociente.

El primer ejemplo es justo el que motivó la idea de grupo cociente.
Tomemos $(\z, +)$ y $H = \{m | 4 \text{ divide a } m\} = 4\z \unlhd \z$. $4\z$ es normal porque $\z$ es abeliano.
Entonces, vamos describiendo el grupo cociente paso por paso:
\begin{align*}
\z/4\z &= \z/H = \{H, 1+ H, 2 + H, 3 + H\}\\
& = \{\{4k\,|k\in\z\}, \{4k + 1|k\in\z\}, \{4k+2|k\in\z\},\{4k+3|k\in\z\}\}\\
& = \{\bar{0},\bar{1},\bar{2}, \bar{3}\} = \z_4.
\end{align*} La suma se realiza a partir de la suma de los representantes del siguiente modo: $$(a+H)+(b+H)=(a+b)+H,$$ es decir $$\bar{a}+\bar{b}=\overline{a+b},$$ para cualesquiera $a,b\in\z$.

Ahora, para el segundo ejemplo, consideremos $n\geq2$ y tomamos $A_n \unlhd S_n$. En la entrada anterior vimos por qué $A_n$ es un subgrupo normal de $S_n$.
De nuevo, vamos describiendo el grupo cociente.
\begin{align*}
S_n/A_n &= \{A_n, (1\;2) A_n\}\\ &= \{\{\alpha\,|\alpha \text{ es par}\},\{(1\;2)\alpha\,|\alpha \text{ es par}\}\}\\
&= \{\{\alpha\,|\alpha \text{ es par}\},\{\beta\,|\beta \text{ es impar}\}\}.
\end{align*}

En la tabla se muestra el resultado del producto de los elementos de $S_n/A_n$. Podemos observar que $A_n$ funge como neutro.

Representación gráfica de la partición de $S_n$ en permutaciones pares e impares.
Tabla que muestra el producto de los conjuntos de $S_n/A_n$.

Así, estamos partiendo a $S_n$ en permutaciones pares (representadas por $(1)$) e impares (representadas por $(1\, 2)$). De esta manera, podemos decir que multiplicar dos permutaciones pares o dos impares resulta en una permutación par, pero multiplicar una par con una impar resulta en una permutación impar.

Tercer y cuarto ejemplo

A continuación, para nuestro tercer ejemplo, tomamos $ N = \{\pm 1\} \unlhd Q$.
Para obtener una nueva clase lateral, escogemos un elemento de los cuaternios que no esté en $N$. El cociente se vería de la siguiente manera:
\begin{align*}
Q/N&=\{N, iN, jN, kN\}\\
&= \{\{\pm 1\},\{\pm i\},\{\pm j\},\{\pm k\}\}.
\end{align*}
De nuevo, en las imágenes podemos ver una tabla que expresa el resultado de multiplicar distintas clases y una representación gráfica de las clases que obtenemos en el cociente.
Podemos verificar algunas de las operaciones de la tabla, hacemos el producto de $Q/N$ usando el producto en $Q$. Recordemos que $-kN = kN$ y $-iN = i N$, pues $k$ y $-k$ viven en una misma clase, y $-i$ e $i$ también son parte de una misma clase.

\begin{align*}
jN iN = jiN = -kN = kN \\
jN kN = kjN = -iN = iN.
\end{align*}

Partición de $Q$ inducida por $N$.
Tabla que muestra los resultados de las operaciones de los elementos de $Q/N$.

Si ahora consideramos $\left< k\right> \leq Q$, $\left< k\right> = \{\pm 1, \pm k\}$.
Entonces $\displaystyle [Q: \left< k\right> ]= \frac{|Q|}{|\left< k\right>|} = \frac{8}{4} = 2$, y así, $\left< k\right> \unlhd Q$.
Así $$Q/\left< k\right> = \{\left< k\right>, i \left< k\right>\}.$$

Tabla de las operaciones de los elementos de $Q/\left< k\right>$.
Partición de $Q$ inducida por $\left< k\right>$.

Para nuestro último ejemplo, consideremos $\z\times\z = \{(a,b) | a,b\in \z\}$, con la operación $(a,b)+(c,d) = (a+c, b+d)$.
Sea $H = \{(a,a) | a \in \z\}$.
\begin{align*}
(a,b) + H = (c,d) + H &\Leftrightarrow -(a,b) +(c,d) \in H \\
&\Leftrightarrow (c-a,d-b)\in H \Leftrightarrow c-a = d-b\\
&\Leftrightarrow c = d+ (a-b).
\end{align*}
Recordemos que $-(a,b)$ es el inverso de $(a,b)$.
Así,
\begin{align*}
(a,b) + H &= \{(d + (a-b), d) | d\in \z\}\\
&= \{(a-b, 0) + (d,d)| d \in \z\}.
\end{align*}
En particular $(a, b) + H = (a-b, 0) + H$. Las clases laterales se muestran mejor gráficamente en la imagen.
Tomemos los puntos enteros del eje $x$ como representantes de las clases laterales:
\begin{align*}
\z\times\z/H &= \{(a,0) + H | a\in \z\}.\\
((a,0) + H) + ((c,0) + H) &= (a + c, 0) + H.
\end{align*}

En esta imagen representamos a cada clase lateral $(a,b) + H$ de un color distinto. Claramente son las diagonales discretas en el plano. También se muestra que los representantes de la clase son puntos en la misma diagonal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $G$ un grupo, $H$ un subgrupo de $G$ tal que el producto de dos clases laterales izquierdas de $H$ en $G$ es de nuevo una clase lateral izquierda de $H$ en $G$ ¿es entonces $H$ normal en $G$?
  2. Sea $G$ un grupo, $H$ un subgrupo normal de $G$ de índice finito con $m = [G:H]$. Dada $a\in G$ ¿qué podemos decir del elemento $a^m$? ¿Y si $H$ no es normal en $G$?
  3. Sea $G$ un grupo finito, $N$ un subgrupo normal de $G$. Dada $a\in G$. Analiza cómo es el orden de $a$ en relación al orden de $aN$.
  4. Considera el grupo aditivo $\r^2$ y el subgrupo $N = \{(x,0)|x\in \r\}.$
    1. Determina qué deben cumplir $(a,b), (c,d) \in \r^2$ para que $(a,b)N = (c,d)N$.
    2. Describe al grupo $\r^2/N$.
  5. Sea $G$ un grupo, $N$ un subgrupo normal de $G$ de índice finito con $p = [G:N]$ primo. Dada $a\in G$ ¿qué podemos decir de $\left< aN \right>$ y de $G/N$?
  6. Si quieres profundizar un poco más sobre Grupos cocientes, puedes revisar el video de Mathemaniac sobre el tema. El video está en inglés.

Más adelante…

En pocas palabras, un subgrupo normal induce una partición del grupo y ésta es el grupo cociente. Esta idea surge de lo que ocurre en los enteros. En la siguiente entrada usaremos el grupo cociente para crear, a partir de un grupo no abeliano, otro que sea abeliano.

Entradas relacionadas

Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En entradas anteriores definimos el índice de $H$ en $G$ con $H$ un subgrupo del grupo $G$. Además, dimos la definición de subgrupo normal, y demostramos equivalencias usando clases laterales izquierdas y derechas.

Cuando sólo hay dos clases laterales en $G$, es muy fácil concluir esa equivalencia, es decir, es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. Digamos, si $[G:H] = 2$ y tomamos $a,b\in G$. Por un lado tenemos que se crea una partición $\mathcal{P}_1 = \{H, aH\}$ de $G$ y por otro lado tenemos $\mathcal{P}_2 = \{H, Hb\}$. Como ambas particiones tienen $H$, entonces necesariamente $aH = Hb$. Así, concluimos que $H \unlhd G$.

Lo anterior lo demostraremos de manera formal en esta entrada.

Representación gráfica de qué sucede cuando $[G:H]=2$.

Proposición sobre subgrupos

Proposición. Sean $G$ un grupo y $H$ un subgrupo de $G$.

  1. Si $[G : H ] = 2$, entonces $g^2\in H$ para toda $g\in G$.
  2. Si $[G : H ]= 2$, entonces $H$ es normal en $G$.

Demostración.
Sea $G$ un grupo, $H\leq G$ con $[G : H ]= 2$.

$1.$ P.D. $g^2 \in H$ para toda $g \in G$.

Sea $g\in G$. Como $[G : H ]= 2$ hay dos clases laterales izquierdas, $H$ y $aH$ para alguna $a \in G\setminus H$, y $G = H\;\dot\cup\; aH$, donde $\dot\cup$ en este caso es una unión disjunta.

Como $g\in G$, entonces $g\in H$ ó $g \in aH$.

Si $g\in H$, al ser $H$ un subgrupo, $g^2\in H$.
Si $g\in aH$, $g = ah$ para alguna $h\in H$.
Por lo tanto $g^2 = ahah$.

Pero también, $g^2 \in G = H\;\dot\cup\; aH$. Por un lado, si $g^2\in aH$, $g^2 = a \tilde{h}$ con $\tilde{h} \in H$.
\begin{align*}
&\Rightarrow a \tilde{h} = g^2 = ah a h \\
&\Rightarrow \;\tilde{h} = hah & \text{Cancelamos la } a \text{ que se repite}\\
&\Rightarrow a = h^{-1}\tilde{h}h^{-1}  &\text{Despejando }{a}.
\end{align*}

Pero cada uno de $h,\tilde{h}, h^{-1}  \in H$. Por lo que $a \in H$ y esto sería una contradicción.
Por lo tanto $g^2 \in H$.

$2. $ Como $[G : H ]= 2$ hay dos clases laterales izquierdas $H$ y $aH$ con $a \in G\setminus H$. Hay también dos clases laterales derechas $H$ y $Hb$ con $b \in G\setminus H$ y además
$$H\;\dot\cup \;aH = G = H\;\dot\cup\; Hb.$$

Si $g\in aH$, entonces $g \not\in H$, así $g\in G = H\;\dot\cup \;Hb$ pero $g\not\in H$, y entonces $g\in Hb$. Por lo que $aH \subseteq Hb$.

Si $g\in Hb$, entonces $g\not\in H$, así $g\in G = H\;\dot\cup\; aH$ pero $g\not\in H$, y entonces $g\in aH$. Por lo que $Hb\subseteq aH$.

Así, $aH=Hb$ y toda clase lateral izquierda es una clase lateral derecha.
Por lo tanto, podemos concluir que $H \unlhd G$.

$\blacksquare$

Ejemplos.

Enunciamos dos ejemplos sencillos:

Ejemplo 1. Como $[S_n: A_n ]= 2$, entonces $A_n\unlhd S_n$.

Ejemplo 2. En $D_{2n} = \left<a,b\right>$ con $a$ la rotación $\displaystyle\frac{2\pi}{n}$ y $b$ la reflexión con respecto al eje $x$.
Sea $H =\left< a \right>$.
\begin{align*}
[D_{2n} : H ]= \frac{|D_{2n}|}{|H|} = \frac{2n}{n} = 2.
\end{align*}
Por lo tanto $H \unlhd D_{2n}$.

Más teoremas de subgrupos

Veamos que el hecho de que un número divida al orden de un grupo, no implica que haya un subgrupo de ese tamaño. Esto se puede ilustrar con un ejemplo.

Teorema. Sea $A_4$ el subgrupo alternante de $S_4$.
$A_4$ no tiene subgrupos de orden $6$.

Demostración.
Consideremos el subgrupo $A_4$ de $S_4$.

Sabemos que
$$|A_4| = \frac{|S_4|}{2} = \frac{4!}{2}= \frac{24}{2} = 12.$$

Así, $6\Big| |A_4|$.

P.D. $A_4$ no tiene subgrupos de orden $6$.

Supongamos que existe $H\leq A_4$ con $|H| = 6$.

\begin{align*}
\Rightarrow& [A_4 : H ]= \frac{A_4}{H} = \frac{12}{6} = 2 \\
\Rightarrow& H \unlhd A_4 &\text{Prop. anterior inciso 2.}
\end{align*}

Sea $\beta = (a \; b \; c) \in A_4$ un $3-$ciclo.
Por el inciso 1 de la proposición anterior $(\beta^2)^2\in H$. Luego, $\beta = \beta^4 = (\beta^2)^2 \in H$. Así, todo $3-ciclo$ está en $H$.

Pero en $S_4$ hay exactamente ocho $3-$ciclos. Entonces $|H| \geq 8$ y esto es una contradicción pues supusimos que $|H| = 6$.

Por lo tanto $A_4$ no tiene subgrupos de orden 6.

$\blacksquare$

Ahora veamos qué sucede si multiplicamos dos subgrupos. Esta multiplicación es posible y tiene sentido, pero esto no siempre nos da un subgrupo, aquí damos algunos casos en donde esto sí pasa.

Teorema. Sea $G$ un grupo, $H,K$ subgrupos de $G$.

  1. Si $H \unlhd G$ ó $K \unlhd G$, entonces $HK \leq G$.
  2. Si $H \unlhd G$ y $K \unlhd G$, entonces $HK \unlhd G$.

Demostración.

Sea $G$ un grupo, $H$ y $K$ subgrupos de $G$.

$1.$ Supongamos que $H \unlhd G$.

P.D. $HK \leq G$.
Por un resultado de una entrada previa, basta ver que $HK = KH$.

Si $h\in H$, $k\in K$, como $H \unlhd G$, entonces $hk = k\tilde{h}$ con $\tilde{h}\in H$ por la conmutatividad parcial. Por lo tanto $HK \subseteq KH$.

Además $kh = \bar{h}k$ con $\bar{h} \in H$, de nuevo, por la conmutatividad parcial ya que $H\unlhd G$. Por lo tanto $KH \subseteq HK$.

Así, $HK = KH$ y $HK \leq G$.

Para $K\unlhd G$ se demuestra que $HK = KH$ de forma análoga.

$2.$ Supongamos que $H \unlhd G$, $K\unlhd G$.
Sean $h\in H, k \in K$ y $a\in G$. Veamos que $a(hk)a^{-1} \in HK.$

Agregando un neutro,
$$a(hk)a^{-1} = ah(a^{-1} a) ka^{-1} = (aha^{-1}) (aka^{-1}).$$

Pero como $H \unlhd G$ sabemos que $aha^{-1} \in H$, y como $K \unlhd G$ sabemos que $aka^{-1} \in K$, entonces $a(hk)a^{-1} = (aha^{-1}) (aka^{-1}) \in HK.$

Por lo tanto $HK \unlhd G$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $G$ un grupo, $H$ un subgrupo de $G$ con $3 = [G:H]$. ¿Es $H$ normal en $G$?
  2. Prueba que en $S_4$ hay exactamente ocho $3$-ciclos.
  3. Demuestra que $A_5$ no tiene subgrupos de orden 20: Supón por contradicción que $H$ es un subgrupo de de orden 20.
    1. Sea $\alpha \in A_5$ un $5$-ciclo. Prueba que si $\alpha\not\in H$ entonces $H, \alpha H$ y $\alpha^2 H$ son las 3 clases laterales izquierdas de $H$ en $A_5$.
    2. Prueba que $\alpha^3$ no está en ninguna de esas tres clases laterales.
    3. Concluye que $\alpha \in H$ para todo $\alpha$ 5-ciclo, y así $H$ tendría más de 20 elementos.
  4. Sea $G$ un grupo, $H$ y $K$ subgrupos de $G$. Prueba o da un contraejemplo:
    1. Si $HK$ es un subgrupo de $G$, entonces $H$ es normal en $G$ o $K$ es normal en $G$.
    2. Si $HK$ es un subgrupo normal de $G$, entonces $H$ es normal en $G$ y $K$ es normal en $G$.

Más adelante…

Esta entrada es la última antes de comenzar un pequeño tema nuevo: el grupo cociente. Seguiremos viendo cómo se pueden generar particiones de los grupos y definiremos una operación entre los elementos de esta partición.

Entradas relacionadas

Cálculo Diferencial e Integral III: Matrices

Por Alejandro Antonio Estrada Franco

Introducción

Así como en la segunda unidad del curso, en esta unidad cubriremos nuevamente algunos temas de álgebra lineal que son importantes para el cálculo de varias variables. Nuevamente, daremos una exposición un poco superficial, pues se espera que estos temas sean cubiertos a profundidad en un curso de Álgebra Lineal 1 que se lleve en paralelo. Una posibilidad es tomar de manera paralela el curso aquí en el blog, en el siguiente enlace: Álgebra Lineal I, en donde hay una exposición más holgada de los temas que revisaremos en las siguientes entradas.

Comenzaremos esta entrada mencionando la importancia de las matrices como herramienta matemática en el estudio de las funciones de $\mathbb{R}^n$ en $\mathbb{R}^m$. Revisaremos también las distintas operaciones que podemos ejecutar sobre ellas. Hablaremos de operaciones binarias y elementales. Cada una de ellas tiene sus propósitos particulares.

Importancia de las matrices en cálculo diferencial e integral

Recordemos algunos conceptos del curso de Cálculo Diferencial e Integral 1. Comencemos con una función $f:D\subset \mathbb{R} \to \mathbb{R}$ una función derivable en el punto $x_{0} \in D$. La derivada de la función $f$ en el punto $x_{0}$ es un número que representa la pendiente de la recta tangente a la gráfica de la función en el punto $(x_{0},f (x_{0})) $. La recta en cuestión tiene por ecuación $y(x) =f ( x_{0})+f'(x_{0})(x-x_{0}) $. Observa que la función $y$ citada es una función lineal. No necesariamente es una transformación lineal, pues puede desplazar al origen. Sin embargo la llamamos «la mejor aproximación lineal a $f$ en el punto $x_{0}$». A grandes rasgos, recibe este nombre pues la función $f$ cerca de un punto dado $x_{0}$ toma valores muy cercanos a los que tomaría $y(x)$ cerca de ese mismo punto.

En el estudio de las funciones reales, así como en sus aplicaciones, es mucho mas fácil auxiliarnos de aproximaciones lineales para investigar y conocer las propiedades locales o en ciertas vecindades del punto a tratar. Las aproximaciones lineales son ecuaciones de rectas, las cuales poseen propiedades muy nobles y bastante tratables. Esta técnica de trabajar problemas de funciones reales (derivables) con lineas rectas, usando la mejor aproximación lineal en el punto dado también es usada para las funciones de $\mathbb{R}^n$ en $\mathbb{R}^m$, usando transformaciones lineales con las cuales se trabajará en las siguientes secciones.

La técnica será casi igual a la usada para las funciones de una variable real: hallaremos una transformación lineal la cual podremos usar para tener la mejor aproximación lineal a la función en un punto dado de su dominio. De aquí es natural que introduzcamos a las matrices en $M_{m,n}(\mathbb{R})$, pues las transformaciones lineales de $\mathbb{R}^n$ en $\mathbb{R}^m$ pueden ser representadas por matrices una vez que hayamos elegido las bases para los espacios vectoriales $\mathbb{R}^n$ y $\mathbb{R}^m$. Además, hay propiedades de transformaciones lineales que se pueden entender fácilmente en términos de matrices. Por ejemplo, la composición y producto escalar de transformaciones lineales tienen sus correspondientes operaciones en matrices, repectivamente la multiplicación de matrices y producto por escalar.

En rojo la mejor aproximación lineal a la gráfica de una función, representada en azul

Definición de matriz

Recuerda que nuestra exposición está condensada pues los temas pueden consultarse a detalle en otras entradas de este blog. Específicamente, para el tema de matrices puedes considerar esta entrada para un tratamiento más detallado.

Definición. Sean $m$ y $n$ números naturales. Una matriz de $n$ filas y $m$ columnas con entradas en los números reales es un arreglo rectangular de la siguiente forma:

$$A=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{pmatrix}.$$

Al conjunto de todas las matrices de $n$ filas y $m$ columnas con entradas en los números reales lo denotaremos por $M_{m,n}(\mathbb{R})$. Si $m=n$, usaremos la notación simplificada $M_n(\mathbb{R})$.

Es posible formalizar todavía más a las matrices, pensando en los conjuntos $[m]=\{1,2,\ldots,m\}$ y $[n]=\{1,2,\ldots,n\}$, y tomando una matriz como una función $A:[n]\times[m]\to\mathbb{R}$. Sin embargo, usualmente no tomaremos esta definición, y nos apegaremos a las definiciones dadas arriba.

Operaciones binarias relacionadas con matrices

Hablaremos de tres operaciones binarias relacionadas con matrices, las cuales son útiles para nuestros propósitos en cálculo, pues hay algunas operaciones entre funciones que se corresponden con ellas. Las operaciones que discutiremos son el producto por escalar, la suma de matrices y el producto de matrices. Respectivamente, estas corresponderán, en cierto sentido, al producto por escalar, suma de funciones y composición de funciones. Puedes revisar esta entrada para conocer detalle como se dan algunas de estas correspondencias.

Definición. La suma de matrices es una operación binaria que toma dos matrices con la misma cantidad de filas, y con la misma cantidad de columnas. Si la matriz $A$ tiene entradas $a_{ij}$ y la matriz $B$ tiene entradas $b_{ij}$, su suma está definida como la matriz $A+B$ cuyas entradas son $a_{ij}+b_{ij}$, es decir, las matrices se suman entrada a entrada. Pensada de esta manera, la suma es una función $+:M_{m,n}(\mathbb{R})\times M_{m,n}(\mathbb{R}) \to M_{m,n}(\mathbb{R})$.

Podemos ver esta operación también en los arreglos correspondientes:

\begin{align*}
A+B&=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n}\\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn}\end{pmatrix}\\
&:=\begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n}\\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn}\end{pmatrix}
\end{align*}

Definición. El producto matriz por escalar es una operación binaria que toma un número real $r$ y una matriz $A$. A la pareja $(r,A)$ le asigna otra matriz que denotaremos por $rA$. Si las entradas de $A$ son $a_{ij}$, las de $rA$ son $ra_{ij}$. En otras palabras, cada una de las entradas de $A$ se multiplica por $r$, de modo que en el arreglo se ve de la siguiente manera:

$$rA=\begin{pmatrix} ra_{11} & ra_{12} & \cdots & ra_{1n}\\ ra_{21} & ra_{22} & \cdots & ra_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ra_{m1} & ra_{m2} & \cdots & ra_{mn}\end{pmatrix}.$$

De esta manera, el producto matriz por escalar es una operación binaria

$$\cdot: \mathbb{R} \times M_{m,n}(\mathbb{R})\to M_{m,n}(\mathbb{R}).$$

Definición. Finalmente, tenemos el producto de matrices. Para multiplicar dos matrices $A$ y $B$, necesitamos que la cantidad de columnas de $A$ sea igual a la cantidad de filas de $B$. Así, $A$ es una matriz de, digamos $m\times n$ y $B$ es una matriz de, digamos $n\times p$. Su producto será una matriz de $m\times p$. Si $A$ tiene entradas $a_{ij}$ y $B$ tiene entradas $b_{jk}$, entonces la matriz producto $AB$ tendrá entradas dadas por la siguiente regla del producto:

\begin{align*}
c_{ik}&=\sum_{j=1}^n a_{ij}b_{jk}\\
&=a_{i1}b_{1k}+a_{i2}b_{2k}+\ldots+a_{in}b_{nk}.
\end{align*}

Esto nos dice que el producto de matrices es entonces una operación binaria

$$\cdot: M_{m,n}(\mathbb{R})\times M_{n,p}(\mathbb{R})\to M_{m,p}(\mathbb{R}).$$

Operaciones elementales de matrices

Las operaciones elementales involucran únicamente una matriz. Usualmente son usadas para resolver sistemas de ecuaciones lineales, una vez que estos se han pasado a su forma matricial. Así mismo, las operaciones elementales ayudan a hallar representaciones mas sencillas de ciertas transformaciones lineales.

Definición. Dada una matriz $A$, una transposición de renglones consiste en elegir dos de los renglones de $A$ e intercambiarlos.

Definición. Dada una matriz $A$, un reescalamiento consiste en elegir un renglón y un número real $r\neq 0$, y substituir al renglón por aquel que se obtiene al multiplicar cada entrada del renglón por $r$.

Definición. Dada una matriz $A$, una transvección consiste en elegir dos renglones $u$ y $v$ de la matriz y un escalar $r$, y sustituir al renglón $v$ por el renglón $v+ru$ (aquí pensamos a $u$ y $v$ como vectores para efectuar las operaciones).

Las operaciones elementales son fundamentales en la teoría de matrices pues a partir de ellas siempre podemos llevar cualquier matriz a una forma muy sencilla, que definimos a continuación.

Definición. Una matriz $A$ está en forma escalonada reducida si suceden las siguientes cosas:

  1. Aquellas filas de $A$ que consisten de puros ceros, están hasta abajo.
  2. En aquellas filas que no sean de puros ceros, la primera entrada (de izquierda a derecha) que no sea igual a cero (a la que llamaremos pivote) es igual a $1$.
  3. Si una fila está arriba de otra y ambas tienen pivote, entonces el pivote de la de arriba está más a la izquierda que el pivote de la de abajo.
  4. Si una entrada de la matriz es pivote (de alguna fila), entonces es la única entrada distinta de cero de la columna en la que está.

En este enlace puedes encontrar una exposición más detallada de este tipo de matrices

Ejemplo. Consideremos la siguiente matriz: $$\begin{pmatrix} 0 & 5 & 3 \\ 3 & 7 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

El pivote del primer renglón es 5, del segundo 3, y del tercero 1. Esta matriz no está en forma escalonada reducida pues no todos sus pivotes son iguales a $1$. Tampoco esta en forma escalonada reducida pues el pivote de la tercera fila (la entrada $1$), no es la única entrada distinta de cero en su columna, pues en esa columna también hay un $3$.

$\triangle$

Ejemplo. Las siguientes matrices sí están en forma escalonada reducida:

\[ \begin{pmatrix} 1 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\hspace{2cm} \begin{pmatrix} 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}\hspace{2cm} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

$\triangle$

Quizás el teorema más fundamental de la teoría de matrices es el teorema de reducción gaussiana, que enunciamos a continuación.

Teorema. Cualquier matriz $A\in M_{m,n}(\mathbb{R})$ puede ser llevada a forma escalonada reducida mediante la aplicación de algunas operaciones elementales.

Mas adelante

Como ya lo hemos mencionado las matrices serán usadas para representar transformaciones lineales. Las transformaciones lineales nos ayudarán a introducir la noción de derivabilidad en varias variables. Y ello nos permitirá aproximar fácilmente cualquier función $f:\mathbb{R}^n\to \mathbb{R}^m$.

De esta manera, un conocimiento amplio de las matrices repercute en un conocimiento amplio de las transformaciones lineales, lo cual a su vez nos da más información en cuanto a las funciones de $\mathbb{R} ^n$ en $\mathbb{R} ^m$. Para seguir haciendo hincapié en las nociones de matrices que más nos interesan, en la siguiente entrada revisaremos un importante número asociado a cada matriz cuadrada: el determinante.

Tarea moral

  1. Consideremos las matrices $A,B$ de la siguiente manera: \[ A=\begin{pmatrix} 3 & 2 & 0 \\ 2 & 7 & 0 \\ 1 & 0 & 0 \end{pmatrix}\hspace{1cm} B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Encuentra una matriz $X$ que resuelva la siguiente ecuación: \[ 5X + A = B. \]
  2. Aplica operaciones elementales sucesivas para llevar la siguiente matriz a una matriz escalonada reducida: \[ \begin{pmatrix} 1 & 4 & 0 \\ 3 & 0 & -5 \\ 0 & 0 & -1 \\ 6 & 5 & 0 \end{pmatrix}.\]
  3. Considera a la matriz identidad $I_4\in M_{4}(\mathbb{R})$ donde $I_{ij}=0$ para $i\neq j$, y $I_{ij}=1$ en otro caso. Aplica las siguiente operaciones elementales y toma nota del resultado para el siguiente ejercicio:
    • Una transposición de los renglones $1$ y $3$.
    • Un reescalamiento por $-1$ al renglón $2$
    • Una transvección usando los renglones $2$ y $1$, y el escalar $4$.
  4. Aplica las mismas operaciones del punto anterior a la matriz del Ejercicio 2. Toma nota de los resultados.
  5. Finalmente multiplica cada una de matrices del Ejercicio 3 por la izquierda con la matriz del Ejercicio 2. Compara con los resultados obtenidos en el Ejercicio 4. ¿Qué observas?

Entradas relacionadas

Teoría de los Conjuntos I: Aritmética cardinal

Por Gabriela Hernández Aguilar

Introducción

En las entradas anteriores hablamos de conjuntos finitos e infinitos. Además, vimos que hay conjuntos infinitos que no son equipotentes entre sí: $\mathbb{N}$ y $\mathcal{\mathbb{N}}$. Ahora hablaremos un poco sobre qué son los cardinales, asumiremos su existencia y daremos una breve introducción a cómo se puede trabajar con ellos mediante aritmética cardinal.

Introducción a ¿qué es un cardinal?

La idea intuitiva detrás de los cardinales es que a cualquier conjunto $X$ se le pueda asignar un conjunto «canónico» $Y$ con la misma cardinalidad que $X$. Si esto es posible, diremos que la cardinalidad de $X$ es $Y$, y lo escribiremos como $|X|=Y$. A $Y$ le llamamos un cardinal. Recuerda que intuitivamente la noción de «ser equipotentes» es parecida a una relación de equivalencia (aunque estrictamente no lo es). Con esta intuición, puedes pensar a los cardinales como un «conjunto de representantes» de esta relación de equivalencia.

Si bien estamos muy lejos de tener algo así, hemos logrado algo de progreso parcial. Si un conjunto $X$ es finito, entonces es equipotente a un único natural $n$ y en ese caso dijimos que su cardinal es $n$, lo cual denotamos como $|X|=n$. Si $X$ es numerable, entonces dijimos que su cardinal es $\mathbb{N}$ y escribimos $|X|=\mathbb{N}$. Ya vimos que $\mathcal{P}(\mathbb{N})$ no es numerable. Si quisiéramos, podríamos decir que el cardinal de cualquier conjunto equipotente a $\mathcal{P}(\mathbb{N})$ es precisamente $\mathcal{P}(\mathbb{N})$, pero esto ya empieza a volverse algo tedioso y no es claro cómo se formaliza.

La formalización de los cardinales queda fuera del alcance de este curso, y depende de la manera en la que se axiomatiza la teoría de los conjuntos. Una manera de hacer esto es introducir a los números ordinales, lo cual queda como invitación a un curso posterior de teoría de los conjuntos. Sin embargo, si asumimos la existencia de los cardinales, podemos platicar un poco de la aritmética cardinal, lo cual haremos a continuación.

Suma de cardinales

Comenzaremos definiendo la suma de dos cardinales. Dicha operación está motivada en la regla de la suma para conjuntos finitos. Recuerda que esta regla dice que si $A$ y $B$ son conjuntos finitos disjuntos con $m$ y $n$ elementos, respectivamente, entonces $|A\cup B|=m+n$.

Definición. Si $\kappa=|A|$, $\lambda=|B|$ y $A\cap B=\emptyset$, definimos \[\kappa+\lambda=|A\cup B|.\]

La definición anterior da por hecho que existen conjuntos ajenos $A$ y $B$ tales que $\kappa=|A|$ y $\lambda=|B|$, lo cual es cierto, pues si hacemos $A_1=A\times\{0\}$ y $B_1=B\times\{1\}$, entonces $\kappa=|A|=|A_1|$, $\lambda=|B|=|B_1|$ y $A_1\cap B_1=\emptyset$.

La definición también supone que $|A\cup B|$ no depende de la elección de $A$ y $B$. Para comprobar que la definición de suma de cardinales está bien definida tenemos que mostrar que en efecto esto es así; esto es, que si $A,A’,B,B’$ son conjuntos tales que $\kappa=|A|=|A’|$, $\lambda=|B|=|B’|$ y $A\cap B=\emptyset=A’\cap B’$, entonces $|A\cup B|=|A’\cup B’|$.

Lema. Si $A,A’,B,B’$ son conjuntos tales que $|A|=|A’|$, $|B|=|B’|$ y $A\cap B=\emptyset=A’\cap B’$, entonces $|A\cup B|=|A’\cup B’|$.

Demostración.

Dado que $|A|=|A’|$ y $|B|=|B’|$, podemos fijar funciones $f:A\to A’$ y $g:B\to B’$ biyectivas. Luego, $f\cup g:A\cup B\to A’\cup B’$ es una función biyectiva, por lo que $|A\cup B|=|A’\cup B’|$.

$\square$

La definición de suma de cardinales no sólo coincide con la suma ordinaria de números en el caso finito, sino que también se preservan algunas propiedades usuales. Por ejemplo, si $A$ y $B$ son conjuntos ajenos tales que $\kappa=|A|$ y $\lambda=|B|$, entonces $\kappa+\lambda=\lambda+\kappa$. En efecto, como $A\cup B=B\cup A$, entonces $|A\cup B|=|B\cup A|$, y la definición de suma de cardinales implica que $\kappa+\lambda=\lambda+\kappa$. Esto muestra que la suma de cardinales es una operación conmutativa.

Por otro lado, si $\kappa$, $\lambda$ y $\mu$ son cardinales, se satisface por la asociatividad de la unión que $\kappa+(\lambda+\mu)=(\kappa+\lambda)+\mu$. Es decir, la suma de cardinales es también una operación asociativa.

También se puede mostrar que si $\kappa$ y $\lambda$ son cardinales, entonces $\kappa\leq\kappa+\lambda$. En efecto, si $A$ y $B$ son conjuntos ajenos tales que $\kappa=|A|$ y $\lambda=|B|$, entonces $f:A\to A\cup B$ definida por medio de $f(a)=a$ (la inclusión de $A$ en $A\cup B$) es una función inyectiva. Esto muestra que $\kappa=|A|\leq|A\cup B|=\kappa+\lambda$, como queríamos.

Asimismo, si $\kappa_1\leq\kappa_2$ y $\lambda_1\leq\lambda_2$ son cardinales, entonces $\kappa_1+\lambda_1\leq\kappa_2+\lambda_2$. ¿Podrás demostrar esto?

Producto de cardinales

Ya que definimos la suma de cardinales y hemos notado que algunas propiedades de esta nueva operación coinciden con las que ya conocíamos sobre la suma de números naturales, podemos definir la multiplicación de cardinales, la cual, como es de esperarse, estará motivada en la multiplicación ya conocida de números naturales.

Definición. Si $A$ y $B$ son conjuntos tales que $\kappa=|A|$ y $\lambda=|B|$, entonces \[\kappa\cdot\lambda=|A\times B|.\]
Así como con la suma, debemos verificar que esta nueva operación está bien definida.

Lema. Si $A,A’,B,B’$ son conjuntos tales que $|A|=|A’|$ y $|B|=|B’|$, entonces $|A\times B|=|A’\times B’|$.

Demostración.

Dado que $|A|=|A’|$ y $|B|=|B’|$, podemos fijar funciones $f:A\to A’$ y $g:B\to B’$ biyectivas. Luego, si definimos $h:A\times B\to A’\times B’$ por medio de $h(a,b)=(f(a),g(b))$, entonces $h$ es biyectiva. De modo que $|A\times B|=|A’\times B’|$.

$\square$

Así, en efecto el producto de cardinales no depende de los conjuntos elegidos.

Algunas propiedades del producto de números naturales se preservan para el producto de cardinales.

Por ejemplo, si $\kappa$ y $\lambda$ son cardinales, entonces $\kappa\cdot \lambda=\lambda\cdot\kappa$. En efecto, si $\kappa=|A|$ y $\lambda=|B|$, entonces $\kappa\cdot\lambda=|A\times B|$, pero, dado que $|A\times B|=|B\times A|$ (ya que $h:A\times B\to B\times A$ definida mediante $h(a,b)=(b,a)$ es una biyección), entonces $\kappa\cdot\lambda=|A\times B|=|B\times A|=\lambda\cdot\kappa$.

De manera similar, se puede mostrar que:

  1. $\kappa\cdot(\lambda\cdot\mu)=(\kappa\cdot\lambda)\cdot\mu$,
  2. $\kappa\cdot(\lambda+\mu)=\kappa\cdot\lambda+\kappa\cdot\mu$

para cualesquiera cardinales $\kappa$, $\lambda$ y $\mu$. Intenta demostrar esto. Tendrás que usar propiedades de la unión y producto cartesiano. Por ejemplo, para el inciso 2 deberás usar que para cualesquiera conjuntos $A,B,C$ se cumple que $A\times(B\cup C)=(A\times B)\cup(A\times C)$.

También hay algunas propiedades de desigualdad de cardinales que involucran al producto. A continuación discutimos algunas brevemente.

Si $\kappa=|A|$ y $\lambda=|B|$, con $B\not=\emptyset$, entonces, definiendo $f:A\to A\times B$ por medio de $f(a)=(a,b_0)$ donde $b_0\in B$ es un elemento fijo, tenemos que $f$ es una función inyectiva y así $\kappa=|A|\leq|A\times B|=\kappa\cdot\lambda$. Esto muestra que para cualesquiera cardinales $\kappa$ y $\lambda$, con $\lambda\not=0$, $\kappa\leq\kappa\cdot\lambda$.

De manera similar se puede mostrar que si $\kappa_1\leq\kappa_2$ y $\lambda_1\leq\lambda_2$, entonces $\kappa_1\cdot\kappa_2\leq\lambda_1\cdot\lambda_2$. Basta tomar conjuntos $A,A’,B,B’$ tales que $\kappa_1=|A|$, $\kappa_2=|A’|$, $\lambda_1=|B|$ y $\lambda_2=|B’|$. Luego, como $\kappa_1\leq\kappa_2$ y $\lambda_1\leq\lambda_2$, podemos fijar funciones inyectivas $f:A\to A’$ y $g:B\to B’$ y podemos definir $h:A\times B\to A’\times B’$ por medio de $h(a,b)=(f(a),g(b))$, la cual resulta ser una función inyectiva. Esto muestra que $\kappa_1\cdot\lambda_1=|A\times B|\leq|A’\times B’|=\kappa_2\cdot\lambda_2$.

Otra propiedad es que al multiplicar un cardinal por un natural, sucede lo que esperamos: el cardinal «se suma la cantidad apropiada de veces». Veamos un pequeño ejemplo. Si $\kappa$ es un cardinal, entonces $\kappa+\kappa=2\cdot\kappa$.

En efecto, si $\kappa=|A|$, entonces $2\cdot\kappa=|\{0,1\}\times A|$, pues $2=|\{0,1\}|$. Luego, notando que $\{0,1\}\times A=(\{0\}\times A)\cup(\{1\}\times A)$, y dado que $\kappa=|\{0\}\times A|=|\{1\}\times A|$ y $\{0\}\times A$ es ajeno a $\{1\}\times A$, se sigue que $2\cdot\kappa=|\{0,1\}\times A|=|(\{0\}\times A)\cup(\{1\}\times B)|=\kappa+\kappa$. Intenta demostrar que para cualquier natural $n$ y cardinal $\kappa$ se cumple que $(n+1)\times \kappa = n\times \kappa + \kappa$.

Finalmente, ¿cómo se comparan la suma y producto de un cardinal consigo mismo? Usando las propiedades ya comentadas, se sigue que para un cardinal $\kappa\geq2$, se cumple \[\kappa+\kappa=2\cdot\kappa\leq\kappa\cdot\kappa.\]

Exponenciación de cardinales

La última operación que introduciremos para cardinales será la exponenciación de cardinales.

Definición. Si $\kappa=|A|$ y $|B|=\lambda$, entonces $\kappa^\lambda=|A^B|$, donde $A^B$ denota al conjunto de las funciones de $B$ en $A$.

Si has realizado los ejercicios de entradas anteriores, notarás que esta definición también generaliza el caso de $A$ y $B$ finitos, en donde $\kappa$ y $\lambda$ son naturales.

Para verificar que esta operación está bien definida tenemos el siguiente lema.

Lema. Si $|A|=|A’|$ y $|B|=|B’|$, entonces $|A^B|=|{A’}^{B’}|$.

Demostración.

Fijemos funciones biyectivas $f:A\to A’$ y $g:B\to B’$ y definamos $F:A^B\to {A’}^{B’}$ como sigue: si $k\in A^B$, sea $F(k)=h$, donde $h:B’\to A’$ está definida mediante $h(g(b))=f(k(b))$ para cada $b\in B$.

$F$ es una función inyectiva, pues, si $k_1,k_2\in A^B$ son tales que $k_1\not=k_2$, entonces existe $b\in B$ de tal modo que $k_1(b)\not=k_2(b)$. Luego, como $f:A\to A’$ es una biyección y $k_1(b)\not=k_2(b)$, se tiene $f(k_1(b))\not=f(k_2(b))$. De modo que si $F(k_1)=h_1$ y $F(k_2)=h_2$, entonces $h_1(g(b))=f(k_1(b))\not=f(k_2(b))=h_2(g(b))$, lo que implica que $h_1\not=h_2$, es decir, $F(k_1)\not=F(k_2)$.

Por otro lado, $F$ es una función suprayectiva, ya que si $h\in {A’}^{B’}$, entonces considerando las funciones $f^{-1}:A’\to A$ (la cual existe por ser $f$ biyectiva) y $k=f^{-1}\circ h\circ g:B\to A$, se tiene que $F(k)=h’$ donde \[h'(g(b))=f(k(b))=f((f^{-1}\circ h\circ g)(b))=(f\circ f^{-1}\circ h\circ g)(b)=h(g(b)),\]
es decir, $h'(g(b))=h(g(b))$ para todo $b\in B$. Como $B’=\{g(b):b\in B\}$, entonces $h'(b’)=h(b’)$ para todo $b’\in B’$, lo cual nos permite concluir que $h’=h$. Esto muestra que $F(k)=h$ y, por consiguientes, $F$ es suprayectiva. Por tanto, $F$ es una biyección y así $|A^B|=|{A’}^{B’}|$.

$\square$

Platiquemos de algunas de las propiedades de exponenciación.

De la definición de exponenciación tenemos que si $\lambda>0$, entonces $\kappa\leq\kappa^{\lambda}$. Esto se debe a que si $\kappa=|A|$ y $\lambda=|B|$, con $B\not=\emptyset$, entonces definiendo $f:A\to A^B$ por medio de $f(a)=g_a$, donde $g_a:B\to A$ está dada por $g_a(b)=a$ para todo $b\in B$, entonces $f$ es una función inyectiva, lo que muestra que $\kappa=|A|\leq|A^B|=\kappa^\lambda$.

Nota que en este último argumento, implícitamente, supusimos $A\not=\emptyset$, ya que las funciones que definimos resultaban ser funciones constantes y dichas constantes eran elementos de $A$; sin embargo, si $A=\emptyset$ no podemos definir una función constante de $B$ en $A$, ya que no hay elementos en $A$ y, de hecho, al ser $B$ no vacío no existen funciones de $B$ en $A$. De modo que si $A=\emptyset$, entonces $A^B=\emptyset$, por lo que $|A|=0=|A^B|$ y así $|A|=|A|^\lambda=|A|^{|B|}=$. En consecuencia, $\kappa\leq\kappa^\lambda$ aún cuando $\kappa=0$.

Por otro lado, si $\kappa>1$, se puede probar que $\lambda\leq\kappa^\lambda$. Para ello supongamos que $A$ y $B$ son conjuntos tales que $\kappa=|A|$ y $\lambda=|B|$ con $\kappa>1$.

Si $\lambda=0$, entonces $B=\emptyset$ y la única función de $B$ en $A$ sería la función vacía, por lo que $\kappa^\lambda=|A^B|=1$. En consecuencia, $\lambda\leq\kappa^\lambda$. Supongamos ahora que $B\not=\emptyset$. Dado que $\kappa>1$, existen al menos dos elementos distintos $a_0,a_1\in A$. Utilizando a estos dos elementos podemos definir algunas funciones de $B$ en $A$ como sigue: dado $b\in B$, definamos $g_b:B\to A$ por medio de $g_b(x)=\left\{ \begin{array}{lcc}
a_0 & si\ x=b \\
a_1 & si\ x\not=b
\end{array}
\right.$. Podemos considerar entonces la función $\varphi:B\to A^B$ cuya regla de correspondencia es $\varphi(b)=g_b$. Dicha función resulta ser inyectiva, pues si $\varphi(b_1)=\varphi(b_2)$, entonces $g_{b_1}=g_{b_2}$ y por tanto $g_{b_1}(x)=g_{b_2}(x)$ para cada $x\in B$. En particular, para $x=b_1$ tenemos que $a_0=g_{b_1}(b_1)=g_{b_2}(b_1)$. De modo que $b_1=b_2$, pues en caso contrario tendríamos que $g_{b_2}(b_1)=a_1$ lo cual es una contradicción, ya que $g_{b_2}(b_1)=a_0$. De esta manera, si $\varphi(b_1)=\varphi(b_2)$, entonces $b_1=b_2$ y así $\varphi$ es inyectiva.

Esta serie de argumentos muestra que $|B|\leq|A^B|$, es decir, $\lambda\leq\kappa^\lambda$.

A continuación enunciaremos un teorema que nos da una propiedad interesante del estilo «ley de los exponentes» para la exponenciación de cardinales.

Teorema. $\kappa^{\lambda+\mu}=\kappa^{\lambda}\kappa^{\mu}$.

Demostración.

Sean $\kappa=|A|$, $\lambda=|B|$, $\mu=|C|$ con $B\cap C=\emptyset$. Para probar que $\kappa^{\lambda+\mu}=\kappa^\lambda\cdot\kappa^\mu$ vamos a exhibir una función biyectiva entre $A^B\times A^C$ y $A^{B\cup C}$.

Definamos $F:A^B\times A^C\to A^{B\cup C}$ por medio de $F(f,g)=f\cup g$. Para cualesquiera $f\in A^B$ y $g\in A^C$, $f\cup g$ es efectivamente una función de $B\cup C$ en $A$, debido a que $dom(f\cup g)=dom(f)\cup dom(g)=B\cup C$ junto al hecho de que $f$ y $g$ son funciones compatibles ya que $dom(f)\cap dom(g)=B\cap C=\emptyset$.

Ahora, $F$ es una función inyectiva, pues si $F(f,g)=F(h,k)$, entonces $f\cup g=h\cup k$; luego, para cada $b\in B$ se tiene que $f(b)=(f\cup g)(b)=(h\cup k)(b)=h(b)$, lo cual implica que $f=h$ y de manera análoga se sigue que $g=k$. Por tanto, $(f,g)=(h,k)$.
Ahora, si $h\in A^{B\cup C}$, podemos considerar las restricciones $h\upharpoonright_B$ y $h\upharpoonright_C$, las cuales resultan ser funciones de $B$ en $A$ y $C$ en $A$, respectivamente. De modo que $(h\upharpoonright_B,h\upharpoonright_C)\in A^{B}\times A^{C}$ y $F(h\upharpoonright_B,h\upharpoonright_C)=h\upharpoonright_B\cup h\upharpoonright_C=h$, lo que muestra que $F$ es suprayectiva. Por lo tanto, $F$ es una biyección y, en consecuencia, $\kappa^{\lambda+\mu}=\kappa^{\lambda}\cdot\kappa^{\mu}$.

$\square$

Para finalizar con esta entrada sobre aritmética cardinal, tenemos el siguiente resultado sobre el cardinal de un conjunto y su potencia.

Teorema. Si $|A|=\kappa$, entonces $|\mathcal{P}(A)|=2^\kappa$.

Demostración.

Vamos a establecer una función biyectiva entre $\mathcal{P}(A)$ y $\{0,1\}^A$. Para cada $B\subseteq A$, definamos $\chi_B:A\to\{0,1\}$ como sigue \[\chi_B(x)=\left\{\begin{array}{lcc} 1 & si\ x\in B \\ 0 & si\ x\notin B. \end{array} \right.\] Definamos entonces $f:\mathcal{P}(A)\to\{0,1\}^A$ como $f(B)=\chi_B$. Luego, si $B\not=C$, entonces existe $x\in B\setminus C$ o existe $x\in C\setminus B$, de modo que existe $x\in A$ tal que $\chi_B(x)=1$ y $\chi_C(x)=0$ o bien $\chi_{B}(x)=0$ y $\chi_C(x)=1$. En cualquier caso se tiene que $\chi_B\not=\chi_C$, ya que no coinciden en la imagen de un mismo elemento.

Este argumento muestra que $f$ es inyectiva.

Por otro lado, si $g\in\{0,1\}^A$, podemos considerar el conjunto $B=\{x\in A:g(x)=1\}$. Se tiene que $B\in\mathcal{P}(A)$ y $\chi_B=g$, ya que si $x\in B$, entonces $\chi_B(x)=1$ y $g(x)=1$; por otro lado, si $x\notin B$, entonces $\chi_B(x)=0$ y $g(x)=0$. Esto demuestra que $f$ es suprayectiva.

Por lo tanto, $f$ es una biyección y, en consecuencia, $|\mathcal{P}(A)|=|\{0,1\}^A|=|\{0,1\}|^{|A|}=2^\kappa$.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta entrada:

  1. Muestra que $\kappa^0=1$ para todo $\kappa$ y $\kappa^1=\kappa$ para todo $\kappa>0$.
  2. Muestra que $1^\kappa=1$ para todo $\kappa$ y $0^\kappa=0$ para todo $\kappa>0$.
  3. Demuestra que si $\kappa_1\leq\kappa_2$ y $\lambda_1\leq\lambda_2$, entonces $\kappa_1^{\lambda_1}\leq\kappa_2^{\lambda_2}$.
  4. Prueba que $\kappa^\kappa\leq2^{\kappa\cdot\kappa}$.
  5. ¿Existe un conjunto $A$ tal que $\mathcal{P}(A)$ es numerable? Argumenta tu respuesta.

Más adelante…

En la última unidad del curso hablaremos acerca del axioma de elección. Esto ayudará a cerrar algunos pendientes que hemos dejado a lo largo del curso. A grandes rasgos, el axioma de elección nos permitirá construir un conjunto eligiendo un elemento de cada conjunto de una familia de conjuntos. Como consecuencia, veremos que cualquier conjunto puede ser bien ordenado, así como algunas aplicaciones a otras áreas de las matemáticas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»