Álgebra Lineal II: Polinomio característico

Por Julio Sampietro

Introducción

En el transcurso de esta unidad hemos construido varios de los objetos algebraicos que nos interesan. En primer lugar, dejamos claro qué quería decir evaluar un polinomio en una matriz o transformación lineal. Esto nos llevó a preguntarnos por aquellos polinomios que anulan a una matriz o transformación lineal. De manera natural, descubrimos que aquellos polinomios que anulan son múltiplos de un polinomio especial asociado a la matriz o transformación lineal llamado polinomio mínimo.

De manera un poco separada, comenzamos a estudiar los eigenvalores, eigenvectores y eigenespacios de una transformación lineal y en la entrada anterior nos enfocamos en varias de sus propiedades principales. Uno de los resultados clave que encontramos es que los eigenvalores de una matriz o transformación lineal son las raíces del polinomio mínimo que estén en el campo en el que estemos trabajando.

Aunque este resultado sea interesante de manera teórica, en la práctica debemos hacer algo diferente pues no es tan sencillo encontrar el polinomio mínimo de una matriz o transformación lineal. Es por esto que ahora estudiaremos con profundidad otro objeto que resultará fundamental en nuestro estudio: el polinomio característico. Ya nos encontramos con él anteriormente. Si $A$ es una matriz en $M_n(F)$, dicho polinomio en la variable $\lambda$ es el determinante $\det(\lambda I_n-A)$.

Esta entrada es más bien una introducción, así que nos enfocaremos en probar las cosas más básicas de este objeto. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.

Definición de polinomio característico

Comencemos con una matriz $A\in M_n(F)$. Vimos que encontrar los eigenvalores de $A$ se reduce a encontrar las soluciones de la ecuación

\begin{align*}
\det(\lambda I_n-A)=0
\end{align*}

en $F$. Vamos a estudiar más a detalle la expresión de la izquierda.

El siguiente teorema va un poco más allá y de hecho estudia expresiones un poco más generales.

Teorema. Sean $A,B\in M_n(F)$ dos matrices. Existe un polinomio $P\in F[X]$ tal que para todo $x\in F$ se cumple

\begin{align*}
P(x)=\det(xA+B).
\end{align*}

Si denotamos a este polinomio por $P(X)=\det(XA+B)$, entonces

\begin{align*}
\det(XA+B)=\det(A)X^{n}+\alpha_{n-1}X^{n-1}+\dots+\alpha_1 X+\det B
\end{align*}

para algunas expresiones polinomiales $\alpha_1,\dots, \alpha_{n-1}$ con coeficientes enteros en las entradas de $A$ y $B$.

Demostración. Consideremos el siguiente polinomio en la variable $X$ y coeficientes en $F$, es decir, el siguiente polinomio en $F[X]$:

\begin{align*}
P(X)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(a_{1\sigma(1)} X+b_{1\sigma(1)}\right)\cdots \left(a_{n\sigma(n)}X+b_{n\sigma(n)}\right).
\end{align*}

Por construcción, $P$ es un polinomio cuyos coeficientes son expresiones polinomiales enteras en las entradas de $A$ y $B$. Más aún, se cumple que $P(x)=\det(xA+B)$ para $x\in F$ (podría ser útil revisar la entrada sobre determinantes para convencerte de ello). El término constante lo obtenemos al evaluar en $X=0$, pero eso no es más que $P(0)=\det(0\cdot A+B)=\det(B)$. Finalmente para cada $\sigma\in S_n$ tenemos que el primer término de cada sumando es

\begin{align*}
\operatorname{sign}(\sigma)(a_{1\sigma(1)}X+b_{1\sigma(1)})\cdots (a_{n\sigma(n)} X+b_{n\sigma(n)})
\end{align*}

Notemos que la única manera de obtener un término $X^n$ en esta expresión es cuando en cada binomio que se está multiplicando se usa el término $X$. Así, el coeficiente de $X^n$ es $\operatorname{sign}(\sigma) a_{1\sigma(1)}\cdots a_{n\sigma(n)}X^{n}$.

Agrupando todos los sumandos para todas las $\sigma$ y comparando con la definición del determinante llegamos a que $$P(X)=\det(A)X^{n}+\ldots,$$ es decir el término de orden $n$ es en efecto $\det(A)$.

$\square$

Del teorema se sigue que si $A$ y $B$ tienen entradas enteras o racionales, $\det(XA+B)$ tiene coeficientes enteros o racionales respectivamente.

Enseguida podemos definir (gracias al teorema) el siguiente objeto:

Definición. El polinomio característico de la matriz $A\in M_n(F)$ es el polinomio $\chi_A\in F[X]$ definido por

\begin{align*}
\chi_A(X)=\det(X\cdot I_n-A).
\end{align*}

Una observación inmediata es que, de acuerdo al teorema, el coeficiente principal de $\chi_A(X)$ tiene coeficiente $\det(I_n)=1$. En otras palabras, acabamos de demostrar la siguiente propiedad fundamental del polinomio característico.

Proposición. El polinomio característico de una matriz en $M_n(F)$ siempre tiene grado exactamente $n$ y además es un polinomio mónico, es decir, que el coeficiente que acompaña al término de grado $n$ es igual a $1$.

Veamos un ejemplo sencillo.

Ejemplo. Si queremos calcular el polinomio característico de

\begin{align*}
A=\begin{pmatrix} 1 & -1\\ 1 &0\end{pmatrix}\in M_2(\mathbb{R})
\end{align*}

entonces usamos la definición

\begin{align*}
\chi_A(X)&=\det(X\cdot I_2-A)\\&=\begin{vmatrix} X-1 & 1\\ -1 & X\end{vmatrix}\\&= X(X-1)+1.
\end{align*}

Y así los eigenvalores de $A$ son las raíces reales de $\chi_A(X)$. Es decir, tenemos que resolver

\begin{align*} 0=x(x-1)+1=x^2-x+1.\end{align*}

Sin embargo, el discriminante de esta ecuación cuadrática es $(-1)^2-4(1)(1)=-3$, el cual es un real negativo, por lo que no tenemos eigenvalores reales. Si estuviéramos trabajando en $\mathbb{C}$ tendríamos dos eigenvalores complejos:

\begin{align*}
x_{1,2}= \frac{1\pm i\sqrt{3}}{2}.
\end{align*}

De aquí, ¿cómo encontramos los eigenvectores y eigenespacios? Basta con resolver los sistemas lineales homogéneos de ecuaciones $(A-x_1I_2)X=0$ para encontrar el $x_1$-eigenespacio y $(A-x_2)X=0$ para encontrar el $x_2$-eigenespacio.

$\triangle$

Algunos cálculos de polinomios característicos

Ya que calcular polinomios característicos se reduce a calcular determinantes, te recomendamos fuertemente que recuerdes las propiedades que tienen los determinantes. Sobre todo, aquellas que permiten calcularlos.

¡A calcular polinomios característicos!

Problema 1. Encuentra el polinomio característico y los eigenvalores de $A$ dónde $A$ es

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0 & 0\\
2 & 0 & -1 & 0\\
0 & 7 & 0 &6\\
0 & 0 & 3 & 0
\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. Usamos la expansión de Laplace respecto al primer renglón:

\begin{align*}
\chi_A(X)&=\det(XI_4-A)\\&= \begin{vmatrix}
X & -1 & 0 & 0\\
-2 & X & 1 & 0\\
0 & -7 & X & -6\\
0 & 0 & -3 & X\end{vmatrix}\\
&= X\begin{vmatrix} X & 1 & 0\\ -7 & X & -6\\ 0 & -3 & X\end{vmatrix}+ \begin{vmatrix}
-2 & 1 & 0\\ 0 & X& -6\\ 0 &-3 & X\end{vmatrix}\\
&= X(X^3-11X)-2(X^2-18)\\
&= X^4-13X^2+36.
\end{align*}

Después, para encontrar los eigenvalores de $A$ tenemos que encontrar las raíces reales de la ecuación

\begin{align*}
x^4-13x^2+36=0.
\end{align*}

Sin embargo, no hay que desalentarse por ver una ecuación de grado $4$. Si hacemos el cambio $y=x^2$ podemos llevar nuestro problema a resolver

\begin{align*}
y^2-13y+36=0.
\end{align*}

¡Es una ecuación de segundo orden! Esta la podemos resolver usando ‘la chicharronera’ y obtenemos como soluciones $y_1=4$ y $y_2=9$. Pero todavía tenemos que resolver $x^2=y_1$ y $x^2=y_2$. Al resolver estas últimas dos ecuaciones obtenemos que $x=\pm 2,\pm 3$ son los eigenvalores de $A$.

$\triangle$

Problema 2. Calcula el polinomio característico y los eigenvalores de la matriz

\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 &1 \end{pmatrix}\in M_3(F_2).
\end{align*}

Solución. Nota que estamos trabajando en el campo de dos elementos $F_2$, por lo que $-1=1$. Usando la definición:

\begin{align*}
\chi_A(X)&=\det(XI_3-A)\\&= \begin{vmatrix} X-1 & 0 & -1\\ -1 & X-1 & 0\\ -1 & 0 &X-1\end{vmatrix}\\
&= \begin{vmatrix} X+1 & 0 & 1\\ 1 & X+1& 0 \\ 1 & 0 &X+1\end{vmatrix}.
\end{align*}

Aquí estamos usando repetidamente $-1=1$. Usamos otra vez la expansión de Laplace en el primer renglón para llegar a

\begin{align*}
\chi_A(X)&= (X+1)\begin{vmatrix} X+1 & 0 \\ 0 & X+1\end{vmatrix}+\begin{vmatrix} 1 & X+1\\ 1 & 0\end{vmatrix}\\
&= (X+1)^3-(X+1).
\end{align*}

Luego, si queremos encontrar los eigenvalores de $A$ tenemos que resolver

\begin{align*}
(x+1)^3-(x+1)=0.
\end{align*}

Si bien existen varias maneras de resolver la ecuación, podemos simplemente sustituir los únicos valores posibles de $x$ : $0$ o $1$. Sustituyendo es fácil ver que ambos satisfacen la ecuación, por lo que los eigenvalores de $A$ son $0$ y $1$.

$\triangle$

Más adelante…

En la próxima entrada calcularemos el polinomio característico de una variedad de matrices importantes: triangulares superiores, nilpotentes, etc. Esto nos permitirá entender mejor al polinomio característico y lidiar con muchos casos para facilitarnos los cálculos más adelante.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que $0$ es un eigenvalor de una matriz $A$ si y sólo si $\det(A)=0$.
  • ¿Una matriz compleja de tamaño $n$ tiene necesariamente $n$ eigenvalores distintos?
  • Calcular el polinomio característico y los eigenvalores de
    \begin{align*}A=\begin{pmatrix} 1 & 2 & 0\\ 0 & 1 &2\\ 2 & 0 & 1\end{pmatrix}\in M_3(F_3).
    \end{align*}
  • Usando la fórmula del determinante para matrices de tamaño $2$, encuentra un criterio simple para saber si una matriz con entradas reales de tamaño $2$ tiene dos, uno o ningún eigenvalor real.
  • Da un criterio simple para saber si una matriz de tamaño $2$ con entradas complejas tiene eigenvalores puramente imaginarios.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.