Introducción
Anteriormente definimos qué quiere decir evaluar un polinomio en una matriz o en una transformación lineal. En esta entrada definiremos uno de los objetos más importantes del álgebra lineal: el polinomio mínimo. Si bien al principio nos va a costar un poco calcularlo, esto se compensa por la cantidad de propiedades teóricas que cumple. Comenzaremos dando su definición, y mostrando su existencia y unicidad. Luego exploraremos algunas propiedades y veremos ejemplos, seguido de un pequeño teorema de cambio de campos. Finalmente introduciremos un objeto similar (el polinomio mínimo puntual) y haremos unos ejercicios para cerrar.
El concepto de polinomio mínimo podría resultarle familiar a los más algebraicos de mente: ¡todo se debe a que trabajamos con dominios de ideales principales, o incluso euclidianos! Si has trabajado anteriormente con conceptos como el mínimo común múltiplo en enteros, puede que varios de los argumentos de esta entrada te suenen conocidos.
Existencia y unicidad
Comenzamos con un espacio vectorial $V$ de dimensión $n$ sobre un campo $F$. Fijando una transformación lineal $T:V\to V$, queremos entender para qué polinomios se cumple que $P(T)=0$. Nota como podríamos haber cambiado la pregunta: si fijamos un polinomio $P$, podríamos buscar todas las transformaciones $T$ tales que $P(T)=0$. Ésta pregunta la estudiaremos más adelante.
Definimos el conjunto
\begin{align*}
I(T)=\lbrace P\in F[X]\mid P(T)=0\rbrace.
\end{align*}
El polinomio cero pertenece a $I(T)$ de manera trivial. Una cosa importante es que este conjunto $I(T)$ que vamos a estudiar en verdad es «interesante», en el sentido de que debemos ver que hay más polinomios adentro y no es únicamente el conjunto $\lbrace 0\rbrace$. Una manera de ver esto es sabiendo que el espacio de transformaciones lineales de $V$ en $V$ tiene dimensión $n^2$ (lo puedes pensar como el espacio de matrices). Entonces, las $n^2+1$ transformaciones $\operatorname{Id}, T, T^2, \dots, T^{n^2}$ no pueden ser todas linealmente independientes: uno de los corolarios del lema de Steinitz es que en un espacio de dimensión $n$ a lo más se pueden tener $n$ vectores linealmente independientes. Entonces existe una combinación lineal no trivial y nula
\begin{align*}
a_0 \operatorname{Id}+a_1 T+\dots + a_{n^2} T^{n^2}=0.
\end{align*}
Luego $a_0+a_1X+\dots+a_{n^2}X^{n^2}$ es un polinomio no cero tal que $P(T)=0$, es decir $P\in I(T)$.
Con el argumento de arriba vimos que $I(T)$ es «interesante» en el sentido de que tiene polinomios no cero. El siguiente teorema se puede entender como que $I(T)$ se puede describir muy fácilmente.
Teorema. Existe un único polinomio mónico, distinto de cero $\mu_T$ tal que $I(T)$ es precisamente el conjunto de múltiplos de $\mu_T$. Es decir
\begin{align*}
I(T)=\mu_T \cdot F[X]=\lbrace \mu_T \cdot P(X)\mid P(X)\in F[X]\rbrace.
\end{align*}
La demostración hará uso del algoritmo de la división para polinomios. Te lo compartimos aquí, sin demostración, por si no lo conoces o no lo recuerdas.
Teorema (algoritmo de la división en $\mathbb{F}[x]$). Sean $M(x)$ y $N(x)$ polinomios en $F[x]$, donde $N(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $Q(x)$ y $R(x)$ en $F[x]$ tales que $$M(x)=Q(x)N(x)+R(x),$$ en donde $R(x)$ es el polinomio cero, o $\deg(R(x))<\deg(G(x))$.
Si te interesa saber cómo se demuestra, puedes seguir la teoría de polinomios disponible en la Unidad 4 del curso de Álgebra Superior II.
Demostración. Veamos primero que $I(T)$ es un subespacio de $F[X]$. Para ello, tomemos polinomios $P(x)$, $Q(x)$ en $I(T)$, y un escalar $\alpha\in F$. Una de las proposiciones de la entrada pasada nos permite abrir la expresión $(P+\alpha Q)(T)$ como $P(T)+\alpha Q(T)=0+\alpha\cdot 0 = 0$, de modo que $P+\alpha Q$ está en $I(T)$ y por lo tanto $I(T)$ es un subespacio de $F[X]$.
Por otro lado si $P\in I(T)$ y $Q\in F[X]$ entonces
\begin{align*}
(PQ)(T)= P(T)\circ Q(T)=0\circ Q(T)=0.
\end{align*}
Lo que discutimos antes de enunciar el teorema nos dice que $I(T)\neq\{0\}$. Tomemos entonces $P\in I(T)$ un polinomio no cero de grado mínimo. Podemos suponer sin perdida de generalidad que $P$ es mónico, de no serlo, podemos dividir a $P$ por su coeficiente principal sin cambiar el grado.
La ecuación previa nos indica que todos los múltiplos polinomiales de $P$ también están en $I(T)$. Veamos que todo elemento de $I(T)$ es de hecho un múltiplo de $P$. Si $S\in I(T)$, usamos el algoritmo de la división polinomial para escribir $S=QP+R$ con $Q,R\in F[X]$. Aquí hay dos casos: que $R$ sea el polinomio cero, o bien que no lo sea y entonces $\deg R <\deg P$. Nota que $R=S-QP\in I(T)$ dado que $I(T)$ es un subespacio de $F[X]$ y $S,QP\in I(T)$. Si $R\neq 0$, entonces como $\deg R<\deg P$ llegamos a una contradicción de la minimalidad del grado de $P$. Luego $R=0$ y por tanto $S=QP$. Entonces $I(T)$ es precisamente el conjunto de todos los múltiplos de $P$ y así podemos tomar $\mu_T=P$.
Para verificar la unicidad de $\mu_T$, si otro polinomio $S$ tuviera las mismas propiedades, entonces $S$ dividiría a $\mu_T$ y $\mu_T$ dividiría a $S$. Sin embargo, como ambos son mónicos se sigue que deben ser iguales: en efecto, si $\mu_T=S\cdot Q$ y $S=\mu_T \cdot R$ entonces $\deg Q=\deg R=0$, porlo tanto son constantes, y como el coeficiente principal de ambos es $1$, se sigue que ambos son la constante $1$ y así $\mu_T=S$. Esto completa la demostración.
$\square$
Definición. Al polinomio $\mu_T$ se le conoce como el polinomio mínimo de $T$.
Primeras propiedades y ejemplos
Debido a su importancia, recalcamos las propiedades esenciales del polinomio mínimo $\mu_T$:
- Es mónico.
- Cumple $\mu_T(T)=0$.
- Para cualquier otro polinomio $P\in F[X]$, sucede que $P(T)=0$ si y sólo si $\mu_T$ divide a $P$.
Toda la teoría que hemos trabajado hasta ahora se traduce directamente a matrices usando exactamente los mismos argumentos. Lo enunciamos de todas maneras: si $A\in M_n(F)$ es una matriz cuadrada, entonces existe un único polinomio $\mu_A\in F[X]$ con las siguientes propiedades:
- Es mónico.
- Cumple $\mu_A(A)=O_n$.
- Si $P\in F[X]$, entonces $P(A)=O_n$ si y sólo si $\mu_A$ divide a $P$.
Como jerga, a veces diremos que un polinomio «anula $T$» si $P(T)=0$. En este sentido los polinomios que anulan a $T$ son precisamente los múltiplos de $\mu_T$.
Vimos antes de enunciar el teorema que podemos encontrar un polinomio $P$ no cero de grado menor o igual a $n^2$ tal que $P(T)=0$. Como $\mu_T$ divide a $P$ se sigue que $\deg \mu_T\leq n^2$. Esta cota resulta ser débil, y de hecho un objeto que hemos estudiado previamente nos ayudará a mejorarla: el polinomio característico. Este también va a anular a $T$ y con ello obtendremos una mejor cota: $\deg \mu_T\leq n$.
Ejemplo 1. Si $A=O_n$, entonces $\mu_A=X$. En efecto, $\mu_A(A)=0$ y además es el polinomio de menor grado que cumple esto, pues ningún polinomio constante y no cero anula a $O_n$ (¿por qué?). Nota como además $I(A)$ es precisamente el conjunto de polinomios sin término constante.
$\triangle$
Ejemplo 2. Considera la matriz $A\in M_2(\mathbb{R})$ dada por
\begin{align*}
A= \begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}
Nos proponemos calcular $\mu_A$. Nota que $A$ satisface $A^2=-I_2$. Por tanto el polinomio $P(X)=X^2+1$ cumple $P(A)=0$. Así, $\mu_A$ tiene que dividir a este polinomio ¡pero este es irreducible sobre los números reales! En efecto, si existiese un factor propio de $P$ sobre $\mathbb{R}$, tendríamos que la ecuación $X^2=-1$ tiene solución, y sabemos que este no es el caso. Entonces $\mu_A$ tiene que ser $X^2+1$.
$\triangle$
Ejemplo 3. Sean $d_1,\dots, d_n\in F$ escalares y $A$ una matriz diagonal tal que $[a_{ii}]=d_i$. Los elementos pueden no ser distintos entre sí, así que escogemos una colección máxima $d_{i_1},\dots, d_{i_k}$ de elementos distintos. Para cualquier polinomio $P$, tenemos que $P(A)$ es simplemente la matriz diagonal con entradas $P(d_i)$ (esto porque el producto $A^n$ tiene como entradas a $d_i^n$). Entonces para que $P(A)=0$ se tiene que cumplir que $P(d_i)=0$, y para que esto pase es suficiente que $P(d_{i_k})=0$. Eso quiere decir que $P$ tiene al menos a los $d_{i_k}$ como raíces, y entonces $(X-d_{i_1})(X-d_{i_2})\cdots (X-d_{i_k})$ divide a $P$.
Nota como esto es suficiente: encontramos un polinomio mónico, $(X-d_{i_1})(X-d_{i_2})\cdots (X-d_{i_k})$ que divide a cualquier $P$ tal que $P(A)=0$. Así
\begin{align*}
\mu_A(X)=(X-d_{i_1})\cdots (X-d_{i_k}).
\end{align*}
$\triangle$
Cambio de campos
En uno de los ejemplos argumentamos que el polinomio mínimo era $X^2+1$ porque este es irreducible sobre $\mathbb{R}$. Pero, ¿qué pasaría si cambiáramos nuestro campo a $\mathbb{C}$? La situación puede ser incluso más delicada: a una matriz con entradas racionales la podemos considerar como una instancia particular de una matriz con entradas reales, que a su vez podemos considerar como una matriz compleja. ¿Hay tres polinomios mínimos distintos? El siguiente teorema nos da una respuesta tranquilizante.
Teorema. Sean $F_1\subset F_2$ dos campos y $A\in M_n(F_1)$ una matriz, entonces el polinomio mínimo de $A$ vista como elemento de $M_n(F_1)$ y el polinomio mínimo de $A$ vista como elemento de $M_n(F_2)$ son iguales.
Demostración. Sea $\mu_1$ el polinomio de $A\in M_n(F_1)$ y $\mu_2$ el polinomio mínimo de $A\in M_n(F_2)$. Puesto que $F_1[X]\subset F_2[X]$, se tiene que $\mu_1\in F_2[X]$ y además $\mu_1(A)=0$ por definición. Luego $\mu_2$ necesariamente divide a $\mu_1$. Sean $d_1=\deg \mu_1$ y $d_2=\deg \mu_2$, basta verificar que $d_2\geq d_1$ y para que esto se cumpla basta con encontrar $P\in F_1[X]$ de grado a lo más $d_2$ tal que $P(A)=0$ (entonces $\mu_1$ dividiría a este polinomio y se sigue la desigualdad).
Desarrollando que $\mu_2(A)=0$ en todas sus letras (o mejor dicho, en todos sus coeficientes) se tiene
\begin{align*}
a_0 I_n+ a_1 A+\dots + a_{d_2} A^{d_2}=O_n.
\end{align*}
Esto es equivalente a tener $n^2$ ecuaciones homogéneas en las variables $a_0,\dots, a_{d_2}$. Como $A$ tiene entradas en $F_1$ los coeficientes de estas ecuaciones todos pertenecen a $F_1$. Tenemos un sistema de ecuaciones con coeficientes en $F_1$ que tiene una solución no trivial en $F_2$: tiene automáticamente una solución no trivial en $F_1$ por un ejercicio de la entrada de Álgebra Lineal I de resolver sistemas de ecuaciones usando determinantes. Esto nos da el polinomio buscado.
$\square$
Mínimos puntuales
Ahora hablaremos (principalmente a través de problemas resueltos) de otro objeto muy parecido al polinomio mínimo: el polinomio mínimo puntual. Este es, esencialmente un «polinomio mínimo en un punto». Más específicamente si $T:V\to V$ es lineal con polinomio mínimo $\mu_T$ y $x\in V$ definimos
\begin{align*}
I_x=\lbrace P\in F[X]\mid P(T)(x)=0\rbrace.
\end{align*}
Nota que la suma y diferencia de dos elementos en $I_x$ también está en $I_x$.
Problema 1. Demuestra que existe un único polinomio mónico $\mu_x\in F[X]$ tal que $I_x$ es el conjunto de múltiplos de $\mu_x$ en $F[X]$. Más aún, demuestra que $\mu_x$ divide a $\mu_T$.
Solución. El caso $x=0$ se queda como ejercicio. Asumamos entonces que $x\neq 0$. Nota que $\mu_T\in I_x$ puesto que $\mu_T(T)=0$. Sea $\mu_x$ el polinomio mónico de menor grado en $I_x$. Demostraremos que $I_x=\mu_x\cdot F[X]$.
Primero si $P\in \mu_x \cdot F[X]$ entonces por definición $P=\mu_x Q$ para algún $Q\in F[X]$ y entonces
\begin{align*}
P(T)(x)=Q(T)(\mu_x(T)(x))=Q(T)(0)=0.
\end{align*}
Así $P\in I_x$, y queda demostrado que $\mu_x \cdot F[X]\subset I_x$.
Conversamente, si $P\in I_x$ podemos usar el algoritmo de la división para llegar a una expresión de la forma $P=Q\mu_x+R$ para algunos polinomios $Q,R$ con $\deg R<\deg \mu_x$. Supongamos que $R\neq 0$. Similarmente a como procedimos antes, se cumple que $R= P-Q\mu_x\in I_x$ dado que $I_x$ es cerrado bajo sumas y diferencias. Dividiendo por el coeficiente principal de $R$, podemos asumir que $R$ es mónico. Entonces $R$ es un polinomio mónico de grado estrictamente menor que el grado de $\mu_x$, una contradicción a nuestra suposición: $\mu_x$ es el polinomio de grado menor con esta propiedad. Luego $R=0$ y $\mu_x$ divide a $P$.
Así queda probado que si $P\in I_x$ entonces $P\in \mu_x\cdot F[X]$, lo que concluye la primera parte del problema. Para la segunda, vimos que $\mu_T\in I_x$ y por tanto $\mu_x$ divide a $\mu_T$.
$\square$
Problema 2. Sea $V_x$ el subespacio generado por $x, T(x), T^2(x), \dots$. Demuestra que $V_x$ es un subespacio de $V$ de dimensión $\deg \mu_x$, estable bajo $T$.
Solución. Es claro que $V_x$ es un subespacio de $V$. Además, dado que $T$ manda a generadores en generadores, también es estable bajo $T$. Sea $d=\deg\mu_x$. Demostraremos que $x, T(x),\dots, T^{d-1}(x)$ forman una base de $V_x$, lo que concluiría el ejercicio.
Veamos que son linealmente independientes. Si $$a_0x+a_1T(x)+a_2T^2(x)+\dots+a_{d-1}T^{d-1}(x)=0$$ para algunos escalares $a_i$ no todos cero, entonces el polinomio
\begin{align*}
P=a_0+a_1X+\dots+a_{d-1}X^{d-1}
\end{align*}
es un elemento de $I_x$, pues $P(T)(x)=0$. Luego $\mu_x$ necesariamente divide a $P$, pero esto es imposible puesto que el grado de $P$ es $d-1$, estrictamente menor que el grado de $\mu_x$. Luego los $a_i$ deben ser todos nulos, lo que muestra que $x,T(x),T^2(x),\dots,T^{d-1}(x)$ es una colección linealmente independiente.
Sea $W$ el espacio generado por $x,T(x),\dots, T^{d-1}(x)$. Afirmamos que $W$ es invariante bajo $T$. Es claro que $T(x)\in W$, similarmente $T(T(x))=T^2(x)\in W$ y así sucesivamente. El único elemento «sospechoso» es $T^{d-1}(x)$, para el cual basta verificar que $T(T^{d-1}(x))=T^d(x)\in W$. Dado que $\mu_x(T)(x)=0$ y $\mu_x$ es mónico de grado $d$, existen escalares $b_i$ (más precisamente, los coeficientes de $\mu_x$) no todos cero tales que
\begin{align*}
T^{d}(x)+b_{d-1}T^{d-1}(x)+\dots+b_0 x=0.
\end{align*}
Esto nos muestra que podemos expresar a $T^d(x)$ en términos de $x, T(x),\dots, T^{d-1}(x)$ y por tanto $T^d(x)$ pertenece a $W$.
Ahora, dado que $W$ es estable bajo $T$ y contiene a $x$, se cumple que $T^{k}(x)\in W$ para todo $k\geq 0$. En particular $V_x\leq W$. Luego $V_x=W$ (la otra contención es clara) y $x,T(x),\dots, T^{d-1}(x)$ genera a $W$, o sea a $V_x$.
Mostramos entonces que $x,T(x),\dots, T^{d-1}(x)$ es una base para $V_x$ y así $\dim V_x=d$.
$\square$
Unos ejercicios para terminar
Presentamos unos últimos ejercicios para calcular polinomios mínimos.
Problema 1. Calcula el polinomio mínimo de $A$ donde
\begin{align*}
A= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}.
\end{align*}
Solución. A estas alturas no tenemos muchas herramientas que usar. Comenzamos con calcular $A^2$:
\begin{align*}
A^2= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}= \begin{pmatrix} 1 & 0 & 0\\ 0 &1 & 0 \\ 0 & 0 & 1\end{pmatrix}.
\end{align*}
Entonces en particular $A^2=I_3$. Así, el polinomio mínimo $\mu_A$ tiene que dividir a $X^2-1$. Este último se factoriza como $(X-1)(X+1)$, pero es claro que $A$ no satisface ni $A-I_3=0$ ni $A+I_3=0$. Entonces $\mu_A$ no puede dividir propiamente a $X^2-1$, y por tanto tienen que ser iguales.
$\triangle$
Problema 2. Calcula el polinomio mínimo de la matriz $A$ con
\begin{align*}
A=\begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix}.
\end{align*}
Solución. Nota como
\begin{align*}
A-I_2=\begin{pmatrix} 0 & 2\\ 0 & 0\end{pmatrix}
\end{align*}
y es fácil verificar que el cuadrado de la matriz de la derecha es cero. Así $(A-I_2)^2=0$, o sea, el polinomio $P(X)=(X-1)^2$ anula a $A$. Similarmente al problema anterior, $\mu_A$ tiene que dividir a $P$, pero $P$ sólo tiene un factor: $X-1$. Dado que $A$ no satisface $A-I_2=0$ se tiene que $\mu_A$ no puede dividir propiamente a $P$, y entonces tienen que ser iguales. Luego $\mu_A=(X-1)^2=X^2-2X+1$.
$\triangle$
Más adelante…
En las entradas subsecuentes repasaremos los eigenvalores y eigenvectores de una matriz, y (como mencionamos) ligaremos el polinomio característico de una matriz con su polinomio mínimo para entender mejor a ambos.
Tarea moral
Aquí unos ejercicios para practicar lo que vimos.
- Encuentra una matriz $A$ cuyo polinomio mínimo sea $X^2$. Para cada $n$, ¿puedes encontrar una matriz cuyo polinomio mínimo sea $X^n$?
- Encuentra una matriz $A$ cuyo polinomio mínimo sea $X^2-1$. Para cada $n$, ¿puedes encontrar una matriz cuyo polinomio mínimo sea $X^n-1$?
- Encuentra el polinomio de la matriz $A$ en $M_n(F)$ cuyas entradas son todas $1$.
- Si $T:M_n(\mathbb{R})\to M_n(\mathbb{R})$ es la transformación que manda a cada matriz en su transpuesta, encuentra el polinomio mínimo de $T$.
- Sea $V$ un espacio vectorial y $x,y$ vectores linealmente independientes. Sea $T:V\to V$ una transformación lineal. ¿Cómo son los polinomios $P$ tales que $P(T)$ se anula en todo el subespacio generado por $x$ y $y$? ¿Cómo se relacionan con los polinomios mínimos puntuales de $T$ para $x$ y $y$?
Entradas relacionadas
- Ir a Álgebra Lineal II
- Entrada anterior del curso: Aplicar polinomios a transformaciones lineales y matrices
- Siguiente entrada del curso: Eigenvectores y eigenvalores
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»
Buenas tardes, en la demostración de la existencia del polinomio mínimo dice «Lo que discutimos antes de enunciar el teorema nos dice que I(T)\neq\{0\}. Escogemos entonces P\in I(T) un polinomio no cero de grado mínimo».
Podrían por favor decir explicitamente porque podemos tomar (como garantizar su existencia) ese polinomio, tengo una idea de como argumentarlo pero no se si esta bien ya que en mi argumento creo que se debe uasr Aximona de Elección.
A lo mejor me estoy volando mucho.
Hola Alonso. Si quieres decirlo de manera muy muy formal, lo que se está usando de fondo es el principio del buen orden. Ya se mostró que el conjunto de polinomios no cero es no vacío. Ahora considera A el conjunto de naturales que sean grado de alguno de estos polinomios. Como A no es vacío, por el principio de buen orden tiene un mínimo. Es decir, hay un polinomio de grado mínimo de los que nos interesan.
Buenas tardes, en uno de los ejemplos dice «Sean d_1,\dots, d_n\in F escalares y A una matriz diagonal tal que [a_{ii}]=d_i. Los elementos pueden no ser distintos entre sí, así que escogemos una colección máxima d_{i_1},\dots, d_{i_k} de elementos distintos», podrían por favor explicitamente argumentar por qué se puede escoger esa colección máxima de elementos disjuntos?
Saludos.
Básicamente, aquí los vas tomando uno por uno. Tomas d_1. Luego, si d_2 es igual, lo ignoras. Si no, lo tomas. Y así sucesivamente. Al llegar a d_k, si ya aparecía antes, lo ignoras. Si no, lo tomas. Esto te hará tomar uno de cada uno de los elementos distintos que hay.
Buenas tardes, en el teorema de cambio de campos dice «Tenemos un sistema de ecuaciones con coeficientes en F_1 que tiene una solución no trivial en F_2: tiene automáticamente una solución no trivial en F_1 por un ejercicio de la entrada anterior», podrían por favor decir a que ejercicio se refieren?
La verdad es que busque en los ejercicios y no se me ocurre como probarlo a partir de alguno de los ejercicios de la entrada anterior.
Saludos.
Hola Alonso. Ya cambiamos la redacción de esa parte, pues en realidad no es un ejercicio de la entrada exactamente anterior, sino más bien es consecuencia de la teoría de sistemas de ecuaciones que se estudia en Álgebra Lineal I.
Hola.
Estaba revisando los ejercicios y no me queda muy clara la parte de la argumentación para demostrar que el polinomio propuesto y $\mu_{t}$ son el mismo. Se descompone como factores lineales pero no me queda claro por qué después se evalúa en A. ¿Podría argumentarse un poquito más esa parte? Muchas gracias.
Hola. Se evalúa en A porque por definición de polinomio mínimo, lo que hace el polinomio mínimo es que tiene que anular a A, y ser el de grado menor que haga eso. Entonces se propone el polinomio y se ve que al evaluar se anula, y luego para ver que realmente es el mínimo, se factoriza y se ve que ninguno de los otros polinomios funciona. Basta con ver que los factores no funcionan, pues el polinomio mínimo divide a cualquier polinomio que anule a A.
Hola. Otra duda, en la tarea moral no se especifica sobre qué campo o de qué tamaño tienen que ser las matrices. ¿Tiene que resolverse en general?
Hola. Sí, cuando no se dice, tendría que ser en general.
Hola, hay un pequeño error de compilación en la demostración del primer Teorema de esta entrada.