Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna II: Los tres problemas famosos

Por Armando Arzola Pérez

Introducción

En la geometría elemental se tienen varias construcciones realizadas con únicamente regla y compas, esto nos parecerá algo limitante, pero es así como Platón lo plantea para la geometría. Pero son estas restricciones lo que hace interesante las construcciones, cabe aclarar que cuando se menciona regla es para únicamente trazar rectas sin distancia fija, y el compás para trazar circunferencias únicamente. Son estas limitaciones las que hacen que muchas construcciones no se puedan realizar, es en este punto donde hablaremos de ‘Los tres problemas famosos griegos’ los cuales son: La trisección del ángulo, la duplicación del cubo y la cuadratura del círculo.

Este grupo de problemas imposibles enunciados en el siglo V a.C. y hasta la demostración de que la solución es imposible en el siglo XIX, generaron que grandes matemáticos pensaran en su solución, así mismo se motivó al desarrollo de diversas áreas de las matemáticas. Como se mencionó, las restricciones de únicamente regla y compas son las que imposibilitan la solución, pero si se modificaran estas restricciones adecuadamente, estos problemas pueden ser resueltos. Es por ello que se mostrara la imposibilidad de resolver los tres problemas famosos.

Trisección del ángulo

Problema. Lograr trisecar un ángulo arbitrario con regla y compas. Se mostrará la imposibilidad de resolver este problema.

Demostración. Dado un ángulo, no siempre es posible construir solo con una regla y compas un ángulo cuya medida es un tercio del ángulo original.
Tenemos que mostrar lo que significa construir un ángulo a números construibles, ya que un número construible es la longitud de un segmento, no una medida de un ángulo. Recordemos que si tenemos algún ángulo construido sin perdida de generalidad, se asume que este ángulo está en la posición estándar, de modo que su lado inicial este en el eje $x$ positivo.

Se puede asignar el vértice del ángulo con el origen de nuestro plano y luego construir un círculo unitario centrado en el origen, donde tendremos un punto de intersección que por trigonometría este punto es ( $cos \theta, sen \theta $ ) y si tomamos la perpendicular de este punto hasta el eje $x$, nos dara un punto ( $cos \theta , 0 $ ) y por lo cual se tiene la distancia $cos \theta$.

Los tres problemas famosos 1

Entonces si el angulo theta $\theta$ es construible eso significa que la distancia $cos \theta $ es construible y este proceso es reversible, por lo que podemos construir el ángulo theta $\theta$ si y solo si podemos construir el coseno de distancia de theta $\theta$. Por lo cual se querrá argumentar que el coseno de theta ($cos \theta$) no es un número construible para todos los theta $\theta$.

Tenemos la siguiente identidad trigonométrica

$cos 3\theta = 4 cos^3 \theta – 3 cos \theta.$

Es importante recalcar que queremos $cos 3 \theta$, porque queremos ángulos de trisección. Si tomamos $\theta = 20^o $, entonces ingresándolo en la fórmula se tiene

$cos 3\theta = cos (3)(20^o)=cos 60^o= 1/2.$

Si definimos $\alpha=cos \theta$ entonces se tiene que la igualdad queda

$4\alpha ^3 – 3 \alpha = 1/2.$

Multiplicamos por 2 en ambos lados

$8 \alpha ^3 – 6\alpha = 1$

$8\alpha ^3 – 6 \alpha -1 =0.$

Entonces $\alpha $ es una raíz del polinomio

$8x^3-6x-1.$

Este es un polinomio de grado 3 si es irreducible, eso sucede si y solo si no tiene raíces, porque si es irreducible tiene un factor lineal, y si tiene un factor lineal tiene una raíz por el teorema de las raíces racionales, las únicas raíces racionales posibles de este polinomio son

$\pm 1, \pm 1/2, \pm 1/4, \pm 1/8.$

Ninguno de estos ocho números son raíces de este polinomio, este polinomio por lo cual es irreducible porque no tiene raíces racionales, por lo tanto, este polinomio debe sé el polinomio mínimo para el coseno de $20^o$.
Ahora, ya que este es un polinomio de grado 3, si tomamos el conjunto de los racionales $\alpha$ y vemos su grado sobre $\mathbb{Q}$ tenemos 3.

$[ \mathbb{Q} (\alpha) : \mathbb{Q} ] = 3.$

Pero una propiedad de los números construibles dice que

$[ \mathbb{Q} (\alpha) : \mathbb{Q} ] = 2^n.$

Esto es una potencia de 2, pero 3 no es potencia de 2, $3\neq 2^n.$

Por lo tanto, esto no puede ser una extensión construible, por lo cual el $cos 20^o$ no es un número construible, entonces un ángulo de $20^o$ no se puede construir y un ángulo de $60^o$ no se puede trisecar usando solo regla y compas.

$\square$

Duplicación del cubo

Problema. Se demostrará que la duplicación del cubo es imposible.
Duplicar el cubo nos dice que dada la arista de un cubo, es imposible construir con una regla y compas el borde de un cubo que tiene el doble del volumen del cubo original.

Demostración. Imaginemos el cubo con la longitud de un lado de $S$ y este es un número construible, el volumen de este cubo sería $V=S^3$; Por lo cual si tuviéramos que construir un cubo cuyo volumen sea el doble, entonces el volumen sería $V=2S^3$ este cubo es más grande, y nos preguntaremos cuanto deben medir los lados de este nuevo cubo.

Los tres problemas famosos 2

Entonces el cubo duplicado, su volumen debe ser $2S^3$, y sea la longitud de lado $t$, entonces el $V=t^3=2S^3$, despejando $t$ se tiene

$t=\sqrt[3]{2S^3}=\sqrt[3]{2}S.$

Ahora el cuerpo de números construibles es un campo, si podemos construir $S$, entonces podemos dividir por $S$, pero $\sqrt[3]{2}$ no es número construible, ya que

$[ \mathbb{Q} (\sqrt[3]{2}) : \mathbb{Q} ] = 3.$

Pero una propiedad de los números construibles dice que ($\alpha$ es un número construible)

$[ \mathbb{Q} (\alpha) : \mathbb{Q} ] = 2^n.$

Pero $3\neq 2^n$, entonces $\sqrt[3]{2}$ no se puede construir y, por lo tanto, no podemos duplicar el cubo.

$\square$

Cuadratura del círculo

Problema. Por demostrar la imposibilidad de la construcción geométrica clásica de cuadrar el círculo.

Demostración. Dado un círculo de diámetro construible, no siempre es posible construir solo con una regla y compas el borde de un cuadrado que tiene la misma área que el círculo original.
El contraejemplo será que, se tome el círculo unitario, con radio $r=1$ número construible, el área es $A=\pi r^2 = \pi$.

Se debe mostrar que no se puede construir un cuadrado cuya área sea $\pi$ y recordemos que si tenemos un cuadrado con lado $S$ y el área es $A=S^2$. Ahora, si $\pi$ fuera igual a $S^2$ ($\pi = S^2$), esto nos diría que si tomas la raíz cuadrada de ambos lados se tiene $\sqrt{\pi}= S.$

Entonces se requiere construir un lado de longitud $\sqrt{\pi}$.
Pero si $\sqrt{\pi}$ fuera construible, entonces si elevamos al cuadrado $\sqrt{\pi}^2 = \pi$ y el campo de números construibles es un campo, por lo cual $\sqrt{\pi}^2$ también es construible, pero $\pi$ es un número trascendental y ninguna extensión algebraica de $\mathbb{Q}$ contiene $\pi$. El campo de números construibles es una extensión algebraica infinita de los números racionales y, por lo tanto, no contiene números trascendentales, y de ahí se tiene la contradicción $pi$ no es un número construible.
Por lo tanto, es imposible construir un cuadrado para cada círculo.

$\square$

Más adelante…

Se verá el Teorema de Stewart.

Entradas relacionadas

Geometría Moderna II: Haces de líneas en Involución

Por Armando Arzola Pérez

Introducción

A partir de la involución en una hilera de puntos y sus puntos conjugados relacionados con la razón cruzada, es que nace el concepto de haces de líneas en involución. Muchos de los resultados que se muestran son gracias al principio de dualidad.

Haces de líneas en involución

Definición. Dado un haz de rectas correlacionadas por parejas y donde los puntos de intersección de los pares con cualquier transversal que no pase por el vértice del haz son pares conjugados de una involución de puntos.

Ejemplo: Sean el haz con las rectas correlacionadas por pares $a,a’,b,b’,c$ y $ c’$. Tracemos una recta que corte al haz de rectas y que no pase por $O’$, se tienen las intersecciones $A,A’,B,B’,C$ y $C’$ y donde estos son pares de puntos conjugados de una involución. De esta forma se tiene un haz de rectas en involución.

Haces de líneas ejemplo

$\triangle$

Propiedades

  • Al igual que en las hileras de puntos dobles, entonces las rectas del haz que pasan por estos puntos se les llamaran rectas dobles de la involución
Haces de líneas propiedad
  • Las dos rectas que pertenecen al mismo par se llaman rectas conjugadas.
  • De la misma forma en que se tienen los dos tipos de involución hiperbólica y elíptico, estos serán usados con haces de líneas en involución en el mismo sentido que el uso con hileras de puntos en involución.
  • Del teorema de razón cruzada en la involución, el cual dice «La razón cruzada de cualesquiera cuatro puntos de una involución en la cual están presentes tres pares conjugados, es igual a la razón cruzada de sus cuatro conjugados» nos da la siguiente propiedad si un haz de líneas corta cualquier transversal en una involución, cortará cualquier transversal que no pase por su vértice en una involución.

    Ejemplo. Se tiene la razón cruzada y la igualdad $\{ACA’B\}=\{A’C’AB’\}$ y como se tiene el haz en involución, entonces cuando corte a la transversal $l’$ se tendrán las siguientes igualdades de razón cruzada:
    $\{ACA’B\}=\{A_1C_1A’_1B_1\}$ y $\{A’C’AB’\}=\{A’_1C’_1A_1B’_1\}$
    Y por la igualdad de $\{ACA’B\}=\{A’C’AB’\}$, entonces $\{A_1C_1A’_1B_1\}=\{A’_1C’_1A_1B’_1\}$.
    Lo cumple el teorema de razón cruzada con involución, por lo tanto, los puntos de $l’$ están en involución respecto al punto $O’_1$.
Haces de líneas e hileras en involución

$\triangle$

Haz en involución y el vértice en la circunferencia

Teorema. Sea un haz de rectas en involución donde se tienen los pares conjugados $a,a’,b,b’,c,c’$ y que tienen su vértice en una circunferencia, y si estas rectas cortan la circunferencia nuevamente en $A,A’,B,B’,C,C’$ respectivamente, entonces las rectas $AA’, BB’, CC’$ son concurrentes.

Haces de líneas en circunferencia

Demostración. Tracemos una recta $l$ que corte al haz y no pase por $Q$, nos da las intersecciones $A_1, B_1, C_1, A_1′, B_1′, C_1’$.

Haces de líneas en circunferencia e hilera en involución


Como los haces de líneas está en involución y cualquier recta que corte al haz nos da una hilera de puntos en involución, por el teorema de razón cruzada con hilera de puntos nos da la siguiente igualdad.

$\{A_1A_1’B_1C_1\}=\{A_1’A_1B_1’C_1’\}$

Por propiedades de razón cruzada se cumple:

$\{aa’bc\}=\{a’ab’c’\}$

Se puede decir que la propiedad de razón cruzada también se cumple para haz de rectas en involución, es decir, que cualesquiera cuatro rectas que tiene de esa involución la razón cruzada va a ser a la de sus correspondientes.
Observemos que estos haces salen a partir del punto $Q$ y pasan por los puntos de intersección con la circunferencia. Entonces se puede poner el haz desde $Q$:

$Q\{AA’BC\}=Q\{A’AB’C’\}$

Y va a ser lo mismo si cambiamos $Q$ por $B’$ y $C$:

$B’\{AA’BC\}=C\{A’AB’C’\}$

Tracemos las rectas $AA’$, $BB’$ y $CC’$, y tracemos la recta $B’C$, donde se tienen las intersecciones con $AA’$ que son $X,Y $ y $Z$. Por demostrar que $X=Y$.

Concurrencia en Haces de líneas

La razón cruzada de $B’\{AA’BC\}=B’\{AA’XZ\}$ y, por otro lado, $C\{A’AB’C’\}=C\{A’AZY\}$, entonces $\{AA’XZ\}=\{A’AZY\}$. De esta igualdad se tienen tres puntos iguales $A’,A$ y $Z$, y el cuarto punto $X$ y $Y$ deben ser iguales, ya que si intercambiamos dos puntos de esta razón cruzada, los otros dos también deben intercambiarse, para que se conserve la razón cruzada entonces se tiene la igualdad:

$\{AA’XZ\}=\{AA’YZ\}$

Por lo cual $X=Y$ y se concluye que las rectas $AA’$, $BB’$ y $CC’$ son concurrentes.

$\square$

Del resultado anterior se puede generar la duda de que pasa si la involución es hiperbólica o elíptica, por ende se debe definir de manera más formal.

Definición. Sea $a,a’,b,b’,c,c’$ los haces de líneas en involución y una recta $l$ que no pase por el vértice $Q$ del haz, la cual generara intersecciones con el haz, las cuales son $A,A’,B,B’,C,C’$ respectivamente.

  • Si $A,A’,B,B’,C,C’$ es una involución elíptica, se dice que el haz está en involución elíptica.
  • Si $A,A’,B,B’,C,C’$ es una involución hiperbólica, se dice que el haz está en involución hiperbólica.

Rectas Conjugadas en ángulos rectos

Teorema. En un haz de rectas en involución siempre hay un par de rectas conjugadas perpendiculares entre sí, por otra parte, si existe más de un par de rectas conjugadas en ángulos rectos, entonces todos los pares conjugados son perpendiculares entre sí y la involución es elíptica.

Demostración. Sea un haz de rectas en involución $a,a’,b,b’,c,c’$ con $Q$ vértice, tracemos una circunferencia con centro $O$ que pase por $Q$ y el haz corte a la circunferencia en los puntos $A,A’,B,B’,C,C’$ respectivamente al orden que se mencionó las rectas.
Por el teorema anterior se afirma que las rectas $AA’, BB’, CC’$ son concurrentes en $X$. Tracemos la recta $XO$, la cual corta a la circunferencia en dos puntos $D$ y $D’$ los cuales son puntos extremos del diámetro $DD’$. Si trazamos las rectas $DQ$ y $D’Q$ nos forma un ángulo recto $\angle DQD’$.

Haz y ángulo recto

Por demostrar que las rectas $DQ$ y $D’Q$ son un par conjugado de la involución. Tracemos una recta $l$ que corte al haz $a,a’,b,b’,c,c’$ en involución en los puntos $A_1,A_1′,B_1,B_1′,C_1,C_1’$ respectivamente, además corta a las rectas $QD$ y $QD’$ en $D_1$ y $D_1’$ respectivamente.

Tenemos que ver que los pares $D_1$ y $D_1’$ están en la hilera de puntos en involución, entonces supongamos que $D_1$ tiene su par conjugado en la involución $D_1’$$’$, se quiere demostrar que $D_1’=D_1’$$’$. Por teorema de razón cruzada en involución se tienen las siguientes igualdades:

$\{A_1B_1C_1D_1\}=\{A_1’B_1’C_1’D_1’$$’\}$ y $\{A_1B_1C_1D_1\}=Q\{ABCD\}$.

Ahora en razón cruzada nos dice que si cuatro secantes que pasan por un punto $X$ y al observar la razón cruzada del haz formado por un punto $Q$ en la circunferencia con los puntos $A,B,C,D$ debe ser la misma razón cruzada del haz con los puntos correspondientes de la secante ósea $A’,B’,C’,D’$, lo cual da la igualdad:

$Q\{ABCD\}=Q\{A’B’C’D’\}$ y ademas $Q\{A’B’C’D’\}=\{A_1’B_1’C_1’D_1’\}$.

Por lo cual da la igualdad:

$\{A_1’B_1’C_1’D_1’$$’\}=\{A_1B_1C_1D_1\}=Q\{ABCD\}=Q\{A’B’C’D’\}=\{A_1’B_1’C_1’D_1’\}$

Entonces $\{A_1’B_1’C_1’D_1’$$’\}=\{A_1’B_1’C_1’D_1’\}$ por ende $D_1’=D_1’$$’$, se concluye que $DQ$ y $D’Q$ son un par conjugado perpendicular de la involución.

Haz en ángulo recto e hilera de puntos.

Ahora, si existe otro par de rectas conjugadas en ángulos rectos, las cuales supongamos que son $b$ y $b’$, esto nos diría que sus puntos $B$ y $B’$ son diametralmente opuestos, por lo cual, las rectas $DD’$ y $BB’$ se cortan en el centro $O$.
Y como se tiene el haz de rectas conjugadas en involución $a,a’,DQ,D’Q, b,b’$ entonces las rectas $AA’,DD’$ y $BB’$ son concurrentes, pero como $DD’$ y $BB’$ se cortan en $O$ entonces también $AA’$ pasa por $O$. Se concluye que todos los pares conjugados son perpendiculares entre sí y la involución es elíptica.

$\square$

Teoremas relacionados con los haces de líneas en involución

Se mencionarán tres teoremas, los cuales se dejaran como ejercicios a resolver.

Teorema. Dado un cuadrángulo completo, sus tres pares de lados opuestos son intersecados por cualquier transversal que no pasa por un vértice en tres pares de puntos conjugados de una involución.

Teorema. Sea un cuadrángulo inscrito en una circunferencia, cualquier recta que no pase por un vértice, corta a la circunferencia y los pares de lados opuestos del cuadrángulo en una involución.

Teorema. Si dos pares de lados opuestos de un cuadrángulo completo son ortogonales, el tercer par es también ortogonal.

Más adelante…

Se dejarán los ejercicios correspondientes a esta unidad de Razón Cruzada.

Entradas relacionadas

Álgebra Moderna I: Introducción al curso

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

¡Un curso salvaje de Álgebra Moderna ha aparecido!

El concepto de grupo como tal se da en el siglo XIX. Nace de varios problemas que se estaban trabajando en distintas áreas de las matemáticas, como por ejemplo, en la Teoría de los números, en la Geometría de transformaciones lineales y en el Análisis de las transformaciones continuas.

Un origen alternativo del término grupo está en la búsqueda de soluciones para ecuaciones de distintos grados. Desde el siglo XVIII a.C. los babilonios tenían su propia manera de encontrar las soluciones de ecuaciones de 1ro y 2do grado. Más adelante, en el siglo III d.C. el matemático Diofanto introduce en Grecia una notación algebraica y avanza con el estudio del problema de las soluciones de ecuaciones de grados mayores a dos.

Siglos después, en el siglo VIII, el árabe Al-Juarismi da métodos básicos para resolver ecuaciones polinomiales usando justificaciones geométricas. Después de él, se da un estancamiento para resolver ecuaciones de grado mayor.

En el siglo XVI se da un avance gracias a cuatro matemáticos: Niccolò Fontana Tartaglia, Gerolamo Cardano, su alumno Lodovico Ferrari y Scipione del Ferro. La historia cuenta que Tartaglia encuentra la forma de resolver ecuaciones de grado tres usando radicales, es decir, una fórmula general para resolverlas a partir de los coeficientes usando operaciones básicas como la suma, la resta, la multiplicación y la división. Después de contarle a Cardano, Tartaglia le pide que guarde el secreto. Pero Del Ferro también encuentra una solución al problema y al igual que Tartaglia se le dice a Cardano, así que Cardano piensa que ya no es necesario guardar el secreto de Tartaglia y decide publicar en su libro Ars Magna las soluciones a las ecuaciones de tercer grado, así como la solución a las ecuaciones de grado cuatro descubiertas por su discípulo Ferrari.

Para las ecuaciones de grado cinco no hay avance en mucho tiempo. Fue en el siglo XVIII Joseph-Louis Lagrange retoma el problema y utiliza permutaciones de las raíces de un polinomio para crear una ecuación auxiliar y tratar de encontrar así la solución a ecuaciones de quinto grado usando radicales. A pesar de que no logra resolver el problema, su trabajo es muy importante y retomado más adelante.

A finales de este mismo siglo, Niels Henrik Abel y Paolo Ruffini retoman el trabajo de Lagrange y se dan cuenta que existen ecuaciones de grado cinco que no son solubles con radicales, su trabajo se resume en el Teorema de Abel-Ruffini.

Quién sí logra entender completamente el problema y definir qué ecuaciones de grado cinco (o mayor) tienen soluciones y cuáles no se pueden resolver con radicales fue Évariste Galois. En este camino descubre lo que ahora conocemos como Teoría de grupos, aunque es hasta 1844 que Augustin Louis Cauchy introduce la notación actual que usamos para esta rama del Álgebra.

Esto es precisamente lo que vamos a estudiar en este semestre, no en sí la resolución de ecuaciones, si no la parte básica de la Teoría de grupos. Es posible que ya estés familiarizado con alguna de las estructuras que trataremos porque daremos por hecho que posees conocimientos de Álgebra Superior I, Álgebra Superior II, Álgebra Lineal I y Álgebra Lineal II.

Sobre la estructura del curso

El curso consiste en 48 entradas divididas por temas importantes y agrupadas en cinco unidades:

  • Unidad 1: Grupos y Subgrupos
  • Unidad 2: Permutaciones
  • Unidad 3: Grupo cociente y Homomorfismos
  • Unidad 4: Acciones y Teoremas de Sylow
  • Unidad 5: Jordan Hölder y el Teorema fundamental

Cada una de las entradas está dividida en cuatro secciones importantes: Introducción, Tarea moral, Más adelante… y Entradas relacionadas.

En la Introducción se pretende dar una motivación a los temas que se verán, además de relacionar la entrada actual con la entrada anterior. Luego, durante el desarrollo de la entrada, el contenido también se divide en secciones, estas secciones dependen de la duración y de los temas que se traten.

En la sección de Tarea moral se dejan ejercicios para que repases los temas de la entrada en la que están. Más adelante… es una sección en la que queremos relacionar los temas vistos con futuras entradas.

Por último, la sección de Entradas relacionadas se explica por sí sola. Ahí podrás encontrar las entradas anterior y siguiente inmediatas a la entrada que estás leyendo, un enlace que te llevará directamente a la lista de otros cursos que pueden serte de utilidad y uno para ir a la página de presentación de este curso.

Materiales o videos recomendados

A lo largo de las entradas dejamos algo de material extra porque te puede proporcionar mejor perspectiva y parecer interesante. Aquí recopilamos todo ese material y agregamos algo más para que puedas acceder a él de manera más fácil.

Unidad 1:
Grupos de Transformadores p(112-115)
Grupo Diédrico – Socratica
Visualización de cuaterniones – 3Blue1Brown (subtítulos en español)

Unidad 2:
¿Cómo tocar un cubo de Rubik como si fuera un piano? – M. Staff
Juego del 15 – Mathologer
Lagrange – Universidad de la Sorbona (subtítulos en español)
Grupo cociente – Mathemaniac

Unidad 3:
Homomorphism – Socratica
Homomorphism – Mathemaniac

Unidad 4:
Teorema de Cayley – Mathemaniac

Unidad 5:
Simple Groups – Socratica
La mitad de este video toca los temas vistos en la unidad 5. El resto del video te puede abrir el panorama sobre otros temas del Álgebra Moderna interesantes que no se cubren en este curso y además sirve como un cierre del curso ya que retoma lo que se menciona en esta introducción y vuelve a mencionar a Galois.

Más adelante…

Esta sección está en cada entrada para motivarte a seguir adelante con el curso y te proporciona vistazos de futuros usos a lo que hayas estudiado en la entrada. En este caso ¡tienes todo un maravilloso curso de Álgebra Moderna por explorar!

Entradas relacionadas

Teoría de los Conjuntos I: Conjuntos infinitos no numerables.

Por Gabriela Hernández Aguilar

Introducción

Al hablar de conjuntos infinitos, resulta natural pensar que entre cualesquiera dos de ellos debería existir una manera de «emparejar» sus elementos, es decir, establecer una biyección entre tales conjuntos, ya que, al fin y al cabo, ambos contienen infinitos elementos. Esta idea puede deberse a que, cuando uno piensa en conjuntos infinitos, lo primero que viene a la mente es el conjunto de los números naturales o el de los enteros, los cuales están ordenados de una manera bastante agradable y nos resulta «fácil» ubicarlos en una recta, como si fueran números colocados sobre una cinta métrica infinita.

Sin embargo, no todos los conjuntos infinitos poseen un orden tan agradable como el de estos dos conjuntos, y muchos de ellos presentan propiedades considerablemente diferentes. Por ejemplo, algunos conjuntos infinitos pueden no tener un buen orden como el de los naturales, o quizás exista tal orden pero nos resulte extremadamente difícil de identificar.

El teorema de Cantor demuestra que, efectivamente, la idea de que se pueden emparejar los elementos de cualesquiera dos conjuntos infinitos es incorrecta. Un ejemplo específico es el conjunto de los números naturales $\mathbb{N}$ y su conjunto potencia $\mathcal{P}(\mathbb{N})$; es imposible emparejar cada elemento de $\mathcal{P}(\mathbb{N})$ con uno y solo un elemento de $\mathbb{N}$. Este hecho muestra que existen conjunto infinitos más grandes que otros.

Esta entrada está dedicada precisamente a esta cuestión: exhibir conjuntos infinitos con «diferentes tamaños», específicamente, conjuntos que no sean numerables, es decir, que no sean equipotentes con $\mathbb{N}$. Como hemos venido haciendo, también emplearemos el muy importante teorema de Cantor-Schröder-Bernstein para probar ciertas equipotencias.

Conjuntos más grandes que $\mathbb{N}$

Por el teorema de Cantor sabemos que para cada conjunto $A$ se tiene $|A|<|\mathcal{P}(A)|$, es decir, que existe una función inyectiva de $A$ en $\mathcal{P}(A)$ pero no una función biyectiva. Así pues, por ejemplo, $\mathcal{P}(\mathbb{N})$ además de ser un conjunto infinito, tiene «más» elementos que $\mathbb{N}$, el cual es también infinito. Esto es una muestra de que existen conjuntos infinitos que no son equipotentes. En lo subsecuente exhibiremos algunos otros conjuntos infinitos que sí se pueden biyectar con $\mathcal{P}(\mathbb{N})$ y que por tanto no son numerables.

Comenzaremos proporcionando ejemplos que involucran conceptos que hemos visto en la entrada anterior.

Ejemplo.

El conjunto de sucesiones en $\mathbb{N}$, que denotaremos por $\mathbb{N}^{\mathbb{N}}$, es equipotente a $\mathcal{P}(\mathbb{N})$.

Demostración.

En la entrada anterior probamos que para cada $A\subseteq\mathbb{N}$ infinito, existe una única función biyectiva $F_A:\mathbb{N}\to A$ tal que $F_A(0)=\textnormal{min}(A)$ y que $F_A(n)<F_A(n+1)$ para cada $n\in\mathbb{N}$. Lo mismo mencionamos respecto a conjuntos finitos no vacíos, es decir, si $A\subseteq\mathbb{N}$ es un conjunto finito no vacío, digamos $|A|=n+1$ con $n\in\mathbb{N}$, existe una única función biyectiva $f_A:n+1\to A$ tal que $f_A(0)=\textnormal{min}(A)$ y que $f_A(m)<f_A(k)$ si y sólo si $m<k$ para cualesquiera $m,k\in n+1$.
Si $A\subseteq\mathbb{N}$ es finito, podemos extender la función $f_A$ a todo $\mathbb{N}$ de la siguiente manera: si $f_A:n+1\to A$ es la única función biyectiva que satisface $f_A(0)=\textnormal{min}(A)$ y $f_A(m)<f_A(k)$ si y sólo si $m<k$ para cualesquiera $m,k\in n+1$, definimos $F_A:\mathbb{N}\to A$ por medio de $$F_A(m)=\left\{\begin{array}{lcc}
f_A(m) & \textnormal{si}\ m\in n+1\\
\textnormal{min}(A) & \textnormal{si}\ m\notin n+1
\end{array}
\right.$$

Lo anterior nos permite asociar a cada elemento de $\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}$ una única sucesión en $\mathbb{N}^{\mathbb{N}}$ por medio de la siguiente función: definamos $F:\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}\to\mathbb{N}^{\mathbb{N}}$ como $F(A)=F_A$ para cada $A\in\mathcal{P}(\mathbb{N})$. Debido a la definición de las funciones $F_A$, en cualquier caso, ya sea que $A\subseteq\mathbb{N}$ es finito o infinito, se cumple que $F_A[\mathbb{N}]=A$; en consecuencia, si $A$ y $B$ son conjuntos no vacíos tales que $F(A)=F(B)$ tendríamos que para cada $k\in\mathbb{N}$, $F_A(k)=F_B(k)$ y, por ende, que $A=F_A[\mathbb{N}]=F_B[\mathbb{N}]=B$, lo cual muestra que $F$ es inyectiva.

Ahora bien, para cada $x\in\mathbb{N}^{\mathbb{N}}$ definamos $x+1:\mathbb{N}\to\mathbb{N}$ por medio de $(x+1)(n):=x(n)+1$ para cada $n\in\mathbb{N}$. La función $g:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}}$ definida por medio de $g(x)=x+1$ es una función inyectiva, pues si $g(x)=g(y)$ para algunas $x,y\in\mathbb{N}^{\mathbb{N}}$, entonces, $x(n)+1=y(n)+1$ para cada $n\in\mathbb{N}$ y, por tanto, $x(n)=y(n)$ para cada $n\in\mathbb{N}$, es decir, $x=y$. Observemos además que $g(x)\not=x_0$ para cada $x\in\mathbb{N}^{\mathbb{N}}$, donde $x_0(n)=0$ para cada $n\in\mathbb{N}$; en efecto, si $x\in\mathbb{N}^{\mathbb{N}}$, entonces, $g(x)(n)=(x+1)(n)=x(n)+1\not=0$ para cada $n\in\mathbb{N}$ ya que $0$ no es sucesor de ningún número natural. Así, la función $g\circ F:\mathcal{P}(\mathbb{N})\setminus\set{\emptyset}\to\mathbb{N}^{\mathbb{N}}$ es inyectiva y $(g\circ F)(A)\not=x_0$ para cada $A\in\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}$. Por tanto la función $h:\mathcal{P}(\mathbb{N})\to\mathbb{N}^{\mathbb{N}}$ definida como \[h(A)=\left\{\begin{array}{lcc}
(g\circ F)(A) & \textnormal{si}\ A\not=\emptyset\\
x_0 & \textnormal{si}\ A=\emptyset
\end{array}
\right.\] es inyectiva.

Para dar una función inyectiva de $\mathbb{N}^{\mathbb{N}}$ en $\mathcal{P}(\mathbb{N})$ retomaremos al conjunto de números primos $\mathbb{P}=\{p_n:n\in\mathbb{N}\}$ enumerado de tal forma que $p_n<p_{n+1}$ para cada $n\in\mathbb{N}$. Definamos ahora $T:\mathbb{N}^{\mathbb{N}}\to\mathcal{P}(\mathbb{N})$ por medio de $T(x)=\{p_n^{x(n)}:n\in\mathbb{N}\}$. Notemos que $T$ es una función inyectiva, pues si $T(x)=T(y)$, entonces, $\{p_n^{x(n)}:n\in\mathbb{N}\}=\{p_n^{y(n)}:n\in\mathbb{N}\}$ y así $p_n^{x(n)}=p_n^{y(n)}$ y $x(n)=y(n)$ para cada $n\in\mathbb{N}$, pues de otro modo se contradice al teorema fundamental de la aritmética. Por lo tanto, $x=y$ y $T$ es inyectiva.

Por el teorema de Cantor-Schröder-Bernstein concluimos que $|\mathcal{P}(\mathbb{N})|=|\mathbb{N}^{\mathbb{N}}|$.

$\square$

Al contrario de los conjuntos finitos, existen ejemplos de conjuntos infinitos que poseen subconjuntos propios equipotentes a ellos mismos, es decir, existe una biyección entre el subconjunto propio y el conjunto original. Un ejemplo de lo anterior es el conjunto de los números naturales, pues cualquier subconjunto propio de $\mathbb{N}$ que sea infinito resulta ser numerable. A continuación vamos a proporcionar otro de estos ejemplos, pero esta vez con un conjunto infinito no numerable.

Ejemplo.

El conjunto $2^{\mathbb{N}}:=\{f\in\mathbb{N}^{\mathbb{N}}:f(n)\in\{0,1\}\ \textnormal{para cada}\ n\in\mathbb{N}\}$ es equipotente a $\mathcal{P}(\mathbb{N})$.

Demostración.

Para demostrar la equipotencia de este ejemplo vamos a exhibir una biyección entre tales conjuntos. Para ello haremos lo siguiente, si $A\in\mathcal{P}(\mathbb{N})$ definimos $\chi_{A}:\mathbb{N}\to\mathbb{N}$ por medio de $\chi_{A}(n)=\left\{\begin{array}{lcc}
1 & \textnormal{si}\ n\in A\\
0 & \textnormal{si}\ n\in\mathbb{N}\setminus A
\end{array}
\right.$

Lo anterior nos permite establecer una función entre $\mathcal{P}(\mathbb{N})$ y $2^{\mathbb{N}}$, función que de hecho resulta ser biyectiva. Veamos primero la inyectividad. Si para $A,B\in\mathcal{P}(\mathbb{N})$ se cumple $\chi_A=\chi_B$, entonces $\chi_A(n)=\chi_B(n)$ para cada $n\in\mathbb{N}$. En consecuencia, si $n\in A$, $1=\chi_A(n)=\chi_B(n)$ y por ende $n\in B$; análogamente, si $n\in B$, $1=\chi_B(n)=\chi_A(n)$ y por tanto $n\in A$. Por consiguiente $A=B$, lo que demuestra la inyectividad de la función.
Resta probar la sobreyectividad. Consideremos $\chi\in 2^{\mathbb{N}}$ un elemento arbitrario. Definamos $A:=\{n\in\mathbb{N}:\chi(n)=1\}$ y veamos que $\chi_A=\chi$. Si $n\in A$, entonces $\chi(n)=1$ por definición del conjunto $A$ y, por otro lado, $\chi_A(n)=1$ por definición de la función $\chi_A$. Si ahora $n\in\mathbb{N}\setminus A$, $\chi(n)=0$ por definición del conjunto $A$ mientras que $\chi_A(n)=0$ por definición de la función $\chi_A$. Esto muestra que $\chi(n)=\chi_A(n)$ para cada $n\in\mathbb{N}$ y por ende que $\chi=\chi_A$. Así pues, la función $F:\mathcal{P}(\mathbb{N})\to2^{\mathbb{N}}$ definida por medio de $F(A)=\chi_A$ para cada $A\in\mathcal{P}(\mathbb{N})$ es una biyección y, por tanto, $|\mathcal{P}(\mathbb{N})|=|2^{\mathbb{N}}|$.

$\square$

Como lo mencionamos previamente, ahora contamos con un ejemplo de un conjunto infinito no numerable que posee un subconjunto propio equipotente a él, específicamente $\mathbb{N}^{\mathbb{N}}$ y $2^{\mathbb{N}}$ son equipotentes y $2^{\mathbb{N}}\subsetneq\mathbb{N}^{\mathbb{N}}$. Conjuntos de este tipo, es decir, conjuntos que poseen subconjuntos propios equipotentes a ellos, reciben un nombre particular que anotamos en la siguiente definición.

Definición. Un conjunto $X$ se llama infinito según Dedekind si existe una función inyectiva $f:X\to X$ tal que $f[X]\not=X$.

Que un conjunto sea infinito según Dedekind implica que dicho conjunto es infinito. Y ya que contamos con algunos ejemplos de conjuntos infinitos que también son infinitos según Dedekind, surge de manera natural la pregunta: ¿todo conjunto infinito es infinito según Dedekind? Dicha cuestión no la podemos responder con lo que hemos visto hasta ahora y es por eso que la dejaremos para más adelante.

Una consecuencia inmediata del último ejemplo es el siguiente corolario.

Corolario. Sean $a_0,a_1,\ldots,a_n\in\mathbb{N}$ naturales distintos con $n\geq1$. El conjunto $\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1,\ldots,a_n\}\}$ es equipotente a $\mathbb{N}^{\mathbb{N}}$.

Demostración.

Dado que $j:\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1,\ldots,a_n\}\}\to\mathbb{N}^{\mathbb{N}}$ definida por medio de $j(f)=f$ es una función inyectiva, basta exhibir una función inyectiva de $\mathbb{N}^{\mathbb{N}}$ en $\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1,\ldots,a_n\}\}$.

Denotemos $A:=\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1,\ldots,a_n\}\}$. Si denotamos $B:=\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{a_0,a_1\}\}$, entonces $B\subseteq A$. Para cada $\chi\in2^{\mathbb{N}}$ definamos $f_\chi:\mathbb{N}\to\mathbb{N}$ de la siguiente manera $f_\chi(n)=\left\{\begin{array}{lcc}
a_0 & \textnormal{si}\ \chi(n)=0\\
a_1 & \textnormal{si}\ \chi(n)=1
\end{array}
\right.$
A partir de la definición anterior tenemos que $f_{\chi}\in B$ para cada $\chi\in2^{\mathbb{N}}$, lo cual nos permite definir $F:2^{\mathbb{N}}\to B$ por medio de $F(\chi)=f_{\chi}$. Resulta que $F$ es una biyección. En efecto, por un lado es inyectiva ya que si $F(\chi)=F(\chi’)$, entonces $f_{\chi}(n)=f_{\chi’}(n)$ para cada $n\in\mathbb{N}$, de modo que si $\chi(n)=0$ se tiene que $a_0=f_{\chi}(n)=f_{\chi’}(n)$ y por tanto $\chi'(n)=0$; asimismo, si $\chi(n)=1$ se tiene que $a_1=f_{\chi}(n)=f_{\chi’}(n)$ por lo que $\chi'(n)=1$. Por tanto $\chi(n)=\chi'(n)$ para cada $n\in\mathbb{N}$ y así $\chi=\chi’$.
Ahora para mostrar que $F$ es sobreyectiva tomemos $f\in B$ elemento arbitrario y definamos $\chi:\mathbb{N}\to\mathbb{N}$ por medio de $\chi(n)=\left\{\begin{array}{lcc}
1 & \textnormal{si}\ f(n)=a_1\\
0 & \textnormal{si}\ f(n)=a_0
\end{array}
\right.$
Luego, $f_{\chi}=f$, pues si $n\in\mathbb{N}$ es tal que $f(n)=a_1$ se tiene que $\chi(n)=1$ por definición de $\chi$ y así $f_{\chi}(n)=a_1$; por otro lado, si $n\in\mathbb{N}$ es tal que $f(n)=a_0$ se tiene que $\chi(n)=0$ por definición de $\chi$ y por ende $f_{\chi}(n)=a_0$. Podemos concluir entonces que $F( \chi)=f_{\chi}=f$, lo que demuestra que $F$ es sobreyectiva. Por tanto $F$ es una biyección y $|2^{\mathbb{N}}|=|B|$.
Ahora, sean $h:\mathbb{N}^{\mathbb{N}}\to2^{\mathbb{N}}$ una función biyectiva (la cual sabemos que existe pues $|\mathbb{N}^{\mathbb{N}}|=|\mathcal{P}(\mathbb{N})|=|2^{\mathbb{N}}|$) y $\iota:B\to A$ la función inclusión, es decir, $\iota(f)=f$ para cada $f\in B$. Luego, $\iota\circ h:\mathbb{N}^{\mathbb{N}}\to A$ es una función inyectiva.
Por el teorema de Cantor-Schröder-Bernstein concluimos que $|\mathbb{N}^{\mathbb{N}}|=|A|$.

$\square$

Observemos que el corolario muestra que existen una infinidad de subcojuntos propios de $\mathbb{N}^{\mathbb{N}}$ equipotentes a él. Dado que $|\mathcal{P}(\mathbb{N})|=|\mathbb{N}^{\mathbb{N}}|$, entonces $\mathcal{P}(\mathbb{N})$ también posee una cantidad infinita de subconjuntos propios equipotentes a él. El siguiente ejemplo es uno de tales subconjuntos.

Ejemplo.

El conjunto $[\mathbb{N}]^{\mathbb{N}}:=\{A\subseteq\mathbb{N}:|A|=|\mathbb{N}|\}$ es equipotente a $\mathcal{P}(\mathbb{N})$.

Demostración.

Dado que $[\mathbb{N}]^{\mathbb{N}}\subseteq\mathcal{P}(\mathbb{N})$ lo único que hace falta es exhibir una función inyectiva de $\mathcal{P}(\mathbb{N})$ en $[\mathbb{N}]^{\mathbb{N}}$.

Consideremos al conjunto de números primos $\mathbb{P}=\{p_n:n\in\mathbb{N}\}$ donde $p_n<p_{n+1}$ para cada $n\in\mathbb{N}$. Definamos $g:\mathbb{N}^{\mathbb{N}}\to[\mathbb{N}]^{\mathbb{N}}$ como $g(x)=\{p_n^{x(n)+1}:n\in\mathbb{N}\}$. Dado que para cada $x\in\mathbb{N}^{\mathbb{N}}$, $x(n)+1\not=0$ para toda $n\in\mathbb{N}$, tenemos que $\{p_n^{x(n)+1}:n\in\mathbb{N}\}$ es un conjunto infinito, por lo que $g$ tiene el codominio adecuado. Por otro lado, $g$ es inyectiva ya que si $g(x)=g(y)$, entonces $p_n^{x(n)+1}=p_n^{y(n)+1}$ para cada $n\in\mathbb{N}$ por el teorema fundamental de la aritmética y, más aún, $x(n)+1=y(n)+1$ para cada $n\in\mathbb{N}$, lo que demuestra que $x=y$. Si $h:\mathcal{P}(\mathbb{N})\to\mathbb{N}^{\mathbb{N}}$ es una biyección se sigue que $g\circ h:\mathcal{P}(\mathbb{N})\to[\mathbb{N}]^{\mathbb{N}}$ es una función inyectiva. Por el teorema de Cantor-Schröder-Bernstein concluimos que $|\mathcal{P}(\mathbb{N})|=|[\mathbb{N}]^{\mathbb{N}}|$.

$\square$

Como un ejercicio para esta entrada dejaremos el siguiente ejemplo.

Ejemplo.

$\mathbb{N}^{\nearrow\mathbb{N}}:=\{f\in\mathbb{N}^{\mathbb{N}}:f(n)<f(n+1)\ \textnormal{para cada}\ n\in\mathbb{N}\}$ es equipotente a $[\mathbb{N}]^{\mathbb{N}}$, y por tanto equipotente a $\mathcal{P}(\mathbb{N})$.

Para finalizar con esta serie de ejemplos de conjuntos no numerables y equipotentes a $\mathcal{P}(\mathbb{N})$ hablaremos del conjunto de números reales.
Para lo que sigue vamos a suponer que ya conocemos todas las propiedades básicas del conjunto de números reales, y si no se conocen dichas propiedades o lo que es un número real, puedes consultar cualquier libro introductorio a la teoría de conjuntos como el de Hernández1, o también puedes consultarlo en un libro de cálculo como el de Spivak2.
Además de lo dicho en el párrafo precedente, estaremos haciendo un abuso de notación escribiendo las contenciones $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$.
Dicho lo anterior tenemos la siguiente proposición.

Proposición. El intervalo abierto $(0,1)=\{r\in\mathbb{R}:0<r<1\}$ es equipotente a $\mathbb{R}$.

Demostración.

Definamos $f:\mathbb{R}\to(0,1)$ por medio de $f(x)=\left\{\begin{array}{lcc}
\frac{4x+1}{4x+2} & \textnormal{si}\ x\geq0\\
\frac{1}{2(1-2x)} & \textnormal{si}\ x<0
\end{array}
\right.$
Lo primero que se debe observar es que la función $f$ tiene el codominio adecuado, es decir, $f(x)\in(0,1)$ para cada $x\in\mathbb{R}$. Si $x\geq0$, entonces, $0<4x+1<4x+2$ y por tanto $0<\frac{4x+1}{4x+2}<1$, es decir, $f(x)\in(0,1)$; por otro lado, si $x<0$, entonces $0<-2x$ y así $1<1-2x$, lo cual implica que $0<\frac{1}{1-2x}<1$ y que $0<\frac{1}{2(1-2x)}<\frac{1}{2}<1$, es decir, $f(x)\in(0,1)$. Por tanto, $f(x)\in(0,1)$ para cada $x\in\mathbb{R}$. Es importante notar que para $x<0$ vimos que no sólo se cumple $0<f(x)<1$, sino también que $0<f(x)<\frac{1}{2}$. Por otro lado, para $x\geq0$, tenemos que $0<1+2x\leq1+4x$ por lo que $1\leq\frac{4x+1}{2x+1}$ y por tanto $\frac{1}{2}\leq\frac{4x+1}{4x+2}$; de modo que para $x\geq0$ no sólo se cumple que $f(x)\in(0,1)$, sino también que $f(x)\in[\frac{1}{2},1)$.
Veamos ahora que $f$ es una función inyectiva. Sean $x,y\in\mathbb{R}$ con $x\not=y$. Debido a que $\mathbb{R}$ posee un orden lineal podemos suponer que $y<x$. Tenemos los siguientes casos.
Caso 1. $y<0\leq x$. En este caso se tiene que $f(y)\in(0,\frac{1}{2})$ mientras que $f(x)\in[\frac{1}{2},1)$, razón por la cual $f(x)\not=f(y)$.
Caso 2. $0\leq y<x$. En este caso se tiene que $f(y)=\frac{4y+1}{4y+2}$ y $f(x)=\frac{4x+1}{4x+2}$. Luego, si ocurriera que $\frac{4y+1}{4y+2}=\frac{4x+1}{4x+2}$, entonces $(4y+1)(4x+2)=(4x+1)(4y+2)$, lo cual implica $(4y+1)(2x+1)=(4x+1)(2y+1)$, es decir, $8xy+4y+2x+1=8xy+4x+2y+1$ y por ende $2y=2x$, lo cual contradice que $x\not=y$. Por tanto, $f(x)\not=f(y)$.
Caso 3. $y<x<0$. Si ocurriera que $f(x)=f(y)$, entonces $\frac{1}{2(1-2x)}=\frac{1}{2(1-2y)}$ y por ende, $1-2x=1-2y$, de donde $x=y$ y eso contradice la elección de $x$ y $y$. Por tanto $f$ es una función inyectiva.

Veamos ahora que $f$ es sobreyectiva. Sea $r\in(0,1)$. Si $r\in(0,\frac{1}{2})$, entonces $2<\frac{1}{r}$, lo cual implica $\frac{1}{2}<\frac{1}{4r}$ y así $x:=\frac{1}{2}-\frac{1}{4r}$ es un número real menor a $0$; luego, para tal $x$ tenemos que $f(x)=\frac{1}{2(1-2x)}=\frac{1}{2(1-(1-\frac{1}{2r}))}=\frac{1}{2\cdot\frac{1}{2r}}=r$. Si ahora $r\in[\frac{1}{2},1)$, entonces $2r-1\geq0$ y $1-r>0$, por lo que $x:=\frac{2r-1}{4(1-r)}$ es un número real mayor o igual a $0$ para el cual se cumple $f(x)=\frac{4x+1}{4x+2}=\frac{4(\frac{2r-1}{4(1-r)})+1}{4(\frac{2r-1}{4(1-r)})+2}=\frac{\frac{2r-1}{1-r}+1}{\frac{2r-1}{1-r}+2}=\frac{\frac{2r-1+1-r}{1-r}}{\frac{2r-1+2-2r}{1-r}}=\frac{r}{1}=r$. Lo anterior prueba que $f$ es sobreyectiva.

Por lo tanto $f$ es una biyección y $|\mathbb{R}|=|(0,1)|$.

$\square$

Una consecuencia de la proposición anterior es el siguiente corolario.

Corolario. El intervalo $[0,1]:=\{r\in\mathbb{R}:0\leq r\leq1\}$ es equipotente a $\mathbb{R}$.

Demostración.

Dado que $[0,1]\subseteq\mathbb{R}$, basta mostrar que existe una función inyectiva de $\mathbb{R}$ en $[0,1]$. Por la proposición anterior existe una función biyectiva $f:\mathbb{R}\to(0,1)$ y así la función $F:\mathbb{R}\to[0,1]$ definida como $F(x)=f(x)$ para cada $x\in\mathbb{R}$ es inyectiva. Por el teorema de Cantor-Schröder-Bernstein concluimos que $|\mathbb{R}|=|[0,1]|$.

$\square$

Si bien la demostración del corolario anterior fue muy rápida y utilizamos el importante teorema de Cantor-Schröder-Bernstein, siempre resulta interesante determinar una biyección explícita, y precisamente en el caso del corolario anterior lo podemos hacer.

Definamos $S:=\{\frac{1}{n}:n\in\mathbb{N}\setminus\set{0}\}\cup\{0\}$. Definamos $g:[0,1]\to(0,1)$ por medio de $g(x)=\left\{\begin{array}{lcc}
x & \textnormal{si}\ x\notin S\\
\frac{1}{n+2} & \textnormal{si}\ x=\frac{1}{n},\ n\in\mathbb{N}\setminus\{0\}\\
\frac{1}{2} & \textnormal{si}\ x=0
\end{array}
\right.$

La función anterior resulta ser una biyección entre $[0,1]$ y $(0,1)$. Primero veremos que $g$ es inyectiva. Sean $x,y\in[0,1]$ con $x\not=y$. Tenemos algunos casos.

Caso 1. $x,y\notin S$. En este caso $g(x)=x\not=y=g(y)$.
Caso 2. $x\in S$, $y\notin S$. Dado que para cada $z\in S$ se tiene $g(z)\in S$, entonces, $g(x)\in S$ mientras que $g(y)=y\notin S$. Por tanto $g(x)\not=g(y)$.
Caso 3. $x\notin S$, $y\in S$. Análogo al caso $2$.
Caso 4. $x,y\in S$. Si $x=0$ y $y=\frac{1}{n}$ con $n\in\mathbb{N}\setminus\{0\}$, entonces $g(x)=\frac{1}{2}$ y $g(y)=\frac{1}{n+2}$. Como $n\geq1$ se tiene que $n+2\geq3$ y por tanto $\frac{1}{2}\not=\frac{1}{n+2}$, es decir, $g(x)\not=g(y)$. Análogamente, si $y=0$ y $x=\frac{1}{n}$ con $n\in\mathbb{N}\setminus\{0\}$, $g(x)\not=g(y)$. Supongamos ahora que $x=\frac{1}{n}$ y $y=\frac{1}{m}$ con $n,m\in\mathbb{N}\setminus\{0\}$ con $n\not=m$.
Luego, $g(x)=\frac{1}{n+2}\not=\frac{1}{m+2}=g(y)$ pues de lo contrario tendríamos $n+2=m+2$ y $n=m$, lo cual contradice $n\not=m$.
Los cuatro casos anteriores muestran que $g$ es inyectiva.

Veamos ahora que $g$ es sobreyectiva. Sea $x\in(0,1)$. Si $x\in S$, entonces $x=\frac{1}{n}$ con $n\in\mathbb{N}$, $n\geq2$, por lo que existe $m\in\mathbb{N}$ tal que $m+2=n$; si $m=0$, entonces $x=\frac{1}{2}=g(0)$ y si $m>0$, entonces, $g(\frac{1}{m})=\frac{1}{m+2}=\frac{1}{n}=x$.
Si $x\notin S$, entonces $g(x)=x$. Por tanto, $g$ es sobreyectiva y en consecuencia una biyección. Esto muestra que $[0,1]$ y $(0,1)$ son equipotentes y, por tanto, $[0,1]$ y $\mathbb{R}$ son equipotentes. Más aún, contamos con una biyección explícita entre $[0,1]$ y $\mathbb{R}$.

Para exhibir la biyección entre $[0,1]$ y $(0,1)$ utilizamos el hecho de que $[0,1]$ contiene un conjunto numerable, específicamente el conjunto $S=\{\frac{1}{n}:n\in\mathbb{N}\setminus\{0\}\}\cup\{0\}$. Precisamente este hecho fue el que jugó un papel fundamental, pues como veremos en la siguiente proposición, si $X$ es un conjunto infinito que contiene un conjunto numerable, entonces, para cada $A\subseteq X$ conjunto finito, se cumple $|X\setminus A|=|X|$.

Proposición. Sea $X$ un conjunto infinito tal que existe una función inyectiva $f:\mathbb{N}\to X$. Entonces, para cada $A\subseteq X$ conjunto finito, $|X\setminus A|=|X|$.

Demostración.

Como lo mostrarás en los ejercicios de esta sección, basta mostrar que para cada $x\in X$, los conjuntos $X\setminus\{x\}$ y $X$ son equipotentes.

Sea pues $x\in X$. Sea $f:\mathbb{N}\to X$ una función inyectiva y denotemos por $N$ a la imagen de $f$, esto es $N:=im(f)=\{f(n):n\in\mathbb{N}\}$.

Si $x\notin N$, definamos $g:X\to X\setminus\{x\}$ por medio de $g(y)=\left\{\begin{array}{lcc}
y & \textnormal{si}\ y\notin N\cup\{x\}\\
f(0) & \textnormal{si}\ y=x\\
f(n+1) & \textnormal{si}\ y=f(n)
\end{array}
\right.$

Comprobar que esta función es biyectiva es análogo a como lo hicimos con la función biyectiva que exhibimos entre los intervalos $[0,1]$ y $(0,1)$, por lo que lo dejaremos como un ejercicio para esta entrada.

Supongamos ahora que $x\in N$ y sea $n\in\mathbb{N}$ tal que $x=f(n)$. Para este caso definamos $h:X\to X\setminus\{x\}$ por medio de $h(y)=\left\{\begin{array}{lcc}
y & \textnormal{si}\ y\notin N\setminus\{f(m):m<n\}\\
f(m+1) & \textnormal{si}\ y=f(m),\ m\geq n
\end{array}
\right.$

Nuevamente, comprobar que esta función es biyectiva es similar a lo que hemos hecho. Esto nos permite concluir que $|X\setminus\{x\}|=|X|$ para cada $x\in X$.

$\square$

La proposición precedente muestra además que todo conjunto que contenga un conjunto numerable es infinito segun Dedekind, pues si tomamos $x\in X$, entonces $X\setminus\{x\}\subsetneq X$ y $|X\setminus\{x\}|=|X|$.

Para culminar la entrada mostraremos que $(0,1)$ y $\mathcal{P}(\mathbb{N})$ son equipotentes y que por tanto $\mathbb{R}$ y $\mathcal{P}(\mathbb{N})$ lo son. Esto lo escribiremos como un teorema.

Teorema. $(0,1)$ y $\mathcal{P}(\mathbb{N})$ son equipotentes.

Demostración.

Primero vamos a mostrar la siguiente afirmación: para cada $r\in(0,1)$, existe una única función $\chi_r:\mathbb{N}\to\mathbb{N}$ que satisface $\chi_r(n)\in\{0,1,2,3,4,5,6,7,8,9\}$ para cada $n\in\mathbb{N}$ y tal que $0\leq x-\sum_{i=0}^{n}\frac{\chi_r(i)}{10^i}<\frac{1}{10^{n}}$.

Sea pues $r\in(0,1)$. Probaremos por inducción que para cada $n\in\mathbb{N}$ existe una única función $\chi^{(n)}_r:n+1\to\mathbb{N}$ tal que $\chi^{(n)}_{r}[n+1]\subseteq\{0,1,2,3,4,5,6,7,8,9\}$ y $0\leq x-\sum_{i=0}^{n}\frac{\chi^{(n)}_{r}(i)}{10^i}<\frac{1}{10^n}$.
Para $n=0$ definamos $\chi^{(0)}_r:1\to\mathbb{N}$ por medio de $\chi^{(0)}_r(0)=0$. Luego, $0\leq r=r-\frac{\chi^{(0)}_r(0)}{10^0}<1=\frac{1}{10^0}$. Si $y:1\to\mathbb{N}$ es otra función tal que $y(0)\in\{0,1,2,3,4,5,6,7,8,9\}$ y $0\leq r-\frac{y(0)}{10^0}<\frac{1}{10^0}$, entonces, $y(0)\leq r<1$ y por tanto $y(0)=0$, ya que el único natural menor a $1$ es $0$. Por tanto, $\chi^{(0)}_r=y$, lo que demuestra que para $n=0$ el enunciado es verdadero.
Supongamos que el resultado es válido para algún $n\geq0$. Sea $\chi^{(n)}_r:n+1\to\mathbb{N}$ la única función de la hipótesis. Primero vamos a demostrar la existencia de una función $\chi^{(n+1)}_r$ con las propiedades deseadas y luego probaremos su unicidad. Dado que $0\leq r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}<\frac{1}{10^{n}}$ se sigue que $0\leq10^n(r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i})<1$. Si ocurriera que $ r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}=0$, definimos $\chi^{(n+1)}_r:n+2\to\mathbb{N}$ como $\chi^{(n+1)}_r(i)=\left\{\begin{array}{lcc}
\chi^{(n)}_r(i) & \textnormal{si}\ i\in n+1\\
0 & \textnormal{si}\ i=n+1
\end{array}
\right.$
Definida de esa manera la función $\chi^{(n+1)}_r$ se satisfacen las hipótesis deseadas. Supongamos ahora que $0<r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}$ y definamos $\hat{r}:=10^n(r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i})$, número real que sabemos satisface $0<\hat{r}<1$. Consideremos el conjunto $A=\{m\in\mathbb{N}:m\leq 10\hat{r}\}$, el cual es no vacío ya que $0<\hat{r}$ y por tanto $0\leq 10\hat{r}$; además, $A$ es acotado superiormente ya que $\hat{r}<1$ y por tanto $10\hat{r}<10$, de modo que si $m\in A$, entonces $m<10$. Así, existe $a=\textnormal{max}(A)$, el cual es un natural dentro del conjunto $\{0,1,2,3,4,5,6,7,8,9\}$. Por la maximalidad de $a$ se tiene que $10\hat{r}<a+1$ y así $\frac{a}{10}\leq\hat{r}<\frac{a}{10}+\frac{1}{10}$, es decir, $0\leq\hat{r}-\frac{a}{10}<\frac{1}{10}$.
Luego, dado que $\hat{r}=10^n(r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i})$ se sigue que $0\leq r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}-\frac{a}{10^{n+1}}<\frac{1}{10^{n+1}}$. Si definimos $\chi^{(n+1)}_r:n+2\to\mathbb{N}$ por medio de $\chi^{(n+1)}_r(i)=\left\{\begin{array}{lcc}
\chi^{(n)}_r(i) & \textnormal{si}\ i\in n+1\\
a & \textnormal{si}\ i=n+1
\end{array}
\right.$

entonces $\chi^{(n+1)}_r$ es una función que satisface las condiciones deseadas. Así, hemos demostrado la existencia de una función con las características requeridas. Veamos que ésta es única. Supongamos que $\eta:n+2\to\mathbb{N}$ es otra función que satisface las mismas propiedades que $\chi_r^{(n+1)}$.
Luego, en particular, $0\leq r-\sum_{i=0}^{n+1}\frac{\eta(i)}{10^i}<\frac{1}{10^{n+1}}$ y por tanto $0\leq r-\sum_{i=0}^{n}\frac{\eta(i)}{10^i}<\frac{1}{10^{n+1}}+\frac{\eta(n+1)}{10^{n+1}}\leq \frac{1}{10^{n+1}}+\frac{9}{10^{n+1}}=\frac{10}{10^{n+1}}=\frac{1}{10^n}$. De este modo, la función $\eta\upharpoonright_{n+1}:n+1\to\mathbb{N}$ satisface las mismas condiciones que la función $\chi^{(n)}_r$, y por la unicidad de esta última función se sigue que $\eta(i)=\chi^{(n)}_r(i)$ para cada $i\in n+1$. Así, la función $\eta$ coincide con la función $\chi^{(n+1)}_r$ en $n+1$, por lo que resta probar que $\eta(n+1)=\chi^{(n+1)}_r(n+1)=a$.
Sabemos que $0\leq r-\sum_{i=0}^{n}\frac{\chi^{(n+1)}_r(i)}{10^i}-\frac{\eta(n+1)}{10^{n+1}}<\frac{1}{10^{n+1}}$ y por tanto, $0\leq 10^{n+1}(r-\sum_{i=0}^{n}\frac{\chi^{(n+1)}(i)}{10^i})-\eta(n+1)<1$, es decir, $\eta(n+1)\leq10\hat{r}<\eta(n+1)+1$, de modo que $\eta(n+1)\in A$ y por tanto $\eta(n+1)\leq a=\chi^{(n+1)}_r(n+1)$. Podemos elegir $k\in\{0,1,2,3,4,5,6,7,8,9\}$ tal que $\eta(n+1)+k=a$ y tenemos $a=\eta(n+1)+k\leq10\hat{r}$, razón por la cual \[k\leq10\hat{r}-\eta(n+1)<(\eta(n+1)+1)-\eta(n+1)=1\] y en consecuencia, $k=0$. Por tanto, $\eta(n+1)=a=\chi^{(n+1)}_r(n+1)$. Esto demuestra la unicidad de $\chi^{(n+1)}_r$.

Por lo tanto, para cada $n\in\mathbb{N}$ existe una única función $\chi^{(n)}_r:n+1\to\mathbb{N}$ tal que $\chi^{(n)}_r[\mathbb{N}]\subseteq\{0,1,2,3,4,5,6,7,8,9\}$ y $0\leq r-\sum_{i=0}^{n}\frac{\chi^{(n)}_r(i)}{10^i}<\frac{1}{10^n}$. En el proceso de la demostración de la existencia y unicidad de tales funciones, mostramos además que si $\chi^{(n+1)}_r:n+2\to\mathbb{N}$ es la única función con tales propiedades, entonces, $\chi^{(n)}_r=\chi^{(n+1)}_r\upharpoonright_{n+1}$, lo que muestra que el conjunto de funciones $\mathcal{F}:=\{\chi^{(n)}_r:n\in\mathbb{N}\}$ es un sistema de funciones compatibles y, por tanto, $\chi_r=\bigcup\mathcal{F}:\mathbb{N}\to\mathbb{N}$ es la única función con las propieades que enunciamos en la afirmación.

Estamos entonces en condiciones de definir una función $F:(0,1)\to\{f\in\mathbb{N}^{\mathbb{N}}:f[\mathbb{N}]\subseteq\{0,1,2,3,4,5,6,7,8,9\}\}$ por medio de $F(r)=\chi_r$. Dicha función es inyectiva, ya que si $\chi_r=\chi_{r’}$, entonces, para cada $n\in\mathbb{N}$, \[|r-r’|=|r-\sum_{i=0}^{n}\frac{\chi_r(i)}{10^i}+\sum_{i=0}^{n}\frac{\chi_{r’}(i)}{10^i}-r’|\] \[\leq|r-\sum_{i=0}^{n}\frac{\chi_r(i)}{10^i}|+|\sum_{i=0}^{n}\frac{\chi_{r’}(i)}{10^i}-r’|\] \[<\frac{1}{10^n}+\frac{1}{10^n}=\frac{2}{10^n}\] lo cual muestra que $|r-r’|=0$, es decir, $r=r’$. Por tanto, existe una función inyectiva de $(0,1)$ en $\mathbb{N}^{\mathbb{N}}$, de modo que $|(0,1)|\leq|\mathbb{N}^{\mathbb{N}}|=|\mathcal{P}(\mathbb{N})|$.

Ahora vamos a definir una función inyectiva de $2^{\mathbb{N}}$ en $(0,1)$. Sea $f\in2^{\mathbb{N}}$ y veamos que la sucesión de números racionales $(\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}})_{n\in\mathbb{N}}$ converge. Dado que $f(i)\in\{0,1\}$ para cada $i\in\mathbb{N}$, la sucesión $(\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}})_{n\in\mathbb{N}}$ es no decreciente. Luego, para cada $n\in\mathbb{N}$, $0\leq\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}}\leq\sum_{i=0}^{n}\frac{1}{10^{i+1}}=\sum_{i=1}^{n+1}\frac{1}{10^i}=\frac{1-\frac{1}{10^{n+2}}}{1-\frac{1}{10}}-1=\frac{1-\frac{1}{10^{n+2}}}{(\frac{9}{10})}-1<\frac{1}{(\frac{9}{10})}-1=\frac{10}{9}-1=\frac{1}{9}<1$, por lo que dicha sucesión está acotada inferiormente por $0$ y superiormente por $\frac{1}{9}$ y, por tanto, converge a algún número real en el intervalo $[0,\frac{1}{9}]$. Sea $r_f\in[0,\frac{1}{9}]$ el límite de dicha sucesión.
Si la función $f$ no es la constante cero, entonces, $r_f\in(0,\frac{1}{9}]$, ya que existe $N\in\mathbb{N}$ tal que $f(N)=1$ y por tanto, para cada $n\geq N$, $\frac{1}{10^{N+1}}\leq\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}}\leq r_f$.
Dado que el número real $r_f$ es único para cada $f\in2^{\mathbb{N}}$, estamos en condiciones de definir la siguiente función: sea $G:2^{\mathbb{N}}\to[0,1)$ tal que $G(f)=\left\{\begin{array}{lcc}
r_f & \textnormal{si}\ f\not=0\\
0 & \textnormal{si}\ f=0
\end{array}
\right.$

Veamos que $G$ es inyectiva. Por la definición de $G$ sabemos que si $f\not=0$, entonces $G(f)\not=G(0)$. Ahora, sean $f,h\in2^{\mathbb{N}}$ funciones no cero tales que $r_f=G(f)=G(h)=r_h$. Veamos que $f(n)=h(n)$ para cada $n\in\mathbb{N}$.
Algo que será de utilidad para probar esto último es la desigualdad $\sum_{i=n+1}^{m}\frac{1}{10^i}<\frac{1}{2\cdot10^n}$, la cual es cierta para cualesquiera $n,m\in\mathbb{N}$ tales que $n<m$. En efecto, si $n,m\in\mathbb{N}$ con $n<m$, tenemos \[\sum_{i=n+1}^{m}\frac{1}{10^i}=\sum_{i=0}^{m}\frac{1}{10^i}-\sum_{i=0}^{n}\frac{1}{10^i}=\frac{1-\frac{1}{10^{m+1}}}{1-\frac{1}{10}}-\frac{1-\frac{1}{10^{n+1}}}{1-\frac{1}{10}}=\frac{\frac{1}{10^{n+1}}-\frac{1}{10^{m+1}}}{(\frac{9}{10})}=\frac{\frac{1}{10^n}-\frac{1}{10^m}}{9}\] y este número racional es menor que $\frac{1}{2\cdot10^n}$, pues $\frac{1}{10^n}-\frac{1}{10^m}<\frac{1}{10^n}<\frac{9}{2}\cdot\frac{1}{10^n}$, pues $1<\frac{9}{2}$. Por tanto, para cualesquiera $n,m\in\mathbb{N}$ con $n<m$, $\sum_{i=n+1}^{m}\frac{1}{10^i}<\frac{1}{2\cdot10^n}$.

Ahora sí, veamos que $f(n)=h(n)$ para cada $n\in\mathbb{N}$.
Dado que las sucesiones de números racionales $(\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}})_{n\in\mathbb{N}}$ y $(\sum_{i=0}^{n}\frac{h(i)}{10^{i+1}})_{n\in\mathbb{N}}$ convergen al número real $r_f$, existe $m\in\mathbb{N}$ tal que para cada $n>m$, $0\leq r_f-\sum_{i=0}^{n}\frac{f(i)}{10^{i+1}}<\frac{1}{4\cdot10}$ y $0\leq r_f-\sum_{i=0}^{n}\frac{h(i)}{10^{i+1}}<\frac{1}{4\cdot10}$. Luego, $$|\sum_{i=0}^{m+1}\frac{f(i)}{10^{i+1}}-\sum_{i=0}^{m+1}\frac{h(i)}{10^{i+1}}|=|\sum_{i=0}^{m+1}\frac{f(i)}{10^{i+1}}-r_f+r_f-\sum_{i=0}^{m+1}\frac{h(i)}{10^{i+1}}|$$ $$\leq|\sum_{i=0}^{m+1}\frac{f(i)}{10^{i+1}}-r_f|+|r_f-\sum_{i=0}^{m+1}\frac{h(i)}{10^{i+1}}|<\frac{1}{4\cdot10}+\frac{1}{4\cdot10}=\frac{1}{2\cdot10}.$$ Por otro lado, $|\frac{f(0)-h(0)}{10}|-|\sum_{i=1}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq|\sum_{i=0}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|<\frac{1}{2\cdot10}$ y así \[|\frac{f(0)-h(0)}{10}|<\frac{1}{2\cdot10}+|\sum_{i=1}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq\frac{1}{2\cdot10}+\sum_{i=1}^{m+1}\frac{|f(i)-h(i)|}{10^{i+1}}.\] Dado que $|f(i)-h(i)|=\left\{\begin{array}{lcc}
1 & \textnormal{si}\ \{f(i),h(i)\}=\{0,1\}\\
0 & \textnormal{si}\ f(i)=h(i)=0\ \textnormal{o}\ f(i)=h(i)=1
\end{array}
\right.$ entonces, $|f(i)-h(i)|\leq1$ para cada $i\in\mathbb{N}$ y, como $\sum_{i=1}^{m+1}\frac{1}{10^{i+1}}=\sum_{i=2}^{m+2}\frac{1}{10^i}<\frac{1}{2\cdot10}$, se sigue que \[\frac{|f(0)-h(0)|}{10}\leq\frac{1}{2\cdot10}+\sum_{i=1}^{m+1}\frac{1}{10^{i+1}}<\frac{1}{10}\] lo cual implica que $|f(0)-h(0)|=0$, es decir, $f(0)=h(0)$. Supongamos que para algún $n\in\mathbb{N}$ hemos probado que $f(m)=h(m)$ para cada $m\leq n$ y veamos que $f(n+1)=h(n+1)$.
Sea $m\in\mathbb{N}$, $m\geq n+1$, tal que para cada $k>m$, $|r_f-\sum_{i=0}^{k}\frac{f(i)}{10^{i+1}}|<\frac{1}{4\cdot10^{n+2}}$ y $|r_f-\sum_{i=0}^{k}\frac{h(i)}{10^{i+1}}|<\frac{1}{4\cdot10^{n+2}}$.
Luego, $|\sum_{i=n+1}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|=|\sum_{i=0}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq|r_f-\sum_{i=0}^{m+1}\frac{f(i)}{10^{i+1}}|+|r_f-\sum_{i=0}^{m+1}\frac{h(i)}{10^{i+1}}|<\frac{1}{2\cdot10^{n+2}}$. Por otro lado, \[\frac{|f(n+1)-h(n+1)|}{10^{n+2}}-|\sum_{i=n+2}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq|\sum_{i=n+1}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|<\frac{1}{2\cdot10^{n+2}}\] por lo que $$\frac{|f(n+1)-h(n+1)|}{10^{n+2}}<\frac{1}{2\cdot10^{n+2}}+|\sum_{i=n+2}^{m+1}\frac{f(i)-h(i)}{10^{i+1}}|\leq\frac{1}{2\cdot10^{n+2}}+\sum_{i=n+2}^{m+1}\frac{|f(i)-h(i)|}{10^{i+1}}$$ \[\leq\frac{1}{2\cdot10^{n+2}}+\sum_{i=n+2}^{m+1}\frac{1}{10^{i+1}}=\frac{1}{2\cdot10^{n+2}}+\sum_{i=n+3}^{m+2}\frac{1}{10^i}<\frac{1}{2\cdot10^{n+2}}+\frac{1}{2\cdot10^{n+2}}=\frac{1}{10^{n+2}}\]
y en consecuencia, $|f(n+1)-h(n+1)|=0$, es decir, $f(n+1)=h(n+1)$. Por tanto, para cada $n\in\mathbb{N}$, $f(n)=h(n)$, lo que demuestra que $f=h$.
Así, la función $G$ es inyectiva y, por consiguiente, $|2^{\mathbb{N}}|\leq|[0,1)|$. Dado que $|[0,1)|=|(0,1)|$, se sigue que $|\mathcal{P}(\mathbb{N})|=|2^{\mathbb{N}}|\leq|(0,1)|$. Por el teorema de Cantor-Schröder-Bernstein concluimos que $|(0,1)|=|\mathcal{P}(\mathbb{N})|$.

$\square$

Concluimos la entrada con el siguiente corolario, cuya prueba es consecuencia del teorema anterior y el hecho que $|\mathbb{R}|=|(0,1)|$.

Corolario. $\mathbb{R}$ y $\mathcal{P}(\mathbb{N})$ son equipotentes.

$\square$

Tarea moral

  1. Demuestra que el conjunto $\mathbb{N}^{\nearrow\mathbb{N}}:=\{f\in\mathbb{N}^{\mathbb{N}}:f(n)<f(n+1)\ \textnormal{para cada}\ n\in\mathbb{N}\}$ es equipotente a $[\mathbb{N}]^{\mathbb{N}}$.
  2. Demuestra que para cualquier conjunto infinito $X$ que contenga un conjunto numerable se cumple que $|X\setminus A|=|X|$, para cada $A\subseteq X$ conjunto finito.
  3. Sean $a,b\in\mathbb{R}$ con $a<b$. Demuestra que $|(a,b)|=|(0,1)|$.
  4. Exhibe una biyección entre $\mathbb{R}$ y $[0,\infty):=\{r\in\mathbb{R}:r\geq0\}$.

Más adelante…

En la siguiente entrada introduciremos uno de los axiomas más relevantes de la teoría de conjuntos, el axioma de elección. Dicho axioma nos permitirá responder algunas de las interrogantes que quedaron abiertas en secciones anteriores y, además, veremos algunas de sus sorpredentes consuecuencias.

Entradas relacionadas

  1. Hernández, F., Teoría de Conjuntos, México: Aportaciones Matemáticas No.13,
    SMM, 1998 ↩︎
  2. Spivak, M., Cálculo Infinitesimal (2a ed). México: Reverté, 1998. ↩︎

Álgebra Moderna I: Guía de Notación

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En los libros de matemáticas es muy común dedicar algunas páginas a un glosario de notación, que resulta muy útil para recordar la notación del libro o, si sólo estás consultando un capítulo, entenderlo sin que la notación sea un impedimento.

Inspirados por estos libros, se recopiló todos los signos que usamos a lo largo del curso y lo dividimos en distintas secciones que pueden ayudarte a encontrarlos.

Si en algún momento se te olvida lo que significa la notación puedes regresar aquí para refrescar tu memoria y hasta para encontrar la entrada en donde se define el concepto.

Álgebra general: Aquí están los símbolos de conceptos algebraicos que son explicados en algún otro curso. Cabe aclarar que a lo mejor no se usa el mismo símbolo o notación que en otros textos, pero los conceptos son los mismos.

Conjuntos generales: Aquí se enlistan todos los conjuntos que probablemente ya conoces, podemos decir que son los conjuntos básicos como el de los reales, enteros, racionales, etc. Con seguridad, estos conjuntos se definen en algún curso introductorio al Álgebra, como Álgebra Superior I.

Conjuntos especiales y grupos nuevos: Aquí están los conjuntos algebraicos que usamos en este curso y que a lo mejor se mencionan en otros cursos más avanzados. Son conjuntos que definimos o describimos para usarlos y que probablemente no conocías hasta ahora.

Teoría de grupos: Aquí están todos los símbolos y notaciones propias del curso, es decir, las que vamos definiendo formalmente y forman parte del contenido de Álgebra Moderna I. Se encuentran en orden de aparición. Observarás que hay algunos grupos y conjuntos. A diferencia de los conjuntos especiales, estos conjuntos nacen de la teoría de grupos. Es decir, suelen ser subconjuntos o subgrupos que dependen de un grupo $G$. Aquí encontrarás los enlaces a las entradas en donde dicho concepto se define.

Álgebra general

SímboloSignificado
$(n;m)$Máximo común divisor
$(n;m)=1$$n$ y $m$ son primos relativos
$a \thicksim b$$a$ está relacionado con $b$
$\varphi(d)$Phi de Euler
$\therefore$Por lo tanto
$A\;\dot\cup\; B$Unión disjunta de $A$ y $B$
$A \setminus B$Diferencia de conjutos. Los elementos de $A$ que no pertenecen a $B$
$m!$Factorial de $m$
$\ln$Logaritmo natural

Conjuntos generales

SímboloSignificado
$\emptyset$Conjunto vacío
$\r$Números Reales
$\z$Números Enteros
$\mathbb{Q}$Números Racionales
$\n$Números Naturales
$\mathbb{C}$Números Complejos
$\mathbb{C}^*$Números Complejos sin el cero
$\r^+$Números Reales positivos
$\z^+$Números Enteros positivos
$\z^+ \cup \{0\}$Enteros positivos con el 0
$\z_m$Enteros módulo $m$
$\z_p$Enteros módulo $p$, con $p$ primo
$\mathcal{M}_{2\times2}(\z)$Matrices $2\times 2$ con coeficientes enteros
$\mathcal{M}_{n\times n}(\r)$Matrices $n\times n$ con coeficientes reales
$\mathcal{P}(X)$Conjunto potencia del conjunto $X$

Conjuntos especiales y grupos nuevos

SímboloSignificadoDefinición en…
$S_3$Funciones biyectivas de ${1,2,3}$ en sí mismoOperación binaria
$S_n$Grupo simétrico de $n$ símbolosPermutaciones y Grupo Simétrico
$GL(n,\r)$Grupo lineal generalDefinición de Grupos
$SL(n,\r)$Grupo lineal especialDefinición de Grupos
$SO(n,\r)$Grupo ortogonal especialDefinición de Grupos
$O(n,\r)$Grupo ortogonalDefinición de Grupos
$D_{2(n)}$Grupo diédrico, $2n$ simetrías de un polígono de $n$ ladosDihedral Group de Socratica
$V$Grupo de KleinOrden de un elemento y Grupo cíclico
$U(\z_m)$Conjunto de unidades de $\z_m$Orden de un elemento y Grupo cíclico
$Q$, $Q_8$Grupo de los cuaterniosPalabras
$A_n$Grupo alternanteParidad de una permutación

Teoría de grupos

SímboloSignificadoAparece en…
$*$Operación binariaOperación binaria
$(G, *)$Grupo $G$Definición de Grupos
$\bar{a},\, a^{-1}$Elemento inverso de $a$, bajo $*$Definición de Grupos
$e$Elemento neutro del grupo $G$Definición de Grupos
$\circ$Composición de funciones, $f\circ g(x)= f(g(x))$Definición de Grupos
$\text{id}_\r$Función identidad de $\r$ en $\r$Definición de Grupos
$H\leq G$$H$ es subgrupo de $G$Subgrupos
$o(a)$Orden de un elemento $a$ de un grupo finitoOrden de un elemento y Grupo cíclico
$\left< a \right>$Subgrupo cíclico de $G$ generado por $a$Orden de un elemento y Grupo cíclico
$|G|$Orden de $G$, con $G$ grupoOrden de un grupo
$\#A$Orden o cardinalidad de un conjunto $A$Paridad de una permutación
$\left< X \right>$Subgrupo de $G$ generado por $X$Teoremas sobre subgrupos y
Subgrupo generado por $X$
$W_X$Conjunto de todas las palabras de $X$Palabras
$\text{sop}\;\alpha$Soporte de $\alpha$Permutaciones y Grupo Simétrico
$\text{long} \; \alpha$Longitud de un ciclo $\alpha$Permutaciones y Grupo simétrico
$\sigma_{\alpha,i}$Ciclo definido por $\alpha$ y por $i$Permutaciones disjuntas
$V(x_1,\dots, x_n)$Polonomio de VandermondeMisma Estructura Cíclica, Permutación
Conjugada y Polinomio de Vandermonde
$sgn \: \alpha$Función signo de $\alpha$Paridad de una permutación
$aH$, $Ha$Clase lateral izquierda/derecha de $H$ en $G$ con representante $a$.Producto de subconjuntos y Clases Laterales
$[G:H]$Índice de $H$ en $G$Relación de equivalencia dada por un subgrupo e índice de $H$ en $G$
$\text{gen }C$Conjunto de generadores del grupo cíclico $C$Caracterización de grupos cíclicos
$aHa^{-1}$Conjugado de $H$ por el elemento $a$Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial
$N\unlhd G$, $G\unrhd N$$N$ es subconjunto normal de $G$Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial
$G/N$Grupo cociente de $G$ módulo $N$Grupo Cociente
$[a,b]$El conmutador de $a$ y $b$Subgrupo Conmutador
$G’$Subgrupo conmutador de $G$Subgrupo Conmutador
$G \cong \bar{G}$$G$ es isomorfo a $\bar{G}$Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo
$\text{Núc}\; \varphi$, $\text{Ker}\; \varphi$Núcleo de $\varphi$, Kernel de $\varphi$Núcleo e Imagen de un Homomorfismo
$\text{Im} \; \varphi$Imagen de $\varphi$Núcleo e Imagen de un Homomorfismo
$\text{Sub}_N^G$Conjunto de subgrupos de $G$ que contienen a $N$ como subgrupoCuarto Teorema de Isomorfía
$\text{Sub}_{ G/N}$Conjunto de subgrupos de $G/N$Cuarto Teorema de Isomorfía
$\mathcal{O}(x)$Órbita de $x$Órbita de $x$ y tipos de acciones
$G_x$Estabilizador de $x$Órbita de $x$ y tipos de acciones
$x^G$Clase de conjugación de $x$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$C_G(x)$Centralizador de $x$ en $G$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$Z(G)$Centro de $G$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$X_G$El conjunto de elementos de $X$ que quedan fijos sin importar qué elemento de $G$ actúe sobre ellosClase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$N_G(H)$Normalizador de $H$ en $G$$p-$Subgrupo de Sylow y el Normalizador de $H$ en $G$ 
$r_p$, $r_p(G)$Número de $p-$subgrupos de Sylow de $G$Teoremas de Sylow
$\text{inc}_i$Inclusión natural del elemento en la $i-$ésima posiciónProducto directo externo
$\pi_i$Proyección natural del $i-$ésimo elementoProducto directo externo

Entradas relacionadas