Teoría de los Conjuntos I: Propiedades del producto cartesiano (parte II)

Por Gabriela Hernández Aguilar

Introducción

En esta entrada veremos otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.

Producto cartesiano y unión

Las siguientes dos proposiciones verifican que el producto cartesiano se distribuye sobre la unión.

Proposición. Para $A,B,C$ conjuntos se cumple que $(A\cup B)\times C=(A\times C)\cup (B\times C)$.

Demostración.

Se tiene que $(x,y)\in (A\cup B)\times C$
si y sólo si $x\in A\cup B$ y $y\in C$
si y sólo si $(x\in A$ o $x\in B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ o $(x\in B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ o $(x,y)\in B\times C$
si y sólo si $(x, y)\in (A\times C)\cup (B\times C)$.

$\square$

Proposición. Para $A,B,C$ conjuntos se cumple que $A\times (B\cup C)=(A\times B)\cup (A\times C)$.

Demostración.

Se tiene que $(x,y)\in A\times (B\cup C)$
si y sólo si $x\in A$ y $y\in B\cup C$
si y sólo si $x\in A$ y $(y\in B$ o $y\in C)$
si y sólo si $(x\in A$ y $y\in B)$ o $(x\in A$ y $y\in C)$
si y sólo si $(x,y)\in A\times B$ o $(x,y)\in A\times C$
si y sólo si $(x, y)\in (A\times B)\cup (A\times C)$.

$\square$

Proposición. Para cualesquiera $A, B, C, D$ conjuntos no vacíos ocurre que $(A\times C)\cup (B\times D)\subseteq (A\cup B)\times (C\cup D)$.

Demostración.

Sean $A, B, C, D$ conjuntos no vacíos. Tomemos $(x,y)\in (A\times C)\cup (B\times D)$ arbitrario, entonces $(x,y)\in A\times C$ o $(x,y)\in B\times D$.

Si $(x, y)\in A\times C$, entonces $x\in A$ y $y\in C$. Luego, como $A\subseteq A\cup B$ y $C\subseteq C\cup D$ se sigue que $x\in A\cup B$ y $y\in C\cup D$. Así, $(x,y)\in (A\cup B)\times (C\cup D)$.

Si $(x, y)\in B\times D$, entonces $x\in B$ y $y\in D$. Luego, como $B\subseteq A\cup B$ y $D\subseteq C\cup D$ se sigue que $x\in A\cup B$ y $y\in C\cup D$. Así, $(x,y)\in (A\cup B)\times (C\cup D)$.

$\square$

Producto cartesiano e intersección

Con la siguientes dos demostraciones podremos ver que el producto cartesiano se distribuye sobre la intersección.

Proposición. Para $A,B,C$ conjuntos se cumple que $(A\cap B)\times C=(A\times C)\cap (B\times C)$.

Demostración.

Se tiene que $(x,y)\in (A\cap B)\times C$
si y sólo si $x\in A\cap B$ y $y\in C$
si y sólo si $(x\in A$ y $x\in B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\in B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\in B\times C$
si y sólo si $(x, y)\in (A\times C)\cap (B\times C)$.

$\square$

Proposición. Para $A,B,C$ conjuntos se cumple que $A\times (B\cap C)=(A\times B)\cap (A\times C)$.

Demostración.

Se tiene que $(x,y)\in A\times (B\cap C)$
si y sólo si $x\in A$ y $y\in B\cap C$
si y sólo si $x\in A$ y $(y\in B$ y $y\in C)$
si y sólo si $(x\in A$ y $y\in B)$ y $(x\in A$ y $y\in C)$
si y sólo si $(x,y)\in A\times B$ y $(x,y)\in A\times C$
si y sólo si $(x, y)\in (A\times B)\cap (A\times C)$.

$\square$

Proposición. Para cualesquiera $A, B, C, D$ conjuntos no vacíos ocurre que $(A\times C)\cap (B\times D)= (A\cap B)\times (C\cap D)$.

Demostración.

Sean $A, B, C, D$ conjuntos no vacíos. Tenemos que:
$(x,y)\in (A\times C)\cap (B\times D)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\in B\times D$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\in B$ y $y\in D)$
si y sólo si $(x\in A$ y $x\in B)$ y $(y\in C$ y $y\in D)$
si y sólo si $x\in A\cap B$ y $y\in C\times D$
si y sólo si $(x,y)\in (A\cap B)\times (C\cap D)$.

$\square$

Producto cartesiano y diferencia

Con los siguientes resultados probamos que el producto cartesiano se distribuye sobre la diferencia.

Proposición. Sean $A, B, C$ conjuntos no vacíos. Se tiene que $A\times (B\setminus C)= (A\times B)\setminus (A\times C)$.

Demostración.

Se tiene que $(x,y)\in A\times (B\setminus C)$
si y sólo si $x\in A$ y $y\in B\setminus C$
si y sólo si $x\in A$ y ($y\in B$ y $y\notin C$)
si y sólo si $(x\in A$ y $y\in B)$ y $(x\in A$ y $y\notin C)$
si y sólo si $(x,y)\in A\times B$ y $(x,y)\notin A\times C$
si y sólo si $(x,y)\in (A\times B)\setminus (A\times C)$.

$\square$

Proposición. Para $A,B,C$ conjuntos se cumple que $(A\setminus B)\times C=(A\times C)\setminus (B\times C)$.

Demostración.

Se tiene que $(x,y)\in (A\setminus B)\times C$
si y sólo si $x\in A\setminus B$ y $y\in C$
si y sólo si $(x\in A$ y $x\notin B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\notin B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\notin B\times C$
si y sólo si $(x, y)\in (A\times C)\setminus (B\times C)$.

$\square$

Producto cartesiano y diferencia simétrica

La siguiente proposición demuestra que el producto cartesiano distribuye a la diferencia simétrica. Como ya demostramos propiedades de cómo interactúa el producto cartesiano con la unión, intersección y diferencia, podremos dar una demostración muy breve usando álgebra de conjuntos.

Proposición. Sean $A, B, C$ conjuntos. Se tiene que $A\times (B\triangle C)= (A\times B)\triangle (A\times C)$.

Demostración. Procedemos por álgebra de conjuntos:

\begin{align*}
A\times (B\triangle C) &= A\times ((B\cup C)\setminus (B\cap C))\\
&=(A\times (B\cup C))\setminus (A\times (B\cap C))\\
&=((A\times B)\cup (A\times C))\setminus (A\times (B\cap C))\\
&=((A\times B)\cup (A\times C) \setminus ((A\times B)\cap (A\times C))\\
&=(A\times B)\triangle (A\times C).
\end{align*}

$\square$

Tarea moral

Los siguientes ejercicios te permitirán aprender otras propiedades del producto cartesiano:

  • Muestra que no siempre se da la igualdad $(A\times C)\cup (B\times D)= (A\cup B)\times (C\cup D)$.
  • Demuestra que $(A\cup B)\times (C\cup D)=(A\times C)\cup (B\times D)\cup (A\times D)\cup (B\times C)$.
  • Muestra que $(X\times Y)\setminus (B\times C)=((X\setminus B)\times Y)\cup(X\times (Y\setminus C))$.
  • Demuestra que $(A\triangle B)\times C=(A\times C)\triangle (B\times C)$.

Más adelante…

En la siguiente entrada definiremos qué es una relación. Para ello utilizaremos el concepto de producto cartesiano y pareja ordenada. Resultará que una relación es un subconjunto de un producto cartesiano, por lo que es importante que comprendas bien el concepto de producto cartesiano que hemos visto en las últimas dos entradas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.