Archivo del Autor: Omar González Franco

Ecuaciones Diferenciales I: Método de eliminación de variables

Por Omar González Franco

En las matemáticas no entiendes las cosas. Te acostumbras a ellas.
– John Von Neumann

Introducción

Estamos listos para comenzar a desarrollar los distintos métodos de resolución de sistemas lineales de primer orden.

En esta entrada desarrollaremos un método relativamente sencillo, pero muy limitado, ya que en general se utiliza cuando sólo tenemos un sistema lineal de dos ecuaciones diferenciales. Este método se conoce como método de eliminación de variables y, como su nombre lo indica, lo que se intenta hacer es eliminar las variables dependientes de $t$ hasta quedarnos con sólo una, esto produce que el resultado sea una sola ecuación diferencial de orden superior (la ecuación correspondiente a la única variable dependiente que nos queda), la cual es posible resolver aplicando alguno de los métodos vistos en la unidad anterior, la solución de dicha ecuación diferencial servirá para obtener el resto de funciones solución del sistema lineal.

Es importante mencionar que para que este método sea práctico y sencillo se requiere que los coeficientes de las ecuaciones que conforman al sistema lineal sean constantes y como el problema se reduce a resolver una ecuación de orden superior es conveniente usar este método sólo cuando tenemos dos ecuaciones diferenciales en el sistema, ya que esto involucrará resolver una ecuación diferencial de segundo orden con coeficientes constantes.

Desarrollemos el método de manera general.

Método de eliminación de variables

Los sistemas de ecuaciones diferenciales que estamos estudiando son de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + \cdots + a_{1n}(t)y_{n} + g_{1}(t) \\
y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + \cdots + a_{2n}(t)y_{n} + g_{2}(t) \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}(t)y_{1} + a_{n2}(t)y_{2} + \cdots + a_{nn}(t)y_{n} + g_{n}(t) \label{1} \tag{1}
\end{align*}

Este método lo desarrollaremos para un sistema lineal de dos ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas. De manera general desarrollemos el caso no homogéneo, el caso homogéneo será un caso particular.

Consideremos el siguiente sistema de ecuaciones diferenciales en su forma normal.

$$\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + g_{1}(t) \\
y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + g_{2}(t)
\end{align*} \label{2} \tag{2}$$

Debido a que se trata de un sistema pequeño regresemos a nuestra notación usual de derivada y sean $x$ y $y$ las variables dependientes de la variable independiente $t$. Así mismo, usemos una distinta notación para los coeficientes $a_{i, j}$, $i, j \in \{1, 2\}$, de tal manera que el sistema lineal (\ref{2}) lo podamos escribir de la siguiente forma.

$$\begin{align*}
\dfrac{dx}{dt} &= ax + by + g_{1}(t) \\
\dfrac{dy}{dt} &= cx + dy + g_{2}(t)
\end{align*}\label{3} \tag{3}$$

Con $a$, $b$, $c$ y $d$ constantes. El método que desarrollaremos es para sistema de la forma (\ref{3}).

De la primer ecuación del sistema despejamos a la variable $y$.

$$y = \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \label{4} \tag{4}$$

Sustituyamos en la segunda ecuación.

$$\dfrac{d}{dt} \left[ \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \right] = cx + d \left[ \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \right] + g_{2}$$

Derivemos en el lado izquierdo y operemos en el lado derecho de la ecuación.

\begin{align*}
\dfrac{1}{b} \left[ \dfrac{d^{2}x}{dt^{2}} -a \dfrac{dx}{dt} -\dfrac{dg_{1}}{dt} \right] &= cx + \dfrac{1}{b} \left( d \dfrac{dx}{dt} -adx -dg_{1} \right) + g_{2} \\
\dfrac{d^{2}x}{dt^{2}} -a \dfrac{dx}{dt} -\dfrac{dg_{1}}{dt} &= bcx + d \dfrac{dx}{dt} -adx -dg_{1} + bg_{2}
\end{align*}

Reordenando los términos se tiene lo siguiente.

$$\dfrac{d^{2}x}{dt^{2}} -(a + d) \dfrac{dx}{dt} + (ad -bc) x = \dfrac{dg_{1}}{dt} -dg_{1} + bg_{2} \label{5} \tag{5}$$

Si definimos

$$p = -(a + d), \hspace{1cm} q = (ad -bc) \hspace{1cm} y \hspace{1cm} g(t) = \dfrac{dg_{1}}{dt} -dg_{1} + bg_{2}$$

entonces el resultado (\ref{5}) se puede escribir como

$$\dfrac{d^{2}x}{dt^{2}} + p \dfrac{dx}{dt} + q x = g(t) \label{6} \tag{6}$$

Con $p$ y $q$ constantes. En esta forma es claro que tenemos una ecuación diferencial lineal de segundo orden con coeficientes constantes, basta resolver la ecuación usando los métodos desarrollados en la unidad anterior para obtener la función $x(t)$. Una vez obtenida la solución de (\ref{6}) sustituimos en el despeje inicial que hicimos para $y(t)$ (\ref{4}) y resolvemos, con ello estaremos obteniendo la solución del sistema lineal (\ref{3}).

Caso homogéneo

El caso homogéneo es un caso particular del desarrollo anterior, pues el sistema a resolver es

$$\begin{align*}
\dfrac{dx}{dt} &= ax + by \\
\dfrac{dy}{dt} &= cx + dy
\end{align*}\label{7} \tag{7}$$

El desarrollo es exactamente el mismo considerando que $g_{1}(t) = 0$ y $g_{2}(t) = 0$.

Despejando a $y$ de la primer ecuación, obtenemos

$$y = \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax \right) \label{8} \tag{8}$$

Sustituyendo en la segunda ecuación y siguiendo el mismo procedimiento obtendremos que la ecuación diferencial de segundo orden homogénea para $x$ es

$$\dfrac{d^{2}x}{dt^{2}} -(a + d) \dfrac{dx}{dt} + (ad -bc)x = 0 \label{9} \tag{9}$$

Si nuevamente definimos

$$p = -(a + d), \hspace{1cm} y \hspace{1cm} q = (ad -bc)$$

entonces podemos escribir

$$\dfrac{d^{2}x}{dt^{2}} + p \dfrac{dx}{dt} + qx = 0 \label{10} \tag{10}$$

Resolvamos un par de ejemplos, comencemos con un sistema lineal homogéneo.

Ejemplo: Resolver el siguiente sistema lineal homogéneo.

\begin{align*}
\dfrac{dx}{dt} &= 2x -y \\
\dfrac{dy}{dt} &= 5x -2y
\end{align*}

Solución: Comencemos por despejar a la variable $y$ de la primer ecuación.

$$y = 2x -\dfrac{dx}{dt}$$

Sustituimos en la segunda ecuación.

$$\dfrac{d}{dt} \left( 2x -\dfrac{dx}{dt} \right) = 5x -2 \left( 2x -\dfrac{dx}{dt} \right)$$

Operando, se tiene

\begin{align*}
2 \dfrac{dx}{dt} -\dfrac{d^{2}x}{dt^{2}} &= 5x -4x + 2 \dfrac{dx}{dt} \\
-\dfrac{d^{2}x}{dt^{2}} &= x
\end{align*}

La ecuación de segundo orden a resolver es

$$\dfrac{d^{2}x}{dt^{2}} + x = 0$$

Por supuesto esta ecuación se puede obtener sustituyendo los coeficientes directamente en la ecuación (\ref{9}).

Resolvamos la ecuación. La ecuación auxiliar es

$$k^{2} + 1 = 0$$

cuyas raíces son $k_{1} = i$ y $k_{2} = -i$.

Recordemos que la forma de la solución para raíces complejas $k_{1} = \alpha + i \beta$ y $k_{2} = \alpha -i \beta$ es

$$x(t) =e^{\alpha t}(c_{1} \cos(\beta t) + c_{2} \sin(\beta t)) \label{11} \tag{11}$$

En nuestro caso $\alpha =0$ y $\beta = 1$, entonces la solución es

$$x(t) = c_{1} \cos(t) + c_{2} \sin(t)$$

Vemos que

$$\dfrac{dx}{dt} = -c_{1} \sin(t) + c_{2} \cos(t)$$

Sustituimos en el despeje de $y$.

\begin{align*}
y(x) &= 2(c_{1} \cos(t) + c_{2} \sin(t)) -(-c_{1} \sin(t) + c_{2} \cos(t)) \\
&= 2c_{1} \cos(t) + 2c_{2} \sin(t) + c_{1} \sin(t) -c_{2} \cos(t)
\end{align*}

Esta solución la podemos escribir de dos formas.

$$y(x) = c_{1}(2 \cos(t) + \sin(t)) + c_{2}(2 \sin(t) -\cos(t))$$

o bien,

$$y(x) = (2c_{1} -c_{2})\cos(t) + (c_{1} + 2c_{2})\sin(t)$$

Por lo tanto, la solución general del sistema homogéneo es

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = c_{1} \begin{pmatrix}
\cos(t) \\ 2 \cos(t) + \sin(t)
\end{pmatrix} + c_{2} \begin{pmatrix}
\sin(t) \\ 2 \sin(t) -\cos(t)
\end{pmatrix}$$

o bien,

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ 2c_{1} -c_{2}
\end{pmatrix} \cos(t) + \begin{pmatrix}
c_{2} \\ c_{1} + 2c_{2}
\end{pmatrix} \sin(t)$$

$\square$

Ahora resolvamos un sistema no homogéneo como ejemplo.

Ejemplo: Resolver el siguiente sistema lineal no homogéneo.

\begin{align*}
\dfrac{dx}{dt} &= 4x -y + t + 1 \\
\dfrac{dy}{dt} &= 2x + y + t + 1
\end{align*}

Solución: En este caso no homogéneo se tiene que

$$g_{1}(t) = t + 1 = g_{2}(t)$$

De la primer ecuación despejamos a $y$.

$$y = 4x + t + 1 -\dfrac{dx}{dt}$$

Sustituimos en la segunda ecuación.

$$\dfrac{d}{dt} \left( 4x + t + 1 -\dfrac{dx}{dt} \right) = 2x + \left( 4x + t + 1 -\dfrac{dx}{dt} \right) + t + 1$$

En el lado izquierdo aplicamos la derivada y en el lado izquierdo operamos.

\begin{align*}
4 \dfrac{dx}{dt} + \dfrac{d}{dt}(t + 1) -\dfrac{d^{2}x}{dt^{2}} &= 6x -\dfrac{dx}{dt} + 2t + 2 \\
4 \dfrac{dx}{dt} + 1 -\dfrac{d^{2}x}{dt^{2}} &= 6x -\dfrac{dx}{dt} + 2t + 2
\end{align*}

Reordenando los términos, se tiene

\begin{align*}
5 \dfrac{dx}{dt} -\dfrac{d^{2}x}{dt^{2}} &= 6x + 2t + 1 \\
-\dfrac{d^{2}x}{dt^{2}} + 5 \dfrac{dx}{dt} -6x &= 2t + 1 \\
\end{align*}

La ecuación diferencial de segundo orden no homogénea a resolver es

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = -2t -1$$

Para obtener la función $x(t)$ primero resolveremos el caso homogéneo y posteriormente aplicaremos el método de coeficientes indeterminados para resolver el caso no homogéneo. Recordemos que la solución general será la superposición de ambos resultados.

$$x(t) = x_{c}(t) + x_{p}(t) \label{12} \tag{12}$$

Para el caso homogéneo la ecuación a resolver es

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = 0$$

La ecuación auxiliar es

$$k^{2} -5k + 6 = 0$$

Resolviendo para $k$ se obtiene que $k_{1} = 2$ y $k_{2} = 3$. Como las raíces son reales y distintas, la forma de la solución es

$$x_{c}(t) = c_{1}e^{k_{1}t} + c_{2}e^{k_{2}t} \label{13} \tag{13}$$

Por lo tanto, la solución complementaria es

$$x_{c}(t) = c_{1}e^{2t} + c_{2}e^{3t}$$

Ahora resolvamos la ecuación no homogénea.

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = -2t -1$$

En este caso la función $g$ es

$$g(x) = -2t -1$$

la cual corresponde a un polinomio de grado $1$, entonces proponemos que la solución particular tiene, de igual manera, la forma de un polinomio de grado $1$, esto es

$$x_{p}(t) = At + B$$

Con $A$ y $B$ constantes por determinar. La primera y segunda derivada están dadas como

$$\dfrac{dx_{p}}{dt} = A \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}x}{dt^{2}} = 0$$

Sustituimos en la ecuación diferencial.

$$0 -5A + 6(At + B) = -2t -1$$

Reordenando, se tiene

$$6At + 6B -5A = -2t -1$$

Para que se cumpla la igualdad es necesario que ocurra lo siguiente.

\begin{align*}
6A &= -2 \\
6B -5A &= -1
\end{align*}

De la primer igualdad se obtiene que

$$A = -\dfrac{1}{3}$$

Sustituyendo este resultado en la segunda igualdad se obtiene que

$$B = \dfrac{1}{9}$$

Por lo tanto, la solución particular es

$$x_{p}(t) = -\dfrac{1}{3}t + \dfrac{1}{9}$$

Entonces concluimos que la solución general de la ecuación diferencial de segundo orden para $x$ es

$$x(t) = c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9}$$

Sustituimos este resultado en la ecuación de $y$.

$$y = 4 \left( c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9} \right) + t + 1 -\dfrac{d}{dt} \left( c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9} \right)$$

Operando, se tiene

$$y = 4c_{1}e^{2t} + 4c_{2}e^{3t} -\dfrac{4}{3}t + \dfrac{4}{9} + t + 1 -2c_{1}e^{2t} -3c_{2}e^{3t} + \dfrac{1}{3}$$

De donde se obtiene finalmente que la solución $y(t)$ es

$$y(x) = 2c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{16}{9}$$

Por lo tanto, la solución general del sistema lineal no homogéneo es

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} -\begin{pmatrix}
\dfrac{1}{3} \\ \dfrac{1}{3}
\end{pmatrix}t + \begin{pmatrix}
\dfrac{1}{9} \\ \dfrac{16}{9}
\end{pmatrix}$$

$\square$

Hemos concluido con esta entrada. Este método resulta sencillo y práctico para resolver sistemas lineales de este tipo, sin embargo está limitado a sistemas pequeños y realmente estamos interesados en resolver sistemas mucho más complejos.

En las siguientes entradas desarrollaremos otros métodos más generales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\begin{align*}
    \dfrac{dx}{dt} &= x + 2y \\
    \dfrac{dy}{dt} &= 4x + 3y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= 2x -y \\
    \dfrac{dy}{dt} &= 3x -2y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= x -4y \\
    \dfrac{dy}{dt} &= -x + 2y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} = 2x -3y \\
    \dfrac{dy}{dt} = 3x + 2y
    \end{align*}$
  1. Resolver los siguientes sistemas lineales no homogéneos.
  • $\begin{align*}
    \dfrac{dx}{dt} &= 2x -y + 3t \\
    \dfrac{dy}{dt} &= 3x -2y + 2t + 4
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= x + 2y + e^{t} \\
    \dfrac{dy}{dt} &= 3x -2y + 3e^{2t} + 2
    \end{align*}$

Más adelante…

En esta entrada presentamos un método sencillo para resolver sistemas lineales compuestos por dos ecuaciones diferenciales lineales de primer orden con coeficientes constantes tanto homogéneas como no homogéneas.

En la siguiente entrada comenzaremos a desarrollar otros métodos de resolución a sistemas lineales, sin embargo estos métodos suelen ser tratados desde una perspectiva del álgebra lineal, así que será importante hacer una pequeño repaso de algunos conceptos y teoremas de álgebra lineal. Unos de los conceptos más importantes que utilizaremos es el de valores y vectores propios.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Soluciones a sistemas de ecuaciones diferenciales

Por Omar González Franco

Los errores y dificultades no resueltos en el pasado de las matemáticas
siempre han sido las oportunidades de su futuro.
– E. T. Bell

Introducción

En la entrada anterior vimos lo que es un sistema de ecuaciones diferenciales, en particular un sistema lineal de primer orden. Vimos también lo que es un problema de valores iniciales y establecimos la notación matricial.

Así mismo, vimos cómo es que una ecuación diferencial lineal de orden $n$ se puede transformar en un sistema lineal de primer orden, esto tiene bastante ventaja ya que, una vez que veamos cómo resolver sistemas de ecuaciones diferenciales, muchas veces será más sencillo resolver el sistema que resolver la ecuación de orden $n$ aplicando los métodos que ya conocemos.

En esta entrada estudiaremos las propiedades de las soluciones de los sistemas lineales de primer orden.

Cabe mencionar que mucho de lo que desarrollaremos en esta entrada es bastante similar a la teoría vista con las ecuaciones diferenciales de orden $n$, comenzando por la validez del principio de superposición.

A partir de ahora sólo usaremos la notación matricial y toda la teoría básica del álgebra lineal que éstas conllevan.

Soluciones de sistemas lineales de primer orden

Comencemos por estudiar el caso homogéneo. El sistema lineal de primer orden homogéneo es

$$\begin{pmatrix}
y_{1}^{\prime} \\ y_{2}^{\prime} \\ \vdots \\ y_{n}^{\prime}
\end{pmatrix} = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \begin{pmatrix}
y_{1} \\ y_{2} \\ \vdots \\ y_{n}
\end{pmatrix} \label{1} \tag{1}$$

O bien,

$$\mathbf{Y^{\prime}} = \mathbf{AY} \label{2} \tag{2}$$

En la entrada anterior definimos la solución de un sistema de ecuaciones diferenciales en el intervalo $\delta$ como el conjunto de $n$ funciones

$$S_{0} = \{y_{1}(t), y_{2}(t), \cdots, y_{n}(t)\} \label{3} \tag{3}$$

definidas en $\delta$ y diferenciables en el mismo intervalo, tales que satisfacen simultáneamente las $n$ ecuaciones diferenciables de un sistema lineal.

Las soluciones pueden ser escritas como el vector

$$\mathbf{Y} = \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} \label{4} \tag{4}$$

cuyos elementos son funciones derivables que satisfacen un sistema lineal en el intervalo $\delta$.

En las siguientes definiciones y teoremas se supondrá que los coeficientes $a_{ij}(t)$, $i, j \in \{1, 2, 3, \cdots, n\}$ y ,para el caso no homogéneo, las funciones $g_{i}(t)$, son continuas en algún intervalo común $\delta$.

Comencemos por mostrar que el principio de superposición también es valido para sistemas lineales.

Demostración: Consideremos la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}$$

con

$$\mathbf{Y}_{i} = \begin{pmatrix}
y_{1i} \\ y_{2i} \\ \vdots \\ y_{ni}
\end{pmatrix}$$

para $i = 1, 2, \cdots, m$. La derivada de $\mathbf{Y}_{i}$ esta dada por

$$\mathbf{Y}_{i}^{\prime} = \begin{pmatrix}
y_{1i}^{\prime} \\ y_{2i}^{\prime} \\ \vdots \\ y_{ni}^{\prime}
\end{pmatrix}$$

Entonces la derivada de la combinación lineal es

\begin{align*}
\mathbf{Y}^{\prime} &= \begin{pmatrix}
c_{1}y_{11}^{\prime} + c_{2}y_{12}^{\prime} + \cdots + c_{m}y_{1m}^{\prime} \\
c_{1}y_{21}^{\prime} + c_{2}y_{22}^{\prime} + \cdots + c_{m}y_{2m}^{\prime} \\
\vdots \\
c_{1}y_{n1}^{\prime} + c_{2}y_{n2}^{\prime} + \cdots + c_{m}y_{nm}^{\prime}
\end{pmatrix} \\
&= c_{1} \begin{pmatrix}
y_{11}^{\prime} \\ y_{21}^{\prime} \\ \vdots \\ y_{n1}^{\prime}
\end{pmatrix} + c_{2} \begin{pmatrix}
y_{12}^{\prime} \\ y_{22}^{\prime} \\ \vdots \\ y_{n2}^{\prime}
\end{pmatrix} + \cdots + c_{m} \begin{pmatrix}
y_{1m}^{\prime} \\ y_{2m}^{\prime} \\ \vdots \\ y_{nm}^{\prime}
\end{pmatrix} \\
&= c_{1} \mathbf{Y}_{1}^{\prime} + c_{2} \mathbf{Y}_{2}^{\prime} + \cdots + c_{m} \mathbf{Y}_{m}^{\prime}
\end{align*}

Como cada $\mathbf{Y}_{i}$, $i = 1, 2, \cdots, m$, es solución del sistema homogéneo (\ref{2}) en $\delta$, entonces

$$\mathbf{Y}_{i}^{\prime} = \mathbf{A} \mathbf{Y}_{i}$$

así

\begin{align*}
\mathbf{Y}^{\prime} &= c_{1} (\mathbf{AY}_{1}) + c_{2} (\mathbf{AY}_{2}) + \cdots + c_{m} (\mathbf{AY}_{m}) \\
&= \mathbf{A}(c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}) \\
&= \mathbf{AY}
\end{align*}

En donde se ha hecho uso de la propiedad distributiva de la matriz $\mathbf{A}$ y de la hipótesis (\ref{5}). Por lo tanto, la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}$$

también es solución y los es en el mismo intervalo común $\delta$ ya que esta compuesta de soluciones definidas en dicho intervalo.

$\square$

Intenta hacer la demostración.

Realicemos un ejemplo.

Ejemplo: Probar que la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + c_{3} \mathbf{Y}_{3} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

es solución del sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

Solución: Probemos que cada uno de los vectores de la combinación lineal es solución y usemos el principio de superposición.

Los vectores son

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

Por un lado, derivemos estos vectores.

$$\mathbf{Y}^{\prime}_{1} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}^{\prime}_{2} = \begin{pmatrix}
2e^{2t} \\ 2e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}^{\prime}_{3} = \begin{pmatrix}
0 \\ 0 \\ 3e^{3t}
\end{pmatrix}$$

Por otro lado, sustituyamos cada uno de los vectores en el sistema lineal y usemos los resultados anteriores.

$$\mathbf{AY}_{1} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} = \begin{pmatrix}
1 -1 \\ 1 -1 \\ 0
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix} = \mathbf{Y}^{\prime}_{1}$$

$$\mathbf{AY}_{2} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} = \begin{pmatrix}
e^{2t} + e^{2t} \\ e^{2t} + e^{2t} \\ 0
\end{pmatrix} = \begin{pmatrix}
2e^{2t} \\ 2e^{2t} \\ 0
\end{pmatrix} = \mathbf{Y}^{\prime}_{2}$$

y

$$\mathbf{AY}_{3} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 3e^{3t}
\end{pmatrix} = \mathbf{Y}^{\prime}_{3}$$

De esta manera queda mostrado que los tres vectores son solución, ya que satisfacen el sistema. Por el principio de superposición concluimos que la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + c_{3} \mathbf{Y}_{3} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

también es solución del sistema lineal.

$\square$

El principio de superposición nos indica que un sistema lineal puede tener más de una solución, sin embargo, similar al caso de ecuaciones diferenciales de orden $n$, buscamos soluciones que sean linealmente independientes entre sí. A continuación definimos la dependencia e independencia lineal de las soluciones en este contexto.

En la unidad anterior definimos una herramienta muy útil que, además de ayudarnos a resolver ecuaciones diferenciales de orden superior en algunos métodos, nos ayuda a determinar si un conjunto de soluciones es linealmente independiente, dicha herramienta es el Wronskiano, la definición en el caso de los sistemas lineales de primer orden, es la siguiente.

Se puede demostrar que si el Wronskiano es distinto de cero, entonces las soluciones son linealmente independientes, igual que antes, esto es conocido como el criterio para soluciones linealmente independientes. Para demostrar este hecho es conveniente recordar algunos resultados de álgebra que podremos usar en la demostración.

Recordemos que un sistema lineal de $n$ ecuaciones con $n$ incógnitas es un conjunto de ecuaciones

$$\begin{matrix}
b_{11}u_{1} + b_{12}u_{2} + \cdots + b_{1n}u_{n} = d_{1} \\
b_{21}u_{1} + b_{22}u_{2} + \cdots + b_{2n}u_{n} = d_{2}\\
\vdots\\
b_{n1}u_{1} + b_{n2}u_{2} + \cdots + b_{nn}u_{n} = d_{n}
\end{matrix} \label{9} \tag{9}$$

Con $b_{i, j}$ y $d_{i}$, $i, j \in \{1,2, 3, \cdots, n\}$ números reales dados y $u_{i}$, $i = 1, 2, \cdots, n$ las incógnitas. Usando la notación matricial podemos escribir el sistema (\ref{9}) como

$$\mathbf{BU} = \mathbf{D} \label{10} \tag{10}$$

con

$$\mathbf{B} = \begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & & & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{nn}
\end{pmatrix}, \hspace{1cm} \mathbf{U} = \begin{pmatrix}
u_{1} \\ u_{2} \\ \vdots \\ u_{n}
\end{pmatrix}, \hspace{1cm} \mathbf{D} = \begin{pmatrix}
d_{1} \\ d_{2} \\ \vdots \\ d_{n}
\end{pmatrix}$$

Los resultados que nos interesan son los siguientes.

Si $\mathbf{D} = \mathbf{0}$, el sistema (\ref{10}) también recibe el nombre de sistema homogéneo.

Con estos resultados podemos demostrar el criterio para soluciones linealmente independientes que se enuncia a continuación.

Demostración:

$\Rightarrow$) Por demostrar: $W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$.

Sea $t_{0} \in \delta$ en el que $W(t_{0}) = 0$, en donde $W(t_{0})$ denota al Wronskiano con cada vector solución evaluado en el punto $t_{0}$.

$$W(t_{0}) = W(\mathbf{Y}_{1}(t_{0}), \mathbf{Y}_{2}(t_{0}), \cdots, \mathbf{Y}_{n}(t_{0})) $$

En una combinación de ambos teoremas de los resultados de álgebra podemos deducir que existen constantes $c_{1}, c_{2}, \cdots, c_{n}$, no todos cero, tal que

$$\mathbf{Y}(t_{0}) = c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = 0 \label{11} \tag{11}$$

Lo que tenemos es un sistema lineal de $n$ ecuaciones homogéneo con $n$ incógnitas (sistema lineal en el contexto algebraico (\ref{10}) con $\mathbf{D} = \mathbf{0}$, no sistema lineal de ecuaciones diferenciales), dichas incógnitas son las constantes $c_{i}$, $i = 1, 2, \cdots, n$. La relación (\ref{11}) se cumple debido a que si el Wronskiano es igual a cero, entonces es posible que el sistema no tenga solución trivial y mucho menos una solución única, esto lo deducimos de los teoremas de álgebra que establecimos.

Por otro lado, sabemos por hipótesis que los vectores $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son solución del sistema homogéneo (\ref{2}) en el intervalo $\delta$, por el principio de superposición sabemos también que la combinación lineal

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n}$$

es solución de (\ref{2}) en $\delta$. Del resultado (\ref{11}) y de la unicidad de la solución se deduce que $\mathbf{Y}(t) = 0$ para algún punto $t = t_{0} \in \delta$, es decir,

$$c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n} = 0$$

Pero por hipótesis los vectores $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes en $\delta$, lo que implica que

$$c_{1} = c_{2} = \cdots = c_{n} = 0$$

lo cual es una contradicción con lo que establecimos en (\ref{11}). Por lo tanto, el Wronskiano tiene que ser distinto de cero, es decir

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$$

$\Leftarrow$) Por demostrar: $S$ es linealmente independiente.

Este caso también lo demostraremos por contradicción. Supongamos que los vectores solución $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente dependientes en $\delta$, esto implica que existen constantes $c_{1}, c_{2}, \cdots, c_{n}$ no todos cero, tal que

$$c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n} = 0$$

Este sistema lo podemos escribir en la forma (\ref{9}) como

$$\begin{matrix}
c_{1}y_{11} + c_{2}y_{12} + \cdots + c_{n}y_{1n} = 0 \\
c_{1}y_{21} + c_{2}y_{22} + \cdots + c_{n}y_{2n} = 0 \\
\vdots\\
c_{1}y_{n1} + c_{2}y_{n2} + \cdots + c_{n}y_{nn} = 0
\end{matrix}$$

En donde las funciones $y_{ij}$, $i, j \in \{1, 2, 3, \cdots, n\}$ son los coeficientes y las constantes $c_{i}$, $i = 1, 2, \cdots, n$ son las incógnitas. Debido a que las $c_{i}$ no son todas cero implica que el sistema no tiene solución trivial y por el segundo teorema de los resultados de álgebra concluimos que

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) = 0$$

Pero, por hipótesis

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$$

lo cual es una contradicción y todo nace de considerar a $S$ como un conjunto linealmente dependiente. Por lo tanto, el conjunto de soluciones

$$S = \{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}\}$$

es linealmente independiente en $\delta$.

$\square$

Un resultado interesante se enuncia a continuación.

Este resultado nos garantiza que si $W \neq 0$ para algún punto $t_{0} \in \delta$, entonces $W \neq 0$ para toda $t \in \delta$ y por el criterio anterior las soluciones serán linealmente independientes en ese intervalo.

El conjunto de soluciones linealmente independientes del sistema lineal (\ref{2}) recibe un nombre especial.

El siguiente teorema nos garantiza la existencia de este conjunto.

El conjunto fundamental de soluciones está constituido por vectores que son linealmente independientes entre sí, con estos vectores es posible formar una matriz cuyas columnas están formadas con las entradas de dichos vectores, esta matriz tiene un nombre especial.

Un hecho interesante es que el determinante de la matriz fundamental de soluciones corresponde al Wronskiano.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) = |\mathbf{M}(t)| \label{13} \tag{13}$$

Realicemos un ejemplo, para ello consideremos el sistema lineal del ejemplo anterior.

Ejemplo: Mostrar que las soluciones

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

del sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

son linealmente independientes.

Solución: En el ejemplo anterior ya comprobamos que efectivamente son solución del sistema lineal dado. Para determinar si son linealmente independientes veamos si el Wronskiano es distinto de cero.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}) = \begin{vmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{vmatrix} = e^{5t} + 0 + 0 -0 -0 -(-e^{5t}) = 2e^{5t} \neq 0$$

Como $W \neq 0$, $\forall$ $t \in \mathbb{R}$, entonces los vectores dados son linealmente independientes y por lo tanto forman un conjunto fundamental de soluciones en $\mathbb{R}$.

$$S = \left\{ \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} \right\}$$

La matriz fundamental de soluciones es

$$\mathbf{M}(t) = \begin{pmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix}$$

$\square$

Un buen ejercicio sería mostrar que un conjunto de soluciones del sistema lineal homogéneo (\ref{2}) forma un espacio vectorial, es relativamente sencillo probar cada una de las propiedades o axiomas que definen a un espacio vectorial. El resultado a demostrar de tarea moral es el siguiente.

Soluciones generales a sistemas lineales

Ahora que conocemos algunas propiedades de las soluciones de sistemas lineales, es momento de conocer la forma general de las soluciones de los sistemas lineales tanto homogéneos como no homogéneos.

Comencemos por enunciar el teorema que establece la forma de la solución general de un sistema lineal homogéneo (\ref{2}).

Demostración: Sea $\mathbf{Y}(t)$ una solución arbitraria del sistema lineal homogéneo en el intervalo $\delta$, sea $t_{0} \in \delta$ y supongamos que

$$\mathbf{Y}(t_{0}) = \begin{pmatrix}
b_{1} \\ b_{2} \\ \vdots \\ b_{n}
\end{pmatrix} = \mathbf{Y}_{0}$$

Es decir, la función $\mathbf{Y}(t)$ satisface el problema de valores iniciales $\mathbf{Y}^{\prime} = \mathbf{AY}; \mathbf{Y}(t_{0}) = \mathbf{Y}_{0}$.

Por otro lado, por el principio de superposición sabemos que la combinación lineal

$$\hat{\mathbf{Y}}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

también es solución del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$. Donde $c_{i}$, $i = 1, 2, \cdots, n$ son constantes arbitrarias y las $\mathbf{Y}_{i}$, $i = 1, 2, \cdots, n$ son las soluciones del conjunto fundamental de soluciones del sistema lineal. Supongamos que

$$\hat{\mathbf{Y}}(t_{0}) = c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = \mathbf{Y}_{0}$$

Lo que tenemos es el siguiente sistema de $n$ ecuaciones.

$$\begin{matrix}
c_{1}y_{11}(t_{0}) + c_{2}y_{12}(t_{0}) + \cdots + c_{n}y_{1n}(t_{0}) = b_{1} \\
c_{1}y_{21}(t_{0}) + c_{2}y_{22}(t_{0}) + \cdots + c_{n}y_{2n}(t_{0}) = b_{2} \\
\vdots \\
c_{1}y_{n1}(t_{0}) + c_{2}y_{n2}(t_{0}) + \cdots + c_{n}y_{nn}(t_{0}) = b_{n}
\end{matrix}$$

En donde las incógnitas son las contantes $c_{i}$, $i = 1, 2, \cdots, n$. Como las funciones $y_{ij}$, $i,j \in \{1, 2, 3, \cdots, n \}$ pertenecen a vectores del conjunto de soluciones, entonces sabemos que $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes y por el criterio para soluciones linealmente independientes inferimos que $W(t_{0}) \neq 0$, donde

$$W(t_{0}) = W(\mathbf{Y}_{1}(t_{0}), \mathbf{Y}_{2}(t_{0}), \cdots, \mathbf{Y}_{n}(t_{0}))$$

De los resultados de álgebra deducimos que el sistema de $n$ ecuaciones tiene solución única, esto significa que existen constantes únicas $c_{1}, c_{2}, \cdots, c_{n}$, tal que

$$c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = \mathbf{Y}_{0}$$

Esto nos indica que

$$\hat{\mathbf{Y}}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

es solución del problema de valores iniciales. Por el teorema de existencia y unicidad para sistemas lineales homogéneas concluimos que $\mathbf{Y}(t) = \hat{\mathbf{Y}}(t)$, es decir,

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

Como $\mathbf{Y}(t)$ es una solución arbitraria, entonces debe ser la solución general del sistema lineal homogéneo en $\delta$.

$\square$

Para concluir la entrada estudiemos el caso no homogéneo.

Sistemas no homogéneos

El sistema lineal de primer orden no homogéneo es

$$\begin{pmatrix}
y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ \vdots \\ y_{n}^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} + \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix} \label{15} \tag{15}$$

O bien,

$$\mathbf{Y^{\prime}} = \mathbf{AY} + \mathbf{G} \label{16} \tag{16}$$

El vector de funciones que satisface el sistema (\ref{16}) es una solución y recibe un nombre.

A continuación se enuncia el teorema que nos muestra la forma general de la solución de un sistema lineal no homogéneo.

Demostración: Sea

$$\mathbf{Y}_{p}(t) = \begin{pmatrix}
y_{1p} \\ y_{2p} \\ \vdots \\ y_{np}
\end{pmatrix}$$

una solución particular de (\ref{16}) y sean $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$, $n$ soluciones linealmente independientes del sistema homogéneo asociado $\mathbf{Y^{\prime}} = \mathbf{AY}$.

Sea $\mathbf{Y}(t)$ una solución arbitraria del sistema no homogéneo, notemos lo siguiente.

\begin{align*}
(\mathbf{Y}(t) -\mathbf{Y}_{p}(t))^{\prime} &= \mathbf{Y}^{\prime}(t) -\mathbf{Y}_{p}^{\prime}(t) \\
&= (\mathbf{AY}(t) + \mathbf{G}) -(\mathbf{AY}_{p}(t) + \mathbf{G}) \\
&= \mathbf{A} (\mathbf{Y}(t) -\mathbf{Y}_{p}(t))
\end{align*}

Este resultado nos indica que $\mathbf{Y}(t) -\mathbf{Y}_{p}(t)$ es solución del sistema homogéneo, eso significa que se puede escribir como

$$\mathbf{Y}(t) -\mathbf{Y}_{p}(t) = c_{1}\mathbf{Y}_{1}(t) + c_{2}\mathbf{Y}_{2}(t) + \cdots + c_{n}\mathbf{Y}_{n}(t)$$

entonces, la solución $\mathbf{Y}$ tiene la forma

$$\mathbf{Y}(t) = c_{1}\mathbf{Y}_{1}(t) + c_{2}\mathbf{Y}_{2}(t) + \cdots + c_{n}\mathbf{Y}_{n}(t) + \mathbf{Y}_{p}(t) \label{19} \tag{19}$$

La solución $\mathbf{Y}(t)$, al ser cualquier solución del sistema lineal no homogéneo, podemos deducir que la solución general debe tener la forma (\ref{19}), por lo que concluimos que $\mathbf{Y}(t)$ se trata de la solución general de (\ref{16}).

Considerando la hipótesis (\ref{17}) concluimos que la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t)$$

$\square$

Cuando estamos trabajando con un sistema lineal no homogéneo, la solución general del sistema lineal homogéneo asociado (\ref{17}) recibe un nombre particular.

Concluyamos con un ejemplo.

Ejemplo: Probar que el vector

$$\mathbf{Y}_{p} = \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix}$$

es una solución particular del siguiente sistema lineal no homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
e^{t} \\ e^{2t} \\ te^{3t}
\end{pmatrix}$$

Solución: Por un lado, derivemos el vector dado.

$$\mathbf{Y}^{\prime}_{p} = \begin{pmatrix}
-\dfrac{1}{2}e^{2t} + \dfrac{1}{2}e^{2t} + te^{2t} \\ -e^{t} + \dfrac{1}{2}e^{2t} + \dfrac{1}{2}e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix} = \begin{pmatrix}
te^{2t} \\ -e^{t} + e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix}$$

Por otro lado, sustituyamos directamente en el sistema al vector dado.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix} + \begin{pmatrix}
e^{t} \\ e^{2t} \\ te^{3t}
\end{pmatrix}$$

Operando obtenemos lo siguiente.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} + e^{t} \\ -\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t}+e^{2t} \\ \dfrac{3}{2}t^{2}e^{3t} + te^{3t}
\end{pmatrix} = \begin{pmatrix}
te^{2t} \\ -e^{t} + e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix}$$

Los resultados obtenidos son los mismos, por lo tanto el vector $\mathbf{Y}_{p}$ es solución del sistema.

En los ejemplos anteriores de esta entrada probamos que el conjunto fundamental de soluciones del sistema lineal homogéneo asociado

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

esta constituido por los vectores linealmente independientes

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

de manera que la función complementaria es

$$\mathbf{Y}_{c} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

Como la solución general es

$$\mathbf{Y} = \mathbf{Y}_{c} + \mathbf{Y}_{p}$$

Entonces la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} + \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix}$$

$\square$

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Los siguientes vectores son soluciones de un sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$. Determinar si forman un conjunto fundamental de soluciones en $\mathbb{R}$.
  • $\mathbf{Y}_{1} = \begin{pmatrix}
    1 \\ -1
    \end{pmatrix} e^{t}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
    2 \\ 6
    \end{pmatrix}e^{t} + \begin{pmatrix}
    8 \\ -8
    \end{pmatrix}te^{t}$
  • $\mathbf{Y}_{1} = \begin{pmatrix}
    1 \\ 6 \\ -13
    \end{pmatrix},\hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
    1 \\ -2 \\ -1
    \end{pmatrix}e^{-4t}, \hspace{1cm} \mathbf{Y}_{3}= \begin{pmatrix}
    2 \\ 3 \\ -2
    \end{pmatrix}e^{3t}$
  1. Probar que el vector $\mathbf{Y}_{p}$ es una solución particular del sistema lineal dado.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 1 \\ 3 & 4
    \end{pmatrix} \mathbf{Y} -\begin{pmatrix}
    1 \\ 7
    \end{pmatrix}e^{t}, \hspace{1cm} \mathbf{Y}_{p} = \begin{pmatrix}
    1 \\ 1
    \end{pmatrix}e^{t} + \begin{pmatrix}
    1 \\ -1
    \end{pmatrix}te^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 2 & 3 \\
    -4 & 2 & 0 \\
    -6 & 1 & 0
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    -1 \\ 4 \\ 3
    \end{pmatrix} \sin(3t), \hspace{1cm} \mathbf{Y}_{p} = \begin{pmatrix}
    \sin(3t) \\ 0 \\ \cos (3t)
    \end{pmatrix}$
  1. Mostrar que la solución general de

    $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0
    \end{pmatrix} \mathbf{Y}$

    en el intervalo $(-\infty, \infty)$ es

    $\mathbf{Y} = c_{1} \begin{pmatrix}
    6 \\ -1 \\ -5
    \end{pmatrix}e^{-t} + c_{2} \begin{pmatrix}
    -3 \\ 1 \\ 1
    \end{pmatrix}e^{-2t} + c_{3} \begin{pmatrix}
    2 \\ 1 \\ 1
    \end{pmatrix}e^{3t}$
  1. Mostrar que la solución general de

    $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & -1 \\ -1 & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 1
    \end{pmatrix}t^{2} + \begin{pmatrix}
    4 \\ -6
    \end{pmatrix}t + \begin{pmatrix}
    -1 \\ 5
    \end{pmatrix}$

    en el intervalo $(-\infty, \infty)$ es

    $\mathbf{Y} = c_{1} \begin{pmatrix}
    1 \\ -1 -\sqrt{2}
    \end{pmatrix}e^{\sqrt{2t}} + c_{2} \begin{pmatrix}
    1 \\ -1 + \sqrt{2}
    \end{pmatrix}e^{-\sqrt{2t}} + \begin{pmatrix}
    1 \\ 0 \end{pmatrix}t^{2} + \begin{pmatrix}
    -2 \\ 4
    \end{pmatrix}t + \begin{pmatrix}
    1 \\ 0
    \end{pmatrix}$
  1. Demostrar que el conjunto de soluciones del sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$ forma un espacio vectorial con la suma y el producto por escalares usuales de matrices.

Más adelante…

Ahora que conocemos lo que son los sistemas lineales de ecuaciones diferenciales y las propiedades de sus soluciones estamos casi listos para comenzar a desarrollar los distintos métodos de resolución, sin embargo, antes de ello es necesario definir una herramienta matemática que será de suma utilidad en el desarrollo posterior de esta unidad. Dicha herramienta es la exponencial de una matriz.

En la siguiente entrada definiremos lo que significa $e^{\mathbf{A} t}$, donde $\mathbf{A}$ es una matriz de $n \times n$ con componentes constantes y veremos como se relaciona con un sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$. Así mismo, profundizaremos en el concepto de matriz fundamental de soluciones.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Sistemas de ecuaciones diferenciales

Por Omar González Franco

El conocimiento de las matemáticas añade vigor a la mente,
la libera del prejuicio, credulidad y superstición.
– John Arbuthnot

Introducción

¡Bienvenidos a la tercera unidad del curso de Ecuaciones Diferenciales I!.

En esta unidad estudiaremos los sistemas de ecuaciones diferenciales lineales de primer orden.

En la unidad 1 de este curso estudiamos el sistema Depredador – Presa, en nuestro análisis el modelo matemático determinado fue el siguiente sistema de ecuaciones diferenciales.

\begin{align*}
\dfrac{dC}{dt} &= aC(t) -bC(t)Z(t) \\
\dfrac{dZ}{dt} &= -cZ(t) + dC(t)Z(t)
\end{align*}

Puedes revisar la entrada correspondiente para recordar que representa cada una de las variables y constantes.

Este sistema fue nuestro primer ejemplo de un sistema de ecuaciones diferenciales y en esta unidad nuestro propósito será desarrollar distintos métodos que nos permitan resolver sistemas de hasta $n > 2$ ecuaciones diferenciales acopladas.

Es importante mencionar que a lo largo de esta unidad usaremos un enfoque matricial, por lo que es recomendable tener presente, al menos, la teoría básica sobre matrices y sus operaciones y propiedades vistas en el curso de Álgebra Lineal I.

En esta entrada comenzaremos por definir los que es un sistema de ecuaciones diferenciales, sus propiedades y veremos cómo es que la notación matricial nos puede ayudar.

¡Comencemos!

Sistemas de ecuaciones diferenciales lineales de primer orden

En esta unidad, a menos que indiquemos lo contrario, la variable independiente se denotará por $t$, mientras que las variables dependientes de $t$ por

$$y_{1} = y_{1}(t), \hspace{0.5cm} y_{2} = y_{2}(t), \hspace{0.5cm} \cdots, \hspace{0.5cm} y_{n} = y_{n}(t)$$

y las funciones $F_{i}$, $i = 1, 2, 3, \cdots, n$ son funciones con valores reales que dependen de las $n + 1$ variables en un intervalo $\delta$.

Notación: Para mayor comodidad, en esta unidad usaremos la notación de prima para la derivada.

$$\dfrac{dy}{dt} = y^{\prime}(t) \label{2} \tag{2}$$

Con esta notación el sistema de ecuaciones (\ref{1}) se puede escribir de la siguiente manera.

\begin{align*}
y_{1}^{\prime}(t) &= F_{1}(t, y_{1}, y_{2}, \cdots, y_{n}) \\
y_{2}^{\prime}(t) &= F_{2}(t, y_{1}, y_{2}, \cdots, y_{n}) \\
&\vdots \\
y_{n}^{\prime}(t) &= F_{n}(t, y_{1}, y_{2}, \cdots, y_{n}) \label{3} \tag{3}
\end{align*}

En el sistema lineal (\ref{5}) se supone que los coeficientes $a_{ij}(t)$, así como las funciones $g_{i}(t)$, $i, j = \{1, 2, 3, \cdots, n \}$ son continuas en un intervalo común $\delta$.

Ejemplo: El sistema de ecuaciones diferenciales

\begin{align*}
y_{1}^{\prime}(t) &= -3y_{1} + 4y_{2} -9y_{3} \\
y_{2}^{\prime}(t) &= 6y_{1} -y_{2} \\
y_{3}^{\prime}(t) &= 10y_{1} + 4y_{2} + 3y_{3}
\end{align*}

es un sistema lineal de primer orden compuesto por tres ecuaciones diferenciales lineales de primer orden cada una.

Notación: Si el sistema es de dos o tres ecuaciones diferenciales denotaremos por $x(t), y(t)$ o $x(t), y(t)$, $z(t)$ a las variables dependientes de $t$, respectivamente.

Considerando esta notación, el sistema del ejemplo anterior se puede escribir de la siguiente manera.

\begin{align*}
x^{\prime}(t) &= -3x + 4y -9z\\
y^{\prime}(t) &= 6x -y \\
z^{\prime}(t) &= 10x + 4y + 3z
\end{align*}

Problema de valores iniciales

Es posible demostrar la existencia y unicidad de soluciones de sistemas tanto lineales como no lineales (caso general) y de soluciones a sistemas lineales homogéneos y no homogéneos (casos particulares), sin embargo las demostraciones de estos teoremas suelen ser bastantes extensas y complejas para nosotros en estos momentos, ya que requieren de herramientas matemáticas que aún desconocemos. A continuación enunciamos el teorema de existencia y unicidad para el caso general y para el caso lineal homogéneo.

En este teorema la región $R$ se construye con el producto cartesiano de los intervalos abiertos en los que $t_{0} \in \delta$, $b_{1} \in \delta_{1}$, $b_{2} \in \delta_{2}$, $\cdots$, $b_{n} \in \delta_{n}$, así $(t_{0}, b_{1}, b_{2}, \cdots, b_{n}) \in R$.

Para el caso particular de sistemas lineales homogéneos, el teorema de existencia y unicidad se puede enunciar de la siguiente forma.

Como mencionamos antes, es complejo demostrar estos teoremas, sin embargo más adelante en esta unidad los retomaremos y los justificaremos. Por ahora hay que tener en cuenta que para el caso general se requiere de volver a algunos de los conceptos vistos para demostrar el teorema de existencia y unicidad de Picard – Lindelöf de la primera unidad y para los casos particulares ¡la definición de exponencial de una matriz nos ayudará a demostrarlos!.

Ahora veamos la utilidad de la notación matricial.

Sistemas lineales de primer orden en forma matricial

Daremos por hecho que se conocen las operaciones y propiedades básicas de las matrices, así como algunas propiedades de espacios vectoriales vistas en el curso de Álgebra Lineal I.

Definamos las siguientes matrices de funciones.

$$\mathbf{Y}(t) = \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} \hspace{1cm} \Rightarrow \hspace{1cm} \mathbf{Y^{\prime}}(t) = \begin{pmatrix}
y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ \vdots \\ y_{n}^{\prime}(t)
\end{pmatrix} $$

y

$$\mathbf{A}(t) = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix}, \hspace{1cm}
\mathbf{G}(t) = \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix}$$

Usando estas matrices, el sistema de ecuaciones diferenciales lineales de primer orden (\ref{5}) se puede escribir de la siguiente manera.

$$\begin{pmatrix}
y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ \vdots \\ y_{n}^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} + \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix} \label{8} \tag{8}$$

o bien,

$$\mathbf{Y^{\prime}} = \mathbf{AY} + \mathbf{G} \label{9} \tag{9}$$

Si el sistema es homogéneo, entonces escribimos

$$\mathbf{Y^{\prime}} = \mathbf{AY} \label{10} \tag{10}$$

La solución de un sistema lineal la podemos definir como sigue.

Usando la notación matricial, un PVI se puede escribir de la siguiente manera.

El teorema de existencia y unicidad para el caso lineal se puede enunciar de la siguiente forma.

Verifica que el sistema de ecuaciones diferenciales usado como ejemplo al inicio de la entrada se puede escribir en notación matricial de la siguiente forma.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-3 & 4 & -9 \\ 6 & -1 & 0 \\ 10 & 4 & 3
\end{pmatrix} \mathbf{Y}$$

Veamos un ejemplo más.

Ejemplo: Escribir el siguiente sistema lineal en forma matricial.

\begin{align*}
x^{\prime}(t) &= x -y + z + t + 1 \\
y^{\prime}(t) &= 2x + y -z -3t^{2} \\
z^{\prime}(t) &= x + y + z + t^{2} -t + 2
\end{align*}

Solución: Primero escribamos cada lado de las ecuaciones en una matriz.

$$\begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t) \\ z^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
x -y + z + t -1 \\ 2x + y -z -3t^{2} \\ x + y + z + t^{2} -t + 2
\end{pmatrix}$$

La matriz derecha la separamos en dos, una que contenga a las variables dependientes y otra a la variable independiente.

$$\begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t) \\ z^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
x -y + z \\ 2x + y -z \\ x + y + z
\end{pmatrix} + \begin{pmatrix}
t -1 \\ -3t^{2} \\ t^{2} -t + 2
\end{pmatrix}$$

Finalmente podemos escribir

$$\begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t) \\ z^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1
\end{pmatrix} \begin{pmatrix}
x \\ y \\ z
\end{pmatrix} + \begin{pmatrix}
t -1 \\ -3t^{2} \\ t^{2} -t + 2
\end{pmatrix}$$

O bien,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
t -1 \\ -3t^{2} \\ t^{2} -t + 2
\end{pmatrix}$$

Donde,

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{G}(t) = \begin{pmatrix} t -1 \\ -3t^{2} \\ t^{2} -t + 2 \end{pmatrix}$$

$\square$

Usando la notación matricial verifiquemos que un vector solución en efecto es solución de un sistema lineal.

Ejemplo: Probar que el vector

$$\mathbf{Y} = \begin{pmatrix}
5 \cos(t) \\ 3 \cos(t) -\sin(t)
\end{pmatrix}e^{t}$$

es solución del sistema lineal

$$\begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
-2 & 5 \\ -2 & 4
\end{pmatrix} \begin{pmatrix}
x(t) \\ y(t)
\end{pmatrix}$$

Solución: El vector dado es

$$\mathbf{Y} = \begin{pmatrix}
x(t) \\ y(t)
\end{pmatrix} = \begin{pmatrix}
5e^{t} \cos(t) \\ 3e^{t} \cos(t) -e^{t} \sin(t)
\end{pmatrix}$$

Por una lado, derivemos el vector

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime}(t) \\ y^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
5e^{t} \cos(t) -5e^{t} \sin(t) \\ 3e^{t} \cos(t) -3e^{t} \sin(t) -e^{t} \sin(t) -e^{t} \cos(t)
\end{pmatrix}$$

Esto es,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
5 \cos(t) -5 \sin(t) \\ 2 \cos(t) -4 \sin(t)
\end{pmatrix} e^{t}$$

Por otro lado, sustituyamos los valores de $x(t)$ y $y(t)$ en el sistema y veamos si se obtiene el mismo resultado.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-2 & 5 \\ -2 & 4
\end{pmatrix} \begin{pmatrix}
5e^{t} \cos(t) \\ 3e^{t} \cos(t) -e^{t} \sin(t)
\end{pmatrix} = \begin{pmatrix}
-10e^{t} \cos(t) + 15e^{t} \cos(t) -5e^{t} \sin(t) \\ -10e^{t} \cos(t) + 12e^{t} \cos(t) -4e^{t} \sin(t)
\end{pmatrix}$$

Esto es,

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
5 \cos(t) -5 \sin(t) \\ 2 \cos(t) -4 \sin(t)
\end{pmatrix} e^{t}$$

Como el resultado es el mismo concluimos que, en efecto, el vector $\mathbf{Y}$ es solución del sistema lineal dado.

$\square$

Para concluir con esta entrada veamos un resultado interesante que nos conecta con la unidad anterior.

¡Una ecuación diferencial de orden $n \geq 2$ lineal puede ser reescrita como un sistema lineal de $n$ ecuaciones de primer orden!.

Reducción de una ecuación de orden $n$ a un sistema de ecuaciones

Consideremos una ecuación diferencial lineal de orden $n$.

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{13} \tag{13}$$

Para adaptar este ejercicio a la notación que estamos usando en esta entrada tomemos a $x = x(t)$ como la variable dependiente de $t$ y dividamos toda la ecuación por $a_{n}(t) \neq 0$, tal que se obtenga la siguiente ecuación de orden $n$.

$$\dfrac{dx^{n}}{dt^{n}} + b_{1}(t) \dfrac{d^{n -1}x}{dt^{n -1}} + \cdots + b_{n -2}(t) \dfrac{d^{2}x}{dt^{2}} + b_{n -1}(t) \dfrac{dx}{dt} + b_{n}(t)x = g(t) \label{14} \tag{14}$$

Ahora realicemos las siguientes definiciones.

$$y_{1} = x, \hspace{1cm} y_{2} = \dfrac{dx}{dt}, \hspace{1cm} y_{3} = \dfrac{d^{2}x}{dt^{2}}, \hspace{1cm} \cdots, \hspace{1cm} y_{n} = \dfrac{d^{n -1}x}{dt^{n -1}} \label{15} \tag{15}$$

y notemos que

$$y^{\prime}_{1} = \dfrac{dx}{dt}, \hspace{1cm} y^{\prime}_{2} = \dfrac{d^{2}x}{dt^{2}}, \hspace{1cm} y^{\prime}_{3} = \dfrac{d^{3}x}{dt^{3}}, \hspace{1cm} \cdots, \hspace{1cm} y^{\prime}_{n -1} = \dfrac{d^{n -1}x}{dt^{n -1}} \label{16} \tag{16}$$

De los resultados (\ref{15}) y (\ref{16}) obtenemos que

$$y^{\prime}_{1} = y_{2}, \hspace{1cm} y^{\prime}_{2} = y_{3}, \hspace{1cm} y^{\prime}_{3} = y_{4}, \hspace{1cm} \cdots, \hspace{1cm} y^{\prime}_{n -1} = y_{n} \label{17} \tag{17}$$

Para obtener $y^{\prime}_{n}$ sólo despejamos de la ecuación diferencial (\ref{14}).

$$y^{\prime}_{n} = \dfrac{d^{n}x}{dt^{n}} = g(t) -b_{1}(t) \dfrac{d^{n -1}x}{dt^{n -1}} -\cdots -b_{n -2}(t) \dfrac{d^{2}x}{dt^{2}} -b_{n -1}(t) \dfrac{dx}{dt} -b_{n}(t)x$$

Si usamos (\ref{15}) podemos escribir

$$y^{\prime}_{n} = g(t) -b_{1}(t)y_{n} -\cdots -b_{n -2}(t)y_{3} -b_{n -1}(t)y_{2} -b_{n}(t)y_{1} \label{18} \tag{18}$$

Con estos resultados nos damos cuenta que hemos formado un sistema lineal de $n$ ecuaciones diferenciales.

\begin{align*}
y^{\prime}_{1} &= y_{2} \\
y^{\prime}_{2} &= y_{3} \\
y^{\prime}_{3} &= y_{4} \\
&\vdots \\
y^{\prime}_{n -1} &= y_{n} \\
y^{\prime}_{n} &= g(t) -b_{1}(t)y_{n} -\cdots -b_{n -2}(t)y_{3} -b_{n -1}(t)y_{2} -b_{n}(t)y_{1}
\end{align*}

Usando la notación matricial obtenemos finalmente que

$$\begin{pmatrix}
y^{\prime}_{1}(t) \\ y^{\prime}_{2}(t) \\ \vdots \\ y^{\prime}_{n -1}(t) \\ y^{\prime}_{n}(t)
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -b_{n}(t) & -b_{n-1}(t) & -b_{n-2}(t) & \cdots & -b_{1}(t)
\end{pmatrix} \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n -1}(t) \\ y_{n}(t)
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ \vdots \\ 0 \\ g(t)
\end{pmatrix}$$

Esto por supuesto trae muchas ventajas, ya que en ocasiones será mucho más sencillo resolver un sistema de $n$ ecuaciones con los métodos que veremos más adelante que intentar resolver la ecuación de orden $n$ con los métodos desarrollados en la unidad anterior.

Para que quede más claro el procedimiento anterior realicemos un ejemplo.

Ejemplo: Escribir la ecuación diferencial de orden $n = 4$

$$\dfrac{d^{4}x}{dt^{4}} + 12 \dfrac{d^{3}x}{dt^{3}} -5 \dfrac{d^{2}x}{dt^{2}} + 8x = 2 \cos(t)$$

en un sistema lineal usando notación matricial.

Solución: Aplicamos las definiciones de (\ref{15}) y (\ref{16}).

$$y_{1} = x, \hspace{1cm} y_{2} = \dfrac{dx}{dt} = y^{\prime}_{1}, \hspace{1cm} y_{3} = \dfrac{d^{2}x}{dt^{2}} = y^{\prime}_{2} \hspace{1cm} y \hspace{1cm} y_{4} = \dfrac{d^{3}x}{dt^{3}} = y^{\prime}_{3}$$

Y de la ecuación diferencial obtenemos que

$$\dfrac{d^{4}x}{dt^{4}} = 2 \cos(t) -12y_{4} + 5y_{3} -8y_{1} = y^{\prime}_{4}$$

El sistema que se forma, es

\begin{align*}
y^{\prime}_{1} &= y_{2} \\
y^{\prime}_{2} &= y_{3} \\
y^{\prime}_{3} &= y_{4} \\
y^{\prime}_{4} &= 2 \cos(t) -12y_{4} + 5y_{3} -8y_{1}
\end{align*}

Por lo tanto, la ecuación diferencial de orden $4$ es equivalente al sistema lineal de $4$ ecuaciones diferenciales

$$\begin{pmatrix}
y^{\prime}_{1}(t) \\ y^{\prime}_{2}(t) \\ y^{\prime}_{3}(t) \\ y^{\prime}_{4}(t)
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -8 & 0 & 5 & -12
\end{pmatrix} \begin{pmatrix}
y_{1} \\ y_{2} \\ y_{3} \\ y_{4}
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ 0 \\ 2 \cos (t)
\end{pmatrix}$$

$\square$

Hemos concluido con esta entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Escribir los siguientes sistemas lineales en forma matricial.
  • $\begin{align*}
    x^{\prime}(t) &= 3x -5y \\
    y^{\prime}(t) &= 4x + 8y
    \end{align*}$
  • $\begin{align*}
    x^{\prime}(t) &= -3x + 4y + e^{-t} \sin(2t) \\
    y^{\prime}(t) &= 5x + 9z + 4e^{-t} \cos(2t) \\
    z^{\prime}(t) &= y + 6z -e^{-t}
    \end{align*}$
  1. Reescribir los siguientes sistemas lineales sin el uso de matrices.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    7 & 5 & -9 \\ 4 & 1 & 1 \\ 0 & -2 & 3 \\
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    0 \\ 2 \\ 1
    \end{pmatrix} e^{5t} -\begin{pmatrix}
    8 \\ 0 \\ 3
    \end{pmatrix} e^{-2t}$
  • $\begin{pmatrix}
    x^{\prime}(t) \\ y^{\prime}(t) \\ z^{\prime}(t)
    \end{pmatrix} = \begin{pmatrix}
    1 & -1 & 2 \\ 3 & -4 & 1 \\ -2 & 5 & 6
    \end{pmatrix} \begin{pmatrix}
    x \\ y \\ z
    \end{pmatrix} + \begin{pmatrix}
    1 \\ 2 \\ 2
    \end{pmatrix} e^{-t} -\begin{pmatrix}
    3 \\ -1 \\ 1
    \end{pmatrix} t$
  1. Probar que el vector dado $\mathbf{Y}$ es solución del sistema lineal correspondiente.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 1 \\ -1 & 0
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
    1 \\ 3
    \end{pmatrix} e^{t} + \begin{pmatrix}
    4 \\ -4
    \end{pmatrix} te^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -1
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
    \sin(t) \\ -\dfrac{1}{2} \sin(t) -\dfrac{1}{2} \cos(t) \\ -\sin(t) + \cos(t)
    \end{pmatrix}$
  1. Escribir las siguientes ecuaciones diferenciales de orden superior en un sistema lineal usando notación matricial.
  • $\dfrac{d^{4}x}{dt^{4}} -10 \dfrac{d^{3}x}{dt^{3}} + 35 \dfrac{d^{2}x}{dt^{2}} -50 \dfrac{dx}{dt} + 24x = 0$
  • $\dfrac{d^{4}x}{dt^{4}} -4 \dfrac{d^{3}x}{dt^{3}} + 8 \dfrac{d^{2}x}{dt^{2}} -8 \dfrac{dx}{dt} + 4x = 8 \sin (2t)$

Más adelante…

Nos hemos introducido en los sistemas lineales de primer orden, en la siguiente entrada estudiaremos las propiedades de las soluciones de estos sistemas de manera muy similar que en el caso de las ecuaciones diferenciales de orden superior.

Veremos que mucho de lo visto en la unidad anterior aparecerá nuevamente, pues conceptos como dependencia e independencia lineal, conjunto fundamental de soluciones, Wronskiano, principio de superposición, entre otros, volverán a aparecer, sólo habrá que adaptarlos a los sistemas lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones de Bessel, Chebyshev e Hipergeométrica

Por Omar González Franco

En las matemáticas el arte de proponer una pregunta
debe tener un valor más alto que resolverlo.
– Georg Cantor

Introducción

En la entrada anterior resolvimos 3 de las ecuaciones diferenciales especiales que deseamos resolver, en esta entrada concluiremos con el resto de ecuaciones.

Recordemos que las ecuaciones diferenciales especiales que deseamos resolver son:

  • Ecuación de Hermite.

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Laguerre.

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Legendre.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0$$

  • Ecuación de Bessel.

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0$$

  • Ecuación de Chebyshev.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0$$

  • Ecuación Hipergeométrica de Gauss.

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0$$

  • Ecuación de Airy.

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Resolvamos ahora la ecuación de Bessel.

Ecuación de Bessel

La ecuación de Bessel es

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0 \label{1} \tag{1}$$

Con $\lambda \in \mathbb{R}$. La ecuación de Bessel es una ecuación diferencial de segundo orden, pero suele denominarse de orden $\lambda$.

Friedrich Wilhelm Bessel (1784-1846) fue un matemático y astrónomo alemán conocido por generalizar las llamadas funciones de Bessel, éstas funciones son soluciones canónicas de la ecuación de Bessel. Las funciones de Bessel fueron definidas primero por el matemático Daniel Bernoulli. Como astrónomo Bessel fue el primero en determinar el paralaje de una estrella, publicando en 1838 los datos que había calculado de 61 Cygni.

Resolvamos la ecuación. Dividamos todo por $x^{2}$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1}{x} \dfrac{dy}{dx} + \dfrac{(x^{2} -\lambda^{2})}{x^{2}} y = 0 \label{2} \tag{2}$$

Identificamos que

$$P(x) = \dfrac{1}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{(x^{2} -\lambda^{2})}{x^{2}}$$

Es claro que ambas funciones no están definidas en $x = 0$, de manera que este punto es un punto singular. Definiendo las funciones $p(x)$ y $q(x)$ se obtiene que

$$p(x) = 1 \hspace{1cm} y \hspace{1cm} q(x) = x^{2} -\lambda^{2}$$

Los límites son

$$\lim_{x \to 0}p(x) = 1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = -\lambda^{2}$$

Los límites existen, esto nos indica que el punto $x_{0} = 0$ es un punto singular regular. La solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r} \label{3} \tag{3}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \label{4} \tag{4}$$

Sustituyamos en la ecuación de Bessel.

$$x^{2} \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + x \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + (x^{2} -\lambda^{2}) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo y simplificando, se tiene

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r + 2} -\lambda^{2}\sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En la tercer serie hacemos la sustitución $n = k -2$ y en el resto hacemos $k = n$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}c_{k -2}x^{k + r} -\lambda^{2}\sum_{k = 0}^{\infty}c_{k}x^{k + r} = 0$$

Necesitamos extraer los términos para $k = 0$ y $k = 1$ y así hacer que todas las series comiencen en $k = 2$.

Para $k = 0$ obtenemos la ecuación indicial.

\begin{align*}
r(r -1)c_{0}x^{r} + rc_{0}x^{r} -\lambda^{2}c_{0}x^{r} &= 0 \\
c_{0}x^{r}[r(r -1) + r -\lambda^{2}] &= 0 \\
r(r -1) + r -\lambda^{2} &= 0
\end{align*}

La ecuación indicial es

$$r^{2} -\lambda^{2} = 0 \label{5} \tag{5}$$

Las raíces son $r_{1} = \lambda$ y $r_{2} = -\lambda$.

Para $k = 1$, se obtiene

\begin{align*}
(r + 1)rc_{1}x^{r + 1} + (r + 1)c_{1}x^{r + 1} -\lambda^{2}c_{1}x^{r + 1} &= 0 \\
c_{1}x^{r + 1}[(r + 1)r + (r + 1) -\lambda^{2}] &= 0 \\
\end{align*}

Como lo que esta entre corchetes no se anula para las raíces de la ecuación indicial, entonces debe ser que $c_{1} = 0$.

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}c_{k -2}x^{k + r} -\lambda^{2}\sum_{k = 2}^{\infty}c_{k}x^{k + r} = 0 \label{6} \tag{6}$$

Reescribiendo todo en una serie, se tiene

$$\sum_{k = 2}^{\infty} [(k + r)(k + r -1)c_{k} + (k + r)c_{k} + c_{k -2} -\lambda^{2}c_{k}] x^{k + r} = 0$$

De donde,

$$c_{k}[(k + r)(k + r -1) + (k + r) -\lambda^{2}] + c_{k -2} = 0 \label{7} \tag{7}$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{c_{k -2}}{\lambda^{2} -(r + k)^{2}}, \hspace{1cm} k = 2, 3, 4, \cdots \label{8} \tag{8}$$

Para el caso en el que $r = \lambda$, la relación de recurrencia es

$$c_{k} = -\dfrac{c_{k -2}}{k(k + 2\lambda)}, \hspace{1cm} k = 2, 3, 4, \cdots \label{9} \tag{9}$$

Determinemos los coeficientes para este caso.

$k = 2$.

$$c_{2} = -\dfrac{c_{0}}{2(2 + 2\lambda)} = -\dfrac{1}{4(1 + \lambda)}c_{0}$$

$k = 3$.

$$c_{3} = \dfrac{c_{1}}{3(3 + 2\lambda)}$$

Pero $c_{1} = 0$, entonces $c_{3} = 0$. En general, $c_{1} = c_{3} = c_{5} = \cdots = 0$.

Para $k = 4$, se tiene

$$c_{4} = -\dfrac{c_{2}}{4(4 + 2\lambda)} = \dfrac{1}{(4)(8)(1 + \lambda)(2 + \lambda)}c_{0}$$

$k = 6$.

$$c_{6} = -\dfrac{c_{4}}{6(6 + 2\lambda)} = -\dfrac{1}{(4)(8)(12)(1 + \lambda)(2 + \lambda)(3 + \lambda)}c_{0}$$

En general,

$$c_{2k} = \dfrac{(-1)^{k}}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)}c_{0} \label{10} \tag{10}$$

Entonces la primer solución de la ecuación de Bessel es

$$\hat{y}(x) = c_{0}y_{1}(x) \label{11} \tag{11}$$

Con

\begin{align*}
y_{1}(x) &= 1 -\dfrac{1}{4(1 + \lambda)}x^{2} + \dfrac{1}{(4)(8)(1 + \lambda)(2 + \lambda)}x^{4} -\dfrac{1}{(4)(8)(12)(1 + \lambda)(2 + \lambda)(3 + \lambda)}x^{6} + \cdots \\
&\cdots + (-1)^{k} \dfrac{1}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)}x^{2k + \lambda} + \cdots \label{12} \tag{12}
\end{align*}

No obtendremos la segunda solución para $r = -\lambda$, pero si que aún podemos decir más de la primer solución y con ello conocer la forma de la segunda solución.

Definamos la función Gamma y apoyémonos de ella.

La convergencia de la integral requiere que $x -1 > -1$, o bien, $x > 0$.

La función Gamma posee la propiedad conveniente de que

$$\Gamma (1 + x) = x \Gamma(x) \label{14} \tag{14}$$

Debido a esta propiedad es que al valor arbitrario $c_{0}$ de la solución de la ecuación de Bessel se le suele atribuir el valor

$$c_{0} = \dfrac{1}{2^{\lambda} \Gamma(1 + \lambda)} \label{15} \tag{15}$$

Como

\begin{align*}
\Gamma (1 + \lambda + 1) &= (1 + \lambda)\Gamma(1 + \lambda) \\
\Gamma (1 + \lambda + 2) &= (2 + \lambda)\Gamma(2 + \lambda) = (2 + \lambda)(1 + \lambda)\Gamma(1 + \lambda) \\
&\vdots \\
\Gamma(1 + \lambda + k) &= (1 + \lambda)(2 + \lambda) \cdots (k + \lambda)\Gamma (1 + \lambda)
\end{align*}

Entonces el coeficiente $c_{2k}$ dado en (\ref{10}) se puede escribir como

\begin{align*}
c_{2k} &= \left( \dfrac{1}{2^{\lambda} \Gamma(1 + \lambda)} \right) \left( \dfrac{(-1)^{k}}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)} \right) \\
&= \dfrac{(-1)^{k}}{2^{2k + \lambda}k!(1 + \lambda)(2 + \lambda) \cdots (k + \lambda)\Gamma(1 + \lambda)} \\
&= \dfrac{(-1)^{k}}{2^{2k + \lambda}k!\Gamma(1 + \lambda + k)}
\end{align*}

Para $k = 0, 1, 2, 3, \cdots$. Usando esta forma de los coeficientes, la solución de la ecuación de Bessel para $r = \lambda$ se puede escribir de la siguiente manera, usualmente denotada por $J_{\lambda}(x)$.

$$J_{\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 + \lambda + n)} \left( \dfrac{x}{2} \right)^{2n + \lambda} \label{16} \tag{16}$$

Si $\lambda \geq 0$, la serie converge al menos en el intervalo $[0, \infty)$.

De tarea moral demuestra que para $r = -\lambda$ la segunda solución de la ecuación de Bessel es

$$J_{-\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 -\lambda + n)} \left( \dfrac{x}{2} \right)^{2n -\lambda} \label{17} \tag{17}$$

Por lo tanto, la solución general de la ecuación de Bessel es

$$y(x) = C_{1} J_{\lambda}(x) + C_{2} J_{-\lambda}(x) \label{18} \tag{18}$$

Las funciones $J_{\lambda}(x)$ y $J_{-\lambda}(x)$ se llaman funciones de Bessel de primera clase de orden $\lambda$ y $-\lambda$, respectivamente.

Dependiendo del valor de $\lambda$ la solución puede contener potencias negativas de $x$ y, por tanto, converger en $(0, \infty)$.

Debemos tener cuidado con la solución general (\ref{18}).

  • Si $\lambda = 0$ es claro que las soluciones (\ref{16}) y (\ref{17}) son las mismas.
  • Si $\lambda > 0$ y $r_{1} -r_{2} = \lambda -(-\lambda) = 2\lambda$ no es un entero positivo, entonces (\ref{16}) y (\ref{17}) son linealmente independientes y (\ref{18}) es la solución general, pero
  • Si $r_{1} -r_{2} = 2\lambda$ es un entero positivo podría existir una segunda solución en serie y entonces las soluciones (\ref{16}) y (\ref{17}) no son linealmente independientes, lo que significa que (\ref{18}) no es la solución general.

Observamos que $2\lambda$ es entero positivo si $\lambda$ es un entero positivo, pero también lo es si $\lambda$ es la mitad de un número impar positivo, sin embargo en este último caso se puede demostrar que (\ref{16}) y (\ref{17}) si son linealmente independientes. Por lo tanto, la solución general de la ecuación de Bessel es (\ref{18}) siempre que $\lambda \neq$ entero.

Ecuación de Chebyshev

La ecuación de Chebyshev es

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0 \label{19} \tag{19}$$

Con $\lambda$ una constante real (o compleja) y $|x| < 1$.

Esta ecuación lleva el nombre del matemático ruso Pafnuty Chebyshev (1821-1894) conocido por su trabajo en el área de la probabilidad y estadística.

La ecuación de Chebyshev en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{x}{1 -x^{2}} \dfrac{dy}{dx} + \dfrac{\lambda^{2}}{1 -x^{2}} y = 0 \label{20} \tag{20}$$

Identificamos que

$$P(x) = -\dfrac{x}{1 -x^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda^{2}}{1 -x^{2}}$$

Ambas funciones no están definidas en $x = 1$ ni $x = -1$, pero si en el punto $x_{0} = 0$, entonces dicho punto es un punto ordinario y por tanto la solución es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n} \label{21} \tag{21}$$

La primera y segunda derivada son

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} \label{22} \tag{22}$$

Sustituimos en la ecuación de Chebyshev.

$$(1 -x^{2}) \left[ \sum_{n = 2}^{\infty}n(n-1)c_{n}x^{n-2} \right] -x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda^{2} \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

Expandiendo y simplificando se tiene

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n} -\sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda^{2} \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos $k = n -2$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty}k(k -1)c_{k}x^{k} -\sum_{k = 1}^{\infty}kc_{k}x^{k}+\lambda^{2} \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos los primeros dos términos, por un lado para $k = 0$ se tiene

$$2c_{2} + \lambda^{2}c_{0} = 0$$

de donde,

$$c_{2} = -\dfrac{\lambda^{2}}{2}c_{0}$$

Por otro lado, para $k = 1$ se tiene

\begin{align*}
6c_{3}x -c_{1}x + \lambda^{2}c_{1}x &= 0 \\
[6c_{3} -c_{1} + \lambda^{2}c_{1}]x &= 0 \\
6c_{3} -c_{1} + \lambda^{2}c_{1} &= 0
\end{align*}

de donde,

$$c_{3} = \dfrac{1 -\lambda^{2}}{6}c_{1}$$

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty}k(k -1)c_{k}x^{k} -\sum_{k = 2}^{\infty}kc_{k}x^{k} + \lambda^{2} \sum_{k = 2}^{\infty}c_{k}x^{k} = 0 \label{23} \tag{23}$$

Si juntamos todo en una serie, se obtiene

$$\sum_{k = 2}^{\infty} \left[ (k + 2)(k + 1)c_{k + 2} -k(k -1)c_{k} -kc_{k} + \lambda^{2}c_{k} \right]x^{k} = 0$$

De donde,

$$(k + 2)(k + 1)c_{k + 2} -[k(k -1) + k -\lambda^{2}]c_{k} = 0 \label{24} \tag{24}$$

Si despejamos a $c_{k + 2}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{k^{2} -\lambda^{2}}{(k + 1)(k + 2)}c_{k}, \hspace{1cm} k = 0, 1, 2, 3, \cdots \label{25} \tag{25}$$

Ya vimos que para $k = 0$ se tiene

$$c_{2} = -\dfrac{\lambda^{2}}{2!}c_{0}$$

Y para $k = 1$ se obtuvo

$$c_{3} = \dfrac{1 -\lambda^{2}}{3!}c_{1}$$

Para $k = 2$, se tiene

$$c_{4} = \dfrac{2^{2} -\lambda^{2}}{(4)(3)}c_{2} = \dfrac{2^{2} -\lambda^{2}}{(4)(3)} \left( -\dfrac{\lambda^{2}}{2}c_{0} \right) = \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}c_{0}$$

$k = 3$.

$$c_{5} = \dfrac{3^{2} -\lambda^{2}}{(5)(4)}c_{3} = \dfrac{3^{2} -\lambda^{2}}{(5)(4)} \left( \dfrac{1 -\lambda^{2}}{3!}c_{1} \right) = \dfrac{(3^{2} -\lambda^{2})(1 -\lambda^{2})}{5!}c_{1}$$

$k = 4$.

$$c_{6} = \dfrac{4^{2} -\lambda^{2}}{(6)(5)}c_{4} = \dfrac{4^{2} -\lambda^{2}}{(6)(5)} \left( \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}c_{0} \right) = \dfrac{(4^{2} -\lambda^{2})(2^{2} -\lambda^{2})(-\lambda^{2})}{6!}c_{0}$$

Etcétera, con estos resultado podemos observar el patrón

$$c_{2k} = \dfrac{[(2k -2)^{2} -\lambda^{2}][(2k -4)^{2} -\lambda^{2}] \cdots (2^{2} -\lambda^{2})(-\lambda^{2})}{(2k)!}c_{0} \label{26} \tag{26}$$

y

$$c_{2k + 1} = \dfrac{[(2k -1)^{2} -\lambda^{2}][(2k -3)^{2}-\lambda^{2}] \cdots (3^{2} -\lambda^{2})(1 -\lambda^{2})}{(2k + 1)!}c_{1} \label{27} \tag{27}$$

Si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces la solución general de la ecuación de Chebyshev es

$$y_{1} = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{928} \tag{28}$$

Con

\begin{align*}
y_{1}(x) &= 1 -\dfrac{\lambda^{2}}{2!}x^{2} + \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}x^{4} + \dfrac{(4^{2} -\lambda^{2})(2^{2} -\lambda^{2})(-\lambda^{2})}{6!}x^{6} + \cdots\\
&\cdots + \dfrac{[(2k -2)^{2} -\lambda^{2}][(2k -4)^{2} -\lambda^{2}] \cdots (2^{2} -\lambda^{2})(-\lambda^{2})}{(2k)!} + \cdots \label{29} \tag{29}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x + \dfrac{1 -\lambda^{2}}{3!}x^{3} + \dfrac{(3^{2} -\lambda^{2})(1 -\lambda^{2})}{5!}x^{5} + \cdots \\
&\cdots + \dfrac{[(2k -1)^{2} -\lambda^{2}][(2k -3)^{2}-\lambda^{2}] \cdots (3^{2} -\lambda^{2})(1 -\lambda^{2})}{(2k + 1)!} + \cdots \label{30} \tag{30}
\end{align*}

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $C_{1}$ y de $C_{2}$ se obtienen los conocidos polinomios de Chebyshev.

\begin{align*}
T_{0}(x) &= 1 \\
T_{1}(x) &= x \\
T_{2}(x) &= 2x^{2} -1 \\
T_{3}(x) &= 4x^{3} -3x \\
T_{4}(x) &= 8x^{4} -8x^{2} + 1 \\
T_{5}(x) &= 16x^{5} -20x^{3} + 5x \\
\vdots
\end{align*}

En general, el $n$-ésimo polinomio de Chebyshev será solución particular de la ecuación de Chebyshev cuando $\lambda = n$.

Ecuación Hipergeométrica de Gauss

La ecuación Hipergeométrica es

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0 \label{31} \tag{31}$$

Con $\alpha$, $\beta$ y $\gamma$ constantes.

La ecuación hipergeométrica en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{\gamma -(\alpha + \beta +1)x}{x(1 -x)} \dfrac{dy}{dx} -\dfrac{\alpha \beta}{x(1 -x)}y = 0 \label{32} \tag{32}$$

Identificamos que

$$P(x) = \dfrac{\gamma -(\alpha + \beta +1)x}{x(1 -x)} \hspace{1cm} y \hspace{1cm} Q(x) = -\dfrac{\alpha \beta}{x(1 -x)}$$

Ambas funciones no están definidas es $x = 1$ ni $x = 0$ eso significa que ambos puntos son singulares, sin embargo nosotros estamos interesados en resolver la ecuación con respecto al punto $x_{0} = 0$, definamos las funciones $p(x)$ y $q(x)$ con respecto a dicho punto.

$$p(x) = \dfrac{\gamma -(\alpha +\beta +1)x}{1 -x} \hspace{1cm} y \hspace{1cm} q(x) = -\dfrac{\alpha \beta x}{1 -x}$$

Ambas funciones son analíticas en $x = 0$ y los límites existen.

$$\lim_{x \to 0}p(x) = \gamma \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = 0$$

Por lo tanto, $x_{0} = 0$ es un punto singular regular y la solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Sustituimos en la ecuación hipergeométrica.

$$x(1 -x) \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + [\gamma -(\alpha + \beta + 1)x] \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] -\alpha \beta \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo la expresión se tiene

\begin{align*}
&x \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} -x^{2} \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} + \gamma \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \\
&-(\alpha + \beta + 1)x \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} -\alpha \beta \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0
\end{align*}

Simplificamos

\begin{align*}
&\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \gamma \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \\
&-(\alpha + \beta + 1) \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} -\alpha \beta \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0
\end{align*}

En la primera y tercera serie hacemos $k = n$ y en el resto hacemos $n = k -1$.

\begin{align*}
&\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k + r -1)(k + r -2)c_{k -1}x^{k + r -1} + \gamma \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} \\
&-(\alpha + \beta + 1) \sum_{k = 1}^{\infty}(k + r -1)c_{k -1}x^{k + r -1} -\alpha \beta \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0
\end{align*}

Para $k = 0$ obtenemos la ecuación indicial.

\begin{align*}
r(r -1)c_{0}x^{r -1} + \gamma r c_{0}x^{r-1} &= 0 \\
[r(r -1) + \gamma r]c_{0}x^{r -1} &= 0 \\
r(r -1) + \gamma r &= 0
\end{align*}

La ecuación indicial es

$$r(r + \gamma -1) = 0 \label{33} \tag{33}$$

Las raíces son $r_{1} = 0$ y $r_{2} = 1 -\gamma$. Ahora tenemos la ecuación

\begin{align*}
&\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k + r -1)(k + r -2)c_{k -1}x^{k + r -1} + \gamma \sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r -1} \\
&-(\alpha + \beta + 1) \sum_{k = 1}^{\infty}(k + r -1)c_{k -1}x^{k + r -1} -\alpha \beta \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0
\end{align*}

Juntemos todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + r)(k + r -1)c_{k} -(k + r -1)(k + r -2)c_{k -1} + \gamma (k + r)c_{k} -(\alpha + \beta + 1)(k + r -1)c_{k -1} -\alpha \beta c_{k -1}]x^{k + r -1} = 0$$

De donde,

$$(k + r)(k + r -1)c_{k} -(k + r -1)(k + r -2)c_{k -1} + \gamma (k + r)c_{k} -(\alpha + \beta + 1)(k + r -1)c_{k -1} -\alpha \beta c_{k -1} = 0$$

Despejando a $c_{k}$ se obtiene la relación de recurrencia.

$$c_{k} = \dfrac{(k + r -1)(k + r -2) + (\alpha + \beta + 1)(k + r -1) + \alpha \beta}{(k + r)(k + r -1) + \gamma(k + r)}c_{k -1} \label{34} \tag{34}$$

De tarea moral demuestra que la relación de recurrencia se puede reescribir como

$$c_{k} = \dfrac{(k + r + \alpha -1)(k + r -1 + \beta)}{(k + r)(k + r + \gamma -1)}c_{k -1}, \hspace{1cm} k = 1, 2, 3, \cdots \label{35} \tag{35}$$

Para $k = 1$, tenemos

$$c_{1} = \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0}$$

$k = 2$.

\begin{align*}
c_{2} &= \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma + 1)}c_{1} \\
&= \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma +1)} \left ( \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0} \right)
\end{align*}

$k = 3$.

\begin{align*}
c_{3} &= \dfrac{(r + \alpha + 2)(r + \beta + 2)}{(3 + r)(r + \gamma + 2)}c_{2} \\
&= \left( \dfrac{(r + \alpha + 2)(r + \beta + 2)}{(3 + r)(r + \gamma + 2)} \right) \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma + 1)} \left( \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0} \right)
\end{align*}

Etcétera. Una forma de escribir las expresiones anteriores es usando el símbolo de Pochhammer que se define de la siguiente manera.

Una relación interesante entre el símbolo de Pochhammer y la función Gamma es

$$(x)_n = \dfrac{\Gamma(x + n)}{\Gamma(x)} \label{37} \tag{37}$$

Siempre que $x$ y $x + n$ no son enteros positivos.

Usando el símbolo de Pochhammer podemos escribir a los coeficientes como

$$c_{1} = \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0}$$

$$c_{2} = \dfrac{(r + \alpha)_{2}(r + \beta )_{2}}{(1 + r)_{2}(r + \gamma)_{2}}c_{0}$$

$$c_{3} = \dfrac{(r + \alpha )_{3}(r + \beta)_{3}}{(1 + r)_{3}(r + \gamma)_{3}}c_{0}$$

Y en general,

$$c_{k} = \dfrac{(r + \alpha)_{k}(r + \beta)_{k}}{(1 + r)_{k}(r + \gamma)_{k}}c_{0} \label{38} \tag{38}$$

Por lo tanto, la solución de la ecuación hipergeométrica es

$$y(x) = c_{0}\hat{y}(x) \label{39} \tag{39}$$

Donde

\begin{align*}
\hat{y}(x) &= 1 + \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}x + \dfrac{(r + \alpha)_{2}(r + \beta )_{2}}{(1 + r)_{2}(r + \gamma)_{2}}x^{2} + \dfrac{(r + \alpha )_{3}(r + \beta)_{3}}{(1 + r)_{3}(r + \gamma)_{3}}x^{3} + \cdots \\
&\cdots + \dfrac{(r + \alpha)_{k}(r + \beta)_{k}}{(1 + r)_{k}(r + \gamma)_{k}}x^{k} + \cdots \label{40} \tag{40}
\end{align*}

Hemos resuelto la ecuación hipergeométrica de manera general, pero recordemos que las raíces indiciales son $r_{1} = 0$ y $r_{2} = 1 -\gamma$, lo que significa que existen dos soluciones linealmente independientes $y_{1}(x)$ y $y_{2}(x)$, tal que la solución general es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{41} \tag{41}$$

Para el caso en el que $r = 0$ basta sustituir en (\ref{40}), a esta solución se le conoce como función hipergeométrica, se denota por $_{2}F_{1}(\alpha, \beta; \gamma; x)$ y está dada por

$$_{2}F_{1}(\alpha, \beta; \gamma; x) = \sum_{n = 0}^{\infty}\dfrac{(\alpha)_{n}(\beta)_{n}}{n!(\gamma)_{n}}x^{n} \label{42} \tag{42}$$

Donde se ha hecho uso del símbolo de Pochhammer y se requiere que $\gamma \neq 0, -1, -2, \cdots$. La serie (\ref{42}) converge en el intervalo $|x| < 1$.

De tarea moral demuestra que para el caso en el que $r = 1 -\gamma$, $\gamma \neq 2, 3, 4, \cdots$ y $|x| < 1$, la solución denotada por $_{2}F_{1}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x)$, es

$$_{2}F_{1}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) = \sum_{n = 0}^{\infty}\dfrac{(1 -\gamma + \alpha)_{n}(1 -\gamma + \beta)_{n}}{n!(2 -\gamma)_{n}}x^{n} \label{43} \tag{43}$$

Considerando estos resultados, la solución general de la ecuación hipergeométrica para $|x| < 1$, es

$$y(x) = C_{1}[{_{2}F_{1}}(\alpha, \beta; \gamma; x)] + C_{2} x^{1 -\gamma} {_{2}F_{1}}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) \label{44} \tag{44}$$

Ecuación de Airy

Recordemos que cuando estudiamos el método de resolución con respecto a puntos ordinarios resolvimos como ejemplo la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + xy = 0 \label{45} \tag{45}$$

Mencionamos que dicha ecuación era una forma de lo que se conoce como ecuación de Airy. Por su puesto, la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0 \label{46} \tag{46}$$

es otra forma de lo que se conoce como ecuación de Airy y dado que ya resolvimos la forma (\ref{45}) de tarea moral resuelve la forma (\ref{46}). ¿Qué diferencias notas?.

Estas ecuaciones llevan el nombre de Airy en honor al astrónomo británico George Biddell Airy (1801 – 1892).

La solución general de la ecuación de Airy (\ref{46}), es

$$y(x) = C_{1} \sum_{n = 0}^{\infty}\dfrac{1 \cdot 4 \cdots (3n -2)}{(3n)!}x^{3n} + C_{2} \sum_{n = 0}^{\infty}\dfrac{2 \cdot 5 \cdots (3n -1)}{(3n + 1)!}x^{3n + 1} \label{47} \tag{47}$$

Hemos concluido, es importante recordar que cada una de estas ecuaciones y sus soluciones tienen propiedades matemáticas muy importantes que no se revisaron debido a que quedan fuera de lo que nos corresponde en este curso, sin embargo en semestres posteriores seguramente aparecerán de nuevo y lo visto en estas dos últimas entradas será de valiosa utilidad.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Demostrar que la segunda solución de la ecuación de Bessel para $r = -\lambda$ es
    $$J_{-\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 -\lambda + n)} \left( \dfrac{x}{2} \right)^{2n -\lambda}$$ Es decir, encontrar la relación de recurrencia para $r = -\lambda$, determinar la forma de los coeficientes de la solución y determina el valor correcto que debe tener $c_{0}$ usando la función Gamma para finalmente dar con la solución que se desea.
  1. Investigar qué son las funciones de Bessel de segunda clase y mencionar la relación que tienen con las funciones de Bessel de primera clase.
  1. Los primeros 6 polinomios de Chebyshev son solución de la ecuación de Chebyshev para $\lambda = 0, 1, 2, 3, 4, 5$ respectivamente. Determinar el valor correspondiente de $C_{1}$ y $C_{2}$, tal que se obtengan los primeros 6 polinomios de Chebyshev.
  1. Demostrar que si $|x| < 1$, $\lambda \neq 2, 3, 4, \cdots$ y $r = 1 -\lambda$, la segunda solución de la ecuación hipergeométrica es
    \begin{align*}
    y_{2}(x) &= x^{r}\sum_{n = 0}^{\infty}\hat{c}_{n}x^{n} \\
    &= x^{1 -\lambda}{_{2}F_{1}}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) \\
    &= x^{1 -\lambda} \sum_{n = 0}^{\infty}\dfrac{(1 -\gamma + \alpha)_{n}(1 -\gamma + \beta)_{n}}{n!(2 -\gamma)_{n}}x^{n}
    \end{align*}
    Se puede hacer uso del resultado general (\ref{40}).
  1. Demostrar que la ecuación de Legendre es un caso especial de la ecuación hipergeométrica.
  1. Resolver la ecuación de Airy con respecto al punto ordinario $x_{0} = 0$.
    $$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Más adelante…

¡Hemos concluido con la unidad 2 del curso!.

En la siguiente unidad estudiaremos los sistemas de ecuaciones diferenciales lineales de primer orden.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones del Hermite, Laguerre y Legendre

Por Omar González Franco

La naturaleza está escrita en lenguaje matemático.
– Galileo Galilei

Introducción

En las dos últimas entradas hemos desarrollado métodos de resolución de ecuaciones diferenciales lineales de segundo orden con coeficientes variables. El primer caso fue cuando $x_{0} = 0$ es un punto ordinario y en el segundo caso cuando $x_{0} = 0$ es un punto singular regular. En esta y la siguiente entrada aplicaremos estos métodos para resolver algunas ecuaciones diferenciales especiales, tan especiales que cada una de ellas tiene su propio nombre y son de bastante utilidad en otras áreas del conocimiento como la física e ingeniería.

A continuación presentamos las ecuaciones diferenciales que resolveremos:

  • Ecuación de Hermite.

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Laguerre.

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Legendre.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0$$

  • Ecuación de Bessel.

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0$$

  • Ecuación de Chebyshev.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0$$

  • Ecuación Hipergeométrica de Gauss.

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0$$

  • Ecuación de Airy.

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Algunos ejemplos en los que aparecen este tipo de ecuaciones son en el estudio de potenciales en campos conservativos y no conservativos, esfuerzos de torsión, distribución de temperaturas, propagación de calor, vibraciones de cuerdas y membranas, propagación de ondas sonoras, luminosas, de radio entre muchas otras aplicaciones.

Es importante aclarar que todas estas ecuaciones, y las soluciones de cada una, tienen importantes propiedades matemáticas que no serán expuestas en este curso, nuestro propósito es el de sólo dar con la solución aplicando los métodos ya mencionados. Sin embargo, estos resultados seguramente serán de bastante utilidad más adelante cuando en semestres posteriores se estudien con mayor detalle. Por supuesto, si en estos momentos se desea conocer más acerca de estas ecuaciones diferenciales se puede consultar bibliografía existente para cada una de ellas.

Comencemos con la ecuación de Hermite.

Ecuación de Hermite

La ecuación de Hermite es

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0 \label{1} \tag{1}$$

Con $x \in \mathbb{R}$ y $\lambda$ una constante.

Esta ecuación diferencial es llamada así en honor al matemático francés Charles Hermite (1822 – 1901), quien realizó investigaciones sobre teoría de números, formas cuadráticas, teoría de invariantes, polinomios ortogonales y funciones elípticas entre otros. Varias entidades matemáticas se llaman hermitianas en su honor.

La ecuación de Hermite se encuentra en forma estándar lo que nos permite notar que el punto $x_{0} = 0$ es un punto ordinario, esto nos indica que su solución es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n} \label{2} \tag{2}$$

Cuyas derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} \label{3} \tag{3}$$

Sustituyamos en la ecuación de Hermite.

$$\left[ \sum_{n = 2}^{\infty }n(n -1)c_{n}x^{n -2} \right] -2x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda \left[ \sum_{n = 0}^{\infty}c_{n}x^{n}\right] = 0$$

Introducimos la $x$ en la segunda serie.

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -2 \sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos la sustitución $k = n -2$ y en las otras dos hacemos $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -2 \sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos el primer término de la primera y última serie para que todas comiencen en $k = 1$.

$$2c_{2} + \lambda c_{0} = 0 \label{4} \tag{4}$$

de donde,

$$c_{2} = -\dfrac{\lambda }{2}c_{0}$$

Ahora tenemos la ecuación

$$\sum_{k = 1}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -2 \sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda \sum_{k = 1}^{\infty}c_{k}x^{k} = 0 \label{5} \tag{5}$$

Ahora que todas las series comienzan con el mismo índice y tienen la misma potencia en la variable $x$, podemos juntar todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + 2)(k + 1)c_{k + 2} -2kc_{k} + \lambda c_{k}]x^{k} = 0$$

De donde necesariamente debe de ocurrir que

$$(k + 2)(k + 1)c_{k + 2} -(2k -\lambda)c_{k} = 0 \label{6} \tag{6}$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{2k -\lambda}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, 3 \cdots \label{7} \tag{7}$$

Determinemos los coeficientes. Ya vimos que para $k = 0$,

$c_{2} = -\dfrac{\lambda }{2!}c_{0}$

$k = 1$.

$$c_{3} = \dfrac{2(1) -\lambda}{(3)(2)}c_{1} = \dfrac{2 -\lambda}{3!}c_{1}$$

$k = 2$.

$$c_{4} = \dfrac{2(2) -\lambda}{(4)(3)}c_{2} = \dfrac{4-\lambda}{(4)(3)} \left( -\dfrac{\lambda}{2}c_{0} \right) = -\dfrac{\lambda(4 -\lambda)}{4!}c_{0}$$

$k = 3$.

$$c_{5} = \dfrac{2(3) -\lambda}{(5)(4)}c_{3} = \dfrac{6 -\lambda}{(5)(4)} \left( \dfrac{2 -\lambda}{(3)(2)}c_{1} \right) = \dfrac{(6 -\lambda)(2 -\lambda)}{5!}c_{1}$$

$k = 4$.

$$c_{6} = \dfrac{2(4) -\lambda}{(6)(5)}c_{4} = \dfrac{8 -\lambda}{(6)(5)} \left( -\dfrac{\lambda(4 -\lambda)}{4!}c_{0} \right) = -\dfrac{\lambda(4 -\lambda)(8 -\lambda)}{6!}c_{0}$$

$k = 5$.

$$c_{7} = \dfrac{2(5) -\lambda}{(7)(6)}c_{5} = \dfrac{10 -\lambda}{(7)(6)} \left( \dfrac{(6 -\lambda)(2 -\lambda)}{5!}c_{1} \right) = \dfrac{(2 -\lambda)(6 -\lambda)(10 -\lambda)}{7!}c_{1}$$

Etcétera, si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces podemos escribir a la solución general de la ecuación de Hermite como

\begin{align*}
y(x) &= C_{1} \left[ 1 -\dfrac{\lambda}{2!}x^{2} -\dfrac{\lambda(4 -\lambda)}{4!}x^{4} -\dfrac{\lambda(4 -\lambda)(8 -\lambda)}{6!}x^{6} – \cdots \right] \\
&+ C_{2} \left[ x + \dfrac{(2 -\lambda)}{3!}x^{3} + \dfrac{(2 -\lambda)(6 -\lambda)}{5!}x^{5} + \dfrac{(2 -\lambda)(6 -\lambda)(10 -\lambda)}{7!} + \cdots \right] \label{8} \tag{8}
\end{align*}

Un caso interesante ocurre cuando el parámetro $\lambda$ es positivo y es par, es decir de la forma $\lambda = 2k$, en este caso la relación de recurrencia muestra que

$$c_{k + 2} = c_{k + 4} = \cdots = 0$$

Notemos que si $\lambda = 2k$ y además $k$ es par y se toma $C_{2} = 0$, entonces la solución se reduce a un polinomio de grado $k$, lo mismo ocurre si $k$ es impar y se toma $C_{1} = 0$, la solución se reduce a otro polinomio de grado $k$.

Con una adecuada elección de $C_{1}$ y $C_{2}$, de tal manera que el coeficiente de $x^{k}$ sea $2^{k}$, resultan los denominados polinomios de Hermite.

\begin{align*}
H_{0}(x) &= 1\\
H_{1}(x) &= 2x \\
H_{2}(x) &= 4x^{2} -2 \\
H_{3}(x) &= 8x^{3} -12x\\
H_{4}(x) &= 16x^{4} -48x^{2} + 12\\
H_{5}(x) &= 32x^{5} -160x^{3} + 120x \\
\vdots
\end{align*}

Cada polinomio de Hermite es solución particular de la ecuación de Hermite con $\lambda = 0, 2, 4, 6 \cdots$, respectivamente. En general, el $n$-ésimo polinomio de Hermite es solución particular de la ecuación de Hermite con $\lambda = 2n$.

Los polinomios de Hermite aparecen en la resolución del problema del oscilador armónico unidimensional en Mecánica Cuántica.

Pasemos a resolver la ecuación de Laguerre.

Ecuación de Laguerre

La ecuación de Laguerre es

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0 \label{9} \tag{9}$$

Con $\lambda$ una constante.

Los polinomios de Laguerre son una familia de polinomios ortogonales que surgen de examinar las soluciones de la ecuación diferencial (\ref{9}). Edmond Nicolás Laguerre (1834 – 1886) fue un matemático francés conocido principalmente por la introducción de los polinomios que llevan su nombre.

Resolvamos la ecuación, para ello dividimos todo por $x$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1 -x}{x} \dfrac{dy}{dx} + \dfrac{\lambda}{x} y = 0 \label{10} \tag{10}$$

Identificamos que

$$P(x) = \dfrac{1 -x}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda}{x}$$

Es claro que ambas funciones no están definidas en $x = 0$, de manera que este punto es un punto singular. Si definimos las funciones

$$p(x) = xP(x) \hspace{1cm} y \hspace{1cm} q(x) = x^{2}Q(x)$$

obtenemos que

$$p(x) = 1 -x \hspace{1cm} y \hspace{1cm} q(x) = \lambda x$$

Si calculamos los límites se obtiene lo siguiente.

$$\lim_{x \to 0}p(x) = 1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = 0$$

Los límites existen, esto nos indica que el punto $x_{0} = 0$ es un punto singular regular. La solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r} \label{11} \tag{11}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \label{12} \tag{12}$$

Sustituyamos en la ecuación de Laguerre.

$$x \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + (1 -x) \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + \lambda \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo y simplificando se tiene

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \lambda \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En las dos primeras series hacemos $k = n$ y en las dos últimas series hacemos $n = k -1$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} + \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r -1} + \lambda \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0$$

Extraemos los términos para $k = 0$ y así hacer que todas las series comiencen en $k = 1$.

\begin{align*}
r(r -1)c_{0}x^{r -1} + rc_{0}x^{r -1} &= 0 \\
c_{0}x^{r -1}[r(r -1) + r] &= 0 \\
r(r -1) + r &= 0
\end{align*}

La ecuación indicial es

$$r^{2} = 0 \label{13} \tag{13}$$

de donde $r_{1} = r_{2} = r = 0$. Como las raíces indiciales son iguales, la forma de las soluciones es

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}, \hspace{1cm} c_{0} \neq 0 \label{14} \tag{14}$$

y

$$y_{2}(x) = \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n} \label{15} \tag{15}$$

Continuemos con la ecuación que teníamos.

$$\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} + \sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r -1} + \lambda \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0$$

Ahora que todas inician en $k = 1$ y tienen la misma potencia podemos agruparlas en una sola serie.

$$\sum_{k = 1}^{\infty} [(k + r)(k + r -1)c_{k} + (k + r)c_{k} -(k -1 + r)c_{k -1} + \lambda c_{k -1}] x^{k + r -1} = 0$$

De donde es necesario que

\begin{align*}
(k + r)(k + r -1)c_{k} + (k + r)c_{k} -(k -1 + r)c_{k -1} + \lambda c_{k -1} &= 0 \\
c_{k}[(k + r)(k + r -1) + (k + r)] + c_{k -1}[\lambda -(k -1 + r)] &= 0 \\
\end{align*}

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{(k -1 + r) -\lambda}{(k + r)(k + r -1) + (k + r)}c_{k -1} \label{16} \tag{16}$$

De tarea moral muestra que la relación de recurrencia se puede reescribir como

$$c_{k} = \dfrac{(k + r) -(\lambda + 1)}{(k + r)^{2}}c_{k -1} \label{17} \tag{17}$$

Sabemos que la raíz indicial es $r = 0$, entonces la relación de recurrencia se reduce a

$$c_{k} = \dfrac{k -(\lambda + 1)}{k^{2}}c_{k -1}, \hspace{1cm} k = 1, 2, 3, \cdots \label{18} \tag{18}$$

Determinemos los coeficientes.

$k = 1$.

$$c_{1} = \dfrac{1 -(\lambda + 1)}{1^{2}}c_{0} = -\lambda c_{0}$$

$k = 2$.

$$c_{2} = \dfrac{2 -(\lambda + 1)}{2^{2}}c_{1} = \dfrac{1 -\lambda}{4}c_{1} = \dfrac{\lambda(\lambda -1)}{4}c_{0}$$

$k = 3$.

$$c_{3} = \dfrac{3 -(\lambda + 1)}{3^{2}}c_{2} = \dfrac{2 -\lambda}{9}c_{2} = -\dfrac{\lambda(\lambda -1)(\lambda -2)}{36}c_{0}$$

Continuando es posible encontrar el patrón y establecer que

$$c_{k} = (-1)^{k} \dfrac{\lambda(\lambda -1)(\lambda -2) \cdots (\lambda -k + 1)}{(k!)^{2}}c_{0} \label{19} \tag{19}$$

De tarea moral demuestra por inducción el resultado anterior.

Entonces la solución de la ecuación de Laguerre es

\begin{align*}
y(x) &= c_{0} \left( 1 -\dfrac{\lambda}{(1!)^{2}} x + \dfrac{\lambda(\lambda -1)}{(2!)^{2}}x^{2} -\dfrac{\lambda(\lambda -1)(\lambda -2)}{(3!)^{2}}x^{3} + \cdots + (-1)^{k} \dfrac{\lambda(\lambda -1)(\lambda -2) \cdots (\lambda -k + 1)}{(k!)^{2}}x^{k} + \cdots \right) \label{20} \tag{20}
\end{align*}

Recordemos que el método de Frobenius nos dice que existe una segunda solución de la forma

$$y_{2}(x) = y_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}$$

Obtener la segunda solución resulta ser una tarea muy complicada debido a la enorme cantidad de cálculos que se deben realizar, en el video correspondiente se hace notar esta dificultad, sin embargo la solución obtenida suele ser suficiente para trabajar y es la que se utiliza en las aplicaciones que aparecen principalmente en Física.

Observemos que si $\lambda \in \mathbb{Z}^{+}$, entonces la serie solución se hace finita, ya que cada coeficiente de la serie contiene un término $(\lambda -m)$ con $m \in \mathbb{Z}^{+}$ que se repite cada vez que aparece por primera vez, por ejemplo el término $(\lambda -2)$ aparece por primera vez en el coeficiente de $x^{3}$ y a partir de ahí aparece en el resto de coeficientes de la serie, de manera que si $\lambda = 2$, entonces todos los coeficientes que contengan el término $(\lambda -2)$ se anularán y sólo nos quedará un polinomio de grado $n = 2$. Estos polinomios resultantes son los llamados polinomios de Laguerre.

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $c_{0}$ se obtienen los siguientes polinomios de Laguerre.

\begin{align*}
L_{0}(x) &= 1 \\
L_{1}(x) &= 1 -x \\
L_{2}(x) &= 1 -2x + \dfrac{1}{2}x^{2} \\
L_{3}(x) &= 1 -3x + \dfrac{3}{2}x^{2} -\dfrac{1}{6}x^{3} \\
\vdots
\end{align*}

En general, el $n$-ésimo polinomio de Laguerre será solución particular de la ecuación de Laguerre cuando $\lambda = n$.

Finalicemos esta entrada con la ecuación de Legendre.

Ecuación de Legendre

La ecuación de Legendre es

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0 \label{21} \tag{21}$$

Con $\lambda$ una constante.

Esta ecuación lleva este nombre en honor al matemático francés Adrien – Marie Legendre (1752 – 1833). Legendre hizo importantes contribuciones a la estadística, la teoría de números, el álgebra abstracta y el análisis matemático.

Resolvamos la ecuación, dividimos todo por el coeficiente de la segunda derivada de $y$.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{2x}{1 -x^{2}} \dfrac{dy}{dx} + \dfrac{\lambda(\lambda + 1)}{1 -x^{2}} y = 0 \label{22} \tag{22}$$

Identificamos que

$$P(x) = -\dfrac{2x}{1 -x^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda(\lambda + 1)}{1 -x^{2}}$$

Vemos que ambas funciones no están definidas en $x = 1$ ni $x = -1$, pero si en en el punto $x_{0} = 0$, de manera que dicho punto es un punto ordinario, entonces la forma de la solución de la ecuación de Legendre es

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

Con primera y segunda derivada dadas como

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituyamos en la ecuación de Legendre.

$$(1 -x^{2}) \left[ \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n-2} \right] -2x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda(\lambda + 1) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

Expandiendo y simplificando, se tiene

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -\sum_{n = 2}^{\infty }n(n -1)c_{n}x^{n} -2\sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda(\lambda + 1) \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos $k = n -2$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty }k(k -1)c_{k}x^{k} -2\sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda(\lambda + 1) \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos los términos para $k = 0$ y $k = 1$ y con ello lograr que todas las series comiencen en $k = 2$.

Por un lado, para $k = 0$,

$$2c_{2} + \lambda(\lambda + 1) c_{0} = 0$$

De donde

$$c_{2} = -\dfrac{\lambda(\lambda + 1)}{2}c_{0}$$

Por otro lado, para $k = 1$,

\begin{align*}
3(2)c_{3}x -2c_{1}x + \lambda(\lambda + 1) c_{1}x &= 0 \\
\left[6c_{3} -2c_{1} + \lambda(\lambda + 1) c_{1} \right]x &= 0 \\
6c_{3} -2c_{1} + \lambda(\lambda + 1) c_{1} &= 0
\end{align*}

De donde

$$c_{3} = \dfrac{2 -\lambda(\lambda + 1)}{6}c_{1}$$

Veremos más adelante que es conveniente escribir este resultado como

$$c_{3} = -\dfrac{(\lambda -1)(\lambda + 2)}{6}c_{1}$$

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty }k(k -1)c_{k}x^{k} -2\sum_{k = 2}^{\infty}kc_{k}x^{k} + \lambda(\lambda + 1) \sum_{k = 2}^{\infty}c_{k}x^{k} = 0 \label{23} \tag{23}$$

Juntemos todo en una sola serie.

$$\sum_{k = 2}^{\infty} \left[ (k + 2)(k + 1)c_{k + 2} -k(k -1)c_{k} -2kc_{k} + \lambda(\lambda + 1)c_{k} \right] x^{k} = 0$$

De donde es necesario que

$$(k + 2)(k + 1)c_{k + 2} -\left[ k(k -1) + 2k -\lambda(\lambda + 1)\right]c_{k} = 0 \label{24} \tag{24}$$

Despejando a $c_{k + 2}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{k(k -1) + 2k -\lambda(\lambda + 1)}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, \cdots \label{25} \tag{25}$$

Es conveniente reescribir a la ecuación de recurrencia de la siguiente manera.

$$c_{k + 2} = -\dfrac{(\lambda -k)(\lambda + k + 1)}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, \cdots \label{26} \tag{26}$$

Determinemos los coeficientes. Ya vimos que para $k = 0$,

$$c_{2} = -\dfrac{\lambda(\lambda + 1)}{2!}c_{0}$$

y para $k = 1$,

$$c_{3} = -\dfrac{(\lambda -1)(\lambda + 2)}{3!}c_{1}$$

$k = 2$.

$$c_{4} = -\dfrac{(\lambda -2)(\lambda + 3)}{(4)(3)}c_{2} = \dfrac{(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)}{4!}c_{0}$$

$k = 3$.

$$c_{5} = -\dfrac{(\lambda -3)(\lambda + 4)}{(5)(4)}c_{3} = \dfrac{(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)}{5!}c_{1}$$

$k = 4$.

$$c_{6} = -\dfrac{(\lambda -4)(\lambda + 5)}{(6)(5)}c_{4} = -\dfrac{(\lambda -4)(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)(\lambda + 5)}{6!}c_{0}$$

$k = 5$.

$$c_{7} = -\dfrac{(\lambda -5)(\lambda + 6)}{(7)(6)}c_{5} = -\dfrac{(\lambda -5)(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)(\lambda + 6)}{7!}c_{1}$$

Etcétera, si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces podemos escribir a la solución general de la ecuación de Legendre como

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{27} \tag{27}$$

Donde,

\begin{align*}
y_{1}(x) &= 1 -\dfrac{\lambda(\lambda + 1)}{2!}x^{2} + \dfrac{(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)}{4!}x^{4} \\
&-\dfrac{(\lambda -4)(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)(\lambda + 5)}{6!}x^{6} + \cdots \label{28} \tag{28}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x -\dfrac{(\lambda -1)(\lambda + 2)}{3!}x^{3} + \dfrac{(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)}{5!}x^{5} \\
&-\dfrac{(\lambda -5)(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)(\lambda + 6)}{7!}x^{7} + \cdots \label{29} \tag{29}
\end{align*}

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $C_{1}$ y de $C_{2}$ se obtienen los conocidos polinomios de Legendre:

\begin{align*}
P_{0}(x) &= 1 \\
P_{1}(x) &= x \\
P_{2}(x) &= \dfrac{1}{2}(3x^{2} -1) \\
P_{3}(x) &= \dfrac{1}{2}(5x^{3} -3x) \\
P_{4}(x) &= \dfrac{1}{8}(35x^{4} -30x^{2} + 3) \\
P_{5}(x) &= \dfrac{1}{8}(63x^{5} -70x^{3} + 15x) \\
\vdots
\end{align*}

En general, el $n$-ésimo polinomio de Legendre será solución particular de la ecuación de Legendre cuando $\lambda = n$.

La ecuación de Legendre aparece con mucha frecuencia en problemas de Física, en particular en electromagnetismo en problemas de valor límite en esferas.

Los polinomios de Legendre aparecen cuando se resuelve la ecuación de Helmholtz (un tipo de ecuación en derivadas parciales) en coordenadas esféricas mediante el método de separación de variables.

Hasta aquí concluimos esta primer entrada sobre la resolución de algunas ecuaciones diferenciales especiales de segundo orden, en la siguiente entrada continuaremos resolviendo el resto de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Los primeros 6 polinomios de Hermite son solución de la ecuación de Hermite para $\lambda = 0, 2, 4, 6, 8, 10$ respectivamente. Determinar el valor de las constantes $C_{1}$ y $C_{2}$, tal que se obtengan los primeros 6 polinomios de Hermite.
  1. Resolver la siguiente ecuación de Hermite realizando todo el procedimiento del método.
  • $\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + 4y = 0$
  1. Los primeros 4 polinomios de Laguerre son solución de la ecuación de Laguerre para $\lambda = 0, 1, 2, 3$ respectivamente. Determinar el valor del coeficiente $c_{0}$, tal que se obtengan los primeros 4 polinomios de Laguerre.
  1. Resolver la siguiente ecuación de Laguerre realizando todo el procedimiento del método.
  • $x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + 4y = 0$
  1. Los primeros 6 polinomios de Legendre son solución de la ecuación de Legendre para $\lambda = 0, 1, 2, 3, 4, 5$ respectivamente. Determinar el valor correspondiente de $C_{1}$ y $C_{2}$, tal que se obtengan los primeros 6 polinomios de Legendre.
  1. Los puntos $x_{0} = 1$ y $x_{0} =- 1$ son puntos singulares de la ecuación de Legendre. Usando el método de Frobenius determinar la solución de la ecuación de Legendre con respecto al punto singular $x_{0} = 1$.
    Hint: Usar el cambio de variable $t = x -x_{0}$ y la regla de la cadena.

Más adelante…

Hemos resuelto 3 de las 7 ecuaciones diferenciales especiales que deseamos resolver, en la siguiente entrada concluiremos con el resto de ecuaciones y así mismo estaremos concluyendo con la unidad 2 del curso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»