Archivo de la etiqueta: transformaciones

Álgebra Lineal I: Transformaciones multilineales antisimétricas y alternantes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos de la importancia que tiene poder diagonalizar una matriz: nos ayuda a elevarla a potencias y a encontrar varias de sus propiedades fácilmente. En esa entrada discutimos a grandes rasgos el caso de matrices en $M_2(\mathbb{R})$. Dijimos que para dimensiones más altas, lo primero que tenemos que hacer es generalizar la noción de determinante de una manera que nos permita probar varias de sus propiedades fácilmente. Es por eso que introdujimos a las funciones multilineales y dimos una introducción a permutaciones. Tras definir las clases de transformaciones multilineales alternantes y antisimétricas, podremos finalmente hablar de determinantes.

Antes de entrar con el tema, haremos un pequeño recordatorio. Para $d$ un entero positivo y $V$, $W$ espacios vectoriales sobre un mismo campo, una transformación $d$-lineal es una transformación multilineal de $V^d$ a $W$, es decir, una tal que al fijar cualesquiera $d-1$ coordenadas, la función que queda en la entrada restante es lineal.

Con $[n]$ nos referimos al conjunto $\{1,2,\ldots,n\}$. Una permutación en $S_n$ es una función biyectiva $\sigma:[n]\to [n]$. Una permutación invierte a la pareja $i<j$ si $\sigma(i)>\sigma(j)$. Si una permutación $\sigma$ invierte una cantidad impar de parejas, decimos que es impar y que tiene signo $\text{sign}(\sigma)=-1$. Si invierte a una cantidad par de parejas (tal vez cero), entonces es par y tiene signo $\text{sign}(\sigma)=1$.

Transformaciones $n$-lineales antisimétricas y alternantes

Tomemos $d$ un entero positivo, $V$, $W$ espacios vectoriales sobre el mismo campo y $\sigma$ una permutación en $S_d$. Si $T:V^d\to W$ es una transformación $d$-lineal, entonces la función $(\sigma T):V^d\to W$ dada por $$(\sigma T)(v_1,\ldots,v_d)=T(v_{\sigma(1)},v_{\sigma(2)},\ldots,v_{\sigma(d)})$$ también lo es. Esto es ya que sólo se cambia el lugar al que se lleva cada vector. Como $T$ es lineal en cualquier entrada (al fijar las demás), entonces $\sigma T$ también.

Definición. Decimos que $T$ es antisimétrica si $\sigma T = \text{sign}(\sigma) T$ para cualquier permutación $\sigma$ en $S_d$. En otras palabras, $T$ es antisimétrica si $\sigma T=T$ para las permutaciones pares y $\sigma T = -T$ para las permutaciones impares.

Definición. Decimos que $T$ es alternante si $T(v_1,\ldots,v_d)=0$ cuando hay dos $v_i$ que sean iguales.

Ejemplo. Consideremos la función $T:(\mathbb{R}^2)^2\to\mathbb{R}$ dada por $$T((a,b),(c,d))=ad-bc.$$ Afirmamos que ésta es una transformación $2$-lineal alternante y antisimétrica. La parte de mostrar que es $2$-lineal es sencilla y se queda como tarea moral.

Veamos primero que es una función alternante. Tenemos que mostrar que si $(a,b)=(c,d)$, entonces $T((a,b),(c,d))=0$. Para ello, basta usar la definición: $$T((a,b),(a,b))=ab-ab=0.$$

Ahora veamos que es una función antisimétrica. Afortunadamente, sólo hay dos permutaciones en $S_2$, la identidad $\text{id}$ y la permutación $\sigma$ que intercambia a $1$ y $2$. La primera tiene signo $1$ y la segunda signo $-1$.

Para la identidad, tenemos $(\text{id}T)((a,b),(c,d))=\sigma((a,b),(c,d))$, así que $(\text{id}T)=T=\text{sign}(\text{id})T$, como queremos.

Para $\sigma$, tenemos que $\sigma T$ es aplicar $T$ pero «con las entradas intercambiadas». De este modo:
\begin{align*}
(\sigma T)((a,b),(c,d))&=T((c,d),(a,b))\\
&=cb-da\\
&=-(ad-bc)\\
&=-T((a,b),(c,d)).
\end{align*}

Esto muestra que $(\sigma T) = -T = \text{sign}(\sigma)T$.

$\square$

Equivalencia entre alternancia y antisimetría

Resulta que ambas definiciones son prácticamente la misma. Las transformaciones alternantes siempre son antisimétricas. Lo único que necesitamos para que las transformaciones antisimétricas sean alternantes es que en el campo $F$ en el que estamos trabajando la ecuación $2x=0$ sólo tenga la solución $x=0$. Esto no pasa, por ejemplo, en $\mathbb{Z}_2$. Pero sí pasa en $\mathbb{Q}$, $\mathbb{R}$ y $\mathbb{C}$.

Proposición. Sean $V$ y $W$ espacios vectoriales sobre un campo donde $2x=0$ sólo tiene la solución $x=0$. Sea $d$ un entero positivo. Una transformación $d$-lineal $T:V^d\to W$ es antisimétrica si y sólo si es alternante.

Demostración. Supongamos primero que $T$ es antisimétrica. Mostremos que es alternante. Para ello, supongamos que para $i\neq j$ tenemos que $x_i=x_j$.

Tomemos la permutación $\sigma:[d]\to [d]$ tal que $\sigma(i)=j$, $\sigma(j)=i$ y $\sigma(k)=k$ para todo $k$ distinto de $i$ y $j$. A esta permutación se le llama la transposición $(i,j)$. Es fácil mostrar (y queda como tarea moral), que cualquier transposición tiene signo $-1$.

Usando la hipótesis de que $T$ es antisimétrica con la transposición $(i,j)$, tenemos que
\begin{align*}
T(x_1,&\ldots, x_i,\ldots,x_j,\ldots,x_n)\\
&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n)\\
&=-T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n),
\end{align*}

en donde en la segunda igualdad estamos usando que $x_i=x_j$. De este modo, $$2T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0,$$ y por la hipótesis sobre el campo, tenemos que $$T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0.$$ Así, cuando dos entradas son iguales, la imagen es $0$, de modo que la transformación es alternante.

Hagamos el otro lado de la demostración. Observa que este otro lado no usará la hipótesis del campo. Supongamos que $T$ es alternante.

Como toda permutación es producto de transposiciones y el signo de un producto de permutaciones es el producto de los signos de los factores, basta con mostrar la afirmación para transposiciones. Tomemos entonces $\sigma$ la transposición $(i,j)$. Tenemos que mostrar que $\sigma T = \text{sign}(\sigma) T = -T$.

Usemos que $T$ es alternante. Pondremos en las entradas $i$ y $j$ a la suma de vectores $x_i+x_j$, de modo que $$T(x_1,\ldots,x_i+x_j,\ldots,x_i+x_j,\ldots,x_n)=0.$$ Usando la $n$-linealidad de $T$ en las entradas $i$ y $j$ para abrir el término a la izquierda, tenemos que
\begin{align*}
0=T(x_1&,\ldots,x_i,\ldots,x_i,\ldots,x_n) + \\
&T(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)+\\
&T(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)+\\
&T(x_1,\ldots,x_j,\ldots,x_j,\ldots,x_n).
\end{align*}

Usando de nuevo que $T$ es alternante, el primero y último sumando son cero. Así, \begin{align*}
T(x_1&,\ldots, x_i,\ldots,x_j,\ldots,x_n)\\
&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n).
\end{align*}

En otras palabras, al intercambiar las entradas $i$ y $j$ se cambia el signo de $T$, que precisamente quiere decir que $(\sigma T) = \text{sign}(\sigma)T$.

$\square$

Las transformaciones alternantes se anulan en linealmente dependientes

Una propiedad bastante importante de las transformaciones alternantes es que ayudan a detectar a conjuntos de vectores linealmente dependientes.

Teorema. Sea $T:V^d\to W$ una transformación $d$-lineal y alternante. Supongamos que $v_1,\ldots,v_d$ son linealmente dependientes. Entonces $$T(v_1,v_2,\ldots,v_d)=0.$$

Demostración. Como los vectores son linealmente dependientes, hay uno que está generado por los demás. Sin perder generalidad, podemos suponer que es $v_d$ y que tenemos $$v_d=\alpha_1v_1+\ldots+\alpha_{d-1}v_{d-1}$$ para ciertos escalares $\alpha_1,\ldots, \alpha_{d-1}$.

Usando la $d$-linealidad de $T$, tenemos que
\begin{align*}
T\left(v_1,v_2,\ldots,v_{d-1},v_d\right)&=T\left(v_1,\ldots,v_{d-1},\sum_{i=1}^{d-1} \alpha_i v_i\right)\\
&=\sum_{i=1}^{d-1} \alpha_i T(v_1,\ldots,v_{d-1}, v_i).
\end{align*}

Usando que $T$ es alternante, cada uno de los sumandos del lado derecho es $0$, pues en el $i$-ésimo sumando tenemos que aparece dos veces el vector $v_i$ entre las entradas de $T$. Esto muestra que $$T(v_1,\ldots,v_d)=0,$$ como queríamos mostrar.

$\square$

Introducción a definiciones de determinantes

En la siguiente entrada daremos tres definiciones de determinante. Una es para un conjunto de vectores. Otra es para transformaciones lineales. La última es para matrices. Todas ellas se motivan entre sí, y las propiedades de una nos ayudan a probar propiedades de otras. En esa entrada daremos las definiciones formales. Por ahora sólo hablaremos de ellas de manera intuitiva.

Para definir el determinante para un conjunto de vectores, empezamos con un espacio vectorial $V$ de dimensión $n$ y tomamos una base $B=(b_1,\ldots,b_n)$. Definiremos el determinante con respecto a $B$ de un conjunto de vectores $(v_1,v_2,\ldots,v_n)$ , al cual denotaremos por $\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)$de $V$ de la manera siguiente.

A cada vector $v_i$ lo ponemos como combinación lineal de elementos de la base: $$v_i=\sum_{j=1}^n a_{ji}b_j.$$ El determinante $$\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)$$ es $$\sum_{\sigma \in S(n)} \text{sign}(\sigma) a_{1\sigma(1)} \cdot a_{2\sigma(1)}\cdot \ldots\cdot a_{n\sigma(n)}.$$

Observa que esta suma tiene tantos sumandos como elementos en $S_n$, es decir, como permutaciones de $[n]$. Hay $n!$ permutaciones, así que esta suma tiene muchos términos incluso si $n$ no es tan grande.

Veremos que para cualquier base $B$, el determinante con respecto a $B$ es una forma $d$-lineal alternante, y que de hecho las únicas formas $d$-lineales alternantes en $V$ «son determinantes», salvo una constante multiplicativa.

Luego, para una transformación $T:V\to V$ definiremos al determinante de $T$ como el determinante $$\det_{(b_1,\ldots,b_n)}(T(b_1),\ldots,T(b_n)),$$ y veremos que esta definición no depende de la elección de base.

Finalmente, para una matriz $A$ en $M_n(F)$, definiremos su determinante como el determinante de la transformación $T_A:F^n\to F^n$ tal que $T_A(X)=AX$. Veremos que se recupera una fórmula parecida a la de determinante para un conjunto de vectores.

Los teoremas que veremos en la siguiente entrada nos ayudarán a mostrar más adelante de manera muy sencilla que el determinante para funciones o para matrices es multiplicativo, es decir, que para $T:V\to V$, $S:V\to V$ y para matrices $A,B$ en $M_n(F)$ se tiene que

\begin{align*}
\det(T\circ S)&=\det(T)\cdot \det(S)\\
\det(AB)&=\det(A)\cdot \det(B).
\end{align*}

También mostraremos que los determinantes nos ayudan a caracterizar conjuntos linealmente independientes, matrices invertibles y transformaciones biyectivas.

Más Adelante…

En esta entrada hemos definido las clases de transformaciones lineales alternantes y antisimétricas; esto con la finalidad de introducir el concepto de determinantes. Además hemos dado una definición intuitiva del concepto de determinante.

En las siguientes entrada estudiaremos diferentes definiciones de determinante: para un conjunto de vectores, para una transformación lineal y finalmente para una matriz. Veremos cómo el uso de determinantes nos ayuda a determinar si un conjunto es linealmente independiente, si una matriz es invertible o si una transformación es biyectiva; además de otras aplicaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba que la función $T:(\mathbb{R}^2)^2\to\mathbb{R}$ dada por $$T((a,b),(c,d))=ad-bc$$ es $2$-lineal. Para esto, tienes que fijar $(a,b)$ y ver que es lineal en la segunda entrada, y luego fijar $(c,d)$ y ver que es lineal en la primera.
  • Muestra que las transposiciones tienen signo $-1$. Ojo: sólo se intercambia el par $(i,j)$, pero puede ser que eso haga que otros pares se inviertan.
  • Muestra que cualquier permutación se puede expresar como producto de transposiciones.
  • Muestra que la suma de dos transformaciones $n$-lineales es una transformación $n$-lineal. Muestra que al multiplicar por un escalar una transformación $n$-lineal, también se obtiene una transformación $n$-lineal.
  • ¿Es cierto que la suma de transformaciones $n$-lineales alternantes es alternante?

Al final del libro Essential Linear Algebra with Applications de Titu Andreescu hay un apéndice en el que se habla de permutaciones. Ahí puedes aprender o repasar este tema.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Rango de transformaciones lineales y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hablamos de transformaciones lineales, cómo actúan en conjuntos especiales de vectores y de cómo se pueden representar con matrices. Hablamos también de cómo cambiar de una base a otra y cómo usar esto para entender transformaciones en varias bases. Estamos listos para introducir un concepto fundamental de álgebra lineal, el de rango de una transformación lineal y de una matriz.

Antes de entrar en las definiciones formales, vale la pena hablar un poco de rango de manera intuitiva. Supongamos que $V$ es un espacio vectorial de dimensión $n$ y que $W$ es un espacio vectorial sobre el mismo campo que $V$. Una transformación lineal $T:V\to W$ puede «guardar mucha independencia lineal» o «muy poquita». Si $T$ es inyectiva, ya vimos antes que $T$ manda linealmente independientes a linealmente independientes. Si $T$ es la transformación $0$, entonces se «pierde toda la independencia».

El rango mide algo intermedio entre estos dos extremos. Mientras mayor sea el rango, más independencia lineal se preserva y viceversa. Si mantienes esta intuición en mente, varias de las proposiciones te resultarán más naturales.

Otro buen ejemplo para tener en mente es tomar una transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$. Si es la transformación identidad, la base canónica se preserva. Si es la proyección al plano $xy$, entonces «perdemos» al vector $(0,0,1)$, pues se va al $(0,0,0)$. Si es la proyección al eje $x$, «perdemos» al $(0,1,0)$ y al $(0,0,1)$ pues ambos se van a $(0,0,0)$. Y si es la transformación $0$, perdemos a todos. El rango precisamente va a medir esto, y para estos ejemplos tendremos rango $3$, $2$, $1$ y $0$ respectivamente.

Rango para transformaciones lineales

Como en otras ocasiones, cuando hablemos de transformaciones lineales entre espacios vectoriales, serán sobre un mismo campo $F$.

Definición. Sean $V$ y $W$ espacios de dimensión finita. El rango de una transformación lineal $T:V\to W$ es la dimensión de la imagen de $T$, es decir, $$\rank(T)=\dim\Ima T.$$

Si $B$ es una base de $V$, entonces genera a $V$. La transformación $T$ es suprayectiva de $V$ a $\Ima T$, de modo que $T(B)$ es generador de $\Ima T$. De esta forma, para encontrar el rango de una transformación lineal $T:V\to W$ basta:

  • Tomar una base $B$ de $V$.
  • Aplicar $T$ a cada elemento de $B$.
  • Determinar un conjunto linealmente independiente máximo en $T(B)$.

Para hacer este último paso, podemos poner a los vectores coordenada de $T(B)$ con respecto a una base de $W$ como los vectores fila de una matriz $A$ y usar reducción gaussiana. Las operaciones elementales no cambian el espacio generado por las filas, así que el rango de $T$ es el número de vectores fila no cero en la forma escalonada reducida $A_{\text{red}}$ de $A$.

Ejemplo. Encuentra el rango de la transformación lineal $T:\mathbb{R}^3\to M_{2}(\mathbb{R})$ que manda $(x,y,z)$ a $$\begin{pmatrix}x+y-z & 2x \\ 2y-2z & x+z-y\end{pmatrix}.$$

Solución. Tomemos $e_1,e_2,e_3$ la base canónica de $\mathbb{R}^3$. Tenemos que $T(e_1)=\begin{pmatrix}1 & 2\\ 0 & 1\end{pmatrix}$, $T(e_2)=\begin{pmatrix} 1 & 0 \\ 2 & -1\end{pmatrix}$ y $T(e_3)=\begin{pmatrix}-1 & 0\\ -2 & 1\end{pmatrix}$.

Tomando la base canónica $E_{11},E_{12},E_{21},E_{22}$ de $M_2(\mathbb{R})$, podemos entonces poner a las coordenadas de $T(e_1),T(e_2),T(e_2)$ como vectores fila de una matriz $$\begin{pmatrix}1 & 2 & 0 & 1\\ 1 & 0 & 2 & -1\\ -1& 0 & -2 & 1\end{pmatrix}.$$ Sumando la segunda fila a la tercera, y después restando la primera a la segunda,obtenemos la matriz $$\begin{pmatrix}1 & 2 & 0 & 1\\ 0 & -2 & 2 & -2\\ 0& 0 & 0 & 0\end{pmatrix}.$$ De aquí, sin necesidad de terminar la reducción gaussiana, podemos ver que habrá exactamente dos filas no cero. De este modo, el rango de la transformación es $2$.

$\triangle$

Propiedades del rango

Demostremos ahora algunas propiedades teóricas importantes acerca del rango de una transfromación lineal.

Proposición. Sean $U$, $V$ y $W$ espacios de dimensión finita. Sean $S:U\to V$, $T:V\to W$, $T’:V\to W$ transformaciones lineales. Entonces:

  1. $\rank(T)\leq \dim V$
  2. $\rank(T)\leq \dim W$
  3. $\rank(T\circ S)\leq \rank(T)$
  4. $\rank(T\circ S)\leq \rank(S)$
  5. $\rank(T+T’)\leq \rank(T) + \rank(T’)$

Demostración. (1) Pensemos a $T$ como una transformación $T:V\to \Ima(T)$. Haciendo esto, $T$ resulta ser suprayectiva, y por un resultado anterior tenemos que $\dim V\geq \dim \Ima T = \rank (T)$.

(2) Sabemos que $\Ima (T)$ es un subespacio de $W$, así que $\rank(T)=\dim \Ima T \leq \dim W$.

(3) La imagen de $T$ contiene a la imagen de $T\circ S$, pues cada vector de la forma $T(S(v))$ es de la forma $T(w)$ (para $w=S(v)$). Así, \begin{align*}\rank(T) &=\dim \Ima T \geq \dim \Ima T\circ S\\ &= \rank (T\circ S).\end{align*}

(4) La función $T\circ S$ coincide con la restricción $T_{\Ima S}$ de $T$ a $\Ima S$. Por el inciso (1), $\rank(T_{\Ima S})\leq \dim \Ima S = \rank(S)$, así que $\rank (T\circ S) \leq \rank(S)$.

(5) Tenemos que $\Ima (T+T’) \subseteq \Ima T + \Ima T’$. Además, por un corolario de la fórmula de Grassman, sabemos que
\begin{align*}
\dim (\Ima T + \Ima T’)&\leq \dim \Ima T + \dim \Ima T’\\
&= \rank(T) + \rank(T’).
\end{align*}

Así,
\begin{align*}
\rank(T+T’)&\leq \rank(\Ima T + \Ima T’)\\
&\leq \rank(T)+\rank(T’).
\end{align*}

$\square$

Proposición. Sean $R:U\to V$, $T:V\to W$ y $S:W\to Z$ transformaciones lineales con $R$ suprayectiva y $S$ inyectiva. Entonces $$\rank(S\circ T\circ R)=\rank (T).$$

Dicho de otra forma «composición por la izquierda con transformaciones inyectivas no cambia el rango» y «composición por la derecha con transformaciones suprayectivas no cambia el rango». Un corolario es «composición con transformaciones invertibles no cambia el rango».

Demostración. De la proposición anterior, tenemos que $\rank(S\circ T)\leq \rank (T)$. La restricción $S_{\Ima T}$ de $S$ a la imagen de $T$ es una transformación lineal de $\Ima T$ a $\Ima (S\circ T)$ que es inyectiva, de modo que $\dim \Ima T \leq \dim \Ima (S\circ T)$, que es justo $\rank(T)\leq \rank(S\circ T)$, de modo que tenemos la igualdad $\rank(S\circ T)=\rank (T)$.

Como $R$ es suprayectiva, $\Ima R= V$, de modo que $\Ima(S\circ T \circ R)=\Ima(S\circ T)$. Así, \begin{align*}\rank (S\circ T \circ R) &= \rank (S\circ T)\\&=\rank(T).\end{align*}

$\square$

Teorema de rango-nulidad

Una transformación lineal $T:V\to W$ determina automáticamente dos subespacios de manera natural: el kernel $\ker T$ y la imagen $\Ima T$. Resulta que las dimensiones de $\ker T$, de $\Ima T$ y de $V$ están fuertemente relacionadas entre sí.

Teorema. Sean $V$ y $W$ espacios de dimensión finita. Sea $T:V\to W$ una transformación lineal. Entonces $$\dim\ker T + \rank(T) = \dim V.$$

Demostración. Supongamos que $\dim V=n$ y $\dim \ker T = k$. Queremos mostrar que $\rank(T)=n-k$. Para ello, tomemos una base $B$ de $\ker T$ y tomemos $B’=\{v_1,\ldots,v_{n-k}\}$ tal que $B\cup B’$ sea base de $V$. Basta mostrar que $T(B’)=\{T(v_1),\ldots,T(v_{n-k})\}\subset \Ima T$ es base de $\Ima T$. Sea $U$ el generado por $B’$, de modo que $V=U \oplus \ker T$.

Veamos que $T(B’)$ es generador de $\Ima T$. Tomemos $T(v)$ en $\Ima T$. Podemos escribir $v=z+u$ con $z\in \ker T$ y $u\in U$. Así, $T(v)=T(z)+T(u)=T(u)$, y este último está en el generado por $T(B’)$.

Ahora veamos que $T(B’)$ es linealmente independiente. Si $$\alpha_1T(v_1)+\ldots+\alpha_{n-k}T(v_{n-k})=0,$$ entonces $T(\alpha_1v_1+\ldots+\alpha_{n-k}v_{n-k})=0$, de modo que $\alpha_1v_1+\ldots+\alpha_{n-k}v_{n-k}$ está en $U$ y en $\ker T$, pero la intersección de estos espacios es $\{0\}$. Como esta combinación lineal es $0$ y $B’$ es linealmente independiente, $\alpha_1=\ldots=\alpha_n=0$.

De esta forma, $T(B’)$ es linealmente independiente y genera a $\Ima T$, de modo que $\rank(T) =|B’|=n-k$.

$\square$

Ejemplo. Consideremos de nuevo la transformación lineal $T:\mathbb{R}^3\to M_{2}(\mathbb{R})$ que manda $(x,y,z)$ a $$\begin{pmatrix}x+y-z & 2x \\ 2y-2z & x+z-y\end{pmatrix}.$$ Muestra que $T$ no es inyectiva.

Solución. Ya determinamos previamente que esta transformación tiene rango $2$. Por el teorema de rango-nulidad, su kernel tiene dimensión $1$. Así, hay un vector $v\neq (0,0,0)$ en el kernel, para el cual $T(v)=0=T(0)$, de modo que $T$ no es inyectiva.

$\square$

Problema. Demuestra que para cualquier entero $n$ existe una terna $(a,b,c)\neq (0,0,0)$ con $a+b+c=0$ y tal que $$\int_0^1 at^{2n}+bt^n+c \,dt = 0.$$

Solución. Podríamos hacer la integral y plantear dos ecuaciones lineales. Sin embargo, daremos argumentos dimensionales para evitar la integral. Consideremos las transformaciones lineales $T:\mathbb{R}^3\to \mathbb{R}$ y $S:\mathbb{R}^3\to \mathbb{R}$ dadas por
\begin{align*}
T(x,y,z)&=\int_0^1 xt^{2n}+yt^n+z \,dt\\
S(x,y,z)&=x+y+z.
\end{align*}
Notemos que $T(0,0,1)=\int_0^1 1\, dt = 1=S(0,0,1)$, de modo que ni $T$ ni $S$ son la transformación $0$. Como su rango puede ser a lo más $\dim\mathbb{R}=1$, entonces su rango es $1$. Por el teorema de rango-nulidad, $\dim \ker S= \dim \ker T = 2$. Como ambos son subespacios de $\mathbb{R}^3$, es imposible que $\ker S \cap \ker T=\{0\}$, de modo que existe $(a,b,c)$ no cero tal que $T(a,b,c)=S(a,b,c)=0$. Esto es justo lo que buscábamos.

$\square$

Rango para matrices

Definición. El rango de una matriz $A$ en $M_{m,n}(F)$ es el rango de la transformación lineal asociada de $F^n$ a $F^m$ dada por $X\mapsto AX$. Lo denotamos por $\rank(A)$.

A partir de esta definición y de las propiedades de rango para transformaciones lineales obtenemos directamente las siguientes propiedades para rango de matrices.

Proposición. Sean $m$, $n$ y $p$ enteros. Sea $B$ una matriz en $M_{n,p}(F)$ y $A$, $A’$ matrices en $M_{m,n}(F)$. Sea $P$ una matriz en $M_{n,p}(F)$ cuya transformación lineal asociada es suprayectiva y $Q$ una matriz en $M_{r,m}(F)$ cuya transformación lineal asociada es inyectiva. Entonces:

  1. $\rank(A)\leq \min(m,n)$
  2. $\rank(AB)\leq \min(\rank(A),\rank(B))$
  3. $\rank(A+A’)\leq \rank(A) + \rank(A’)$
  4. $\rank(QAP) = \rank(A)$

Como discutimos anteriormente, el rango de una transformación se puede obtener aplicando la transformación a una base y viendo cuál es el máximo subconjunto de imágenes de elementos de la base que sea linealmente independiente. Si tomamos una matriz $A$ en $M_{m,n}(F)$, podemos aplicar esta idea con los vectores $e_1,\ldots,e_n$ de la base canónica de $F^{n}$. Como hemos visto con anterioridad, para cada $i=1,\ldots, n$ tenemos que el vector $Ae_i$ es exactamente la $i$-ésima columna de $A$. Esto nos permite determinar el rango de una matriz en términos de sus vectores columna.

Proposición. El rango de una matriz en $M_{m,n}(F)$ es igual a la dimensión del subespacio de $F^m$ generado por sus vectores columna.

Problema. Determina el rango de la matriz $$\begin{pmatrix} 3 & 1 & 0 & 5 & 0\\ 0 & 8 & 2 & -9 & 0\\ 0 & -1 & 0 & 4 & -2\end{pmatrix}.$$

Solución. Como es una matriz con $3$ filas, el rango es a lo más $3$. Notemos que entre las columnas están los vectores $(3,0,0)$, $(0,2,0)$ y $(0,0,-2)$, que son linealmente independientes. De esta forma, el rango de la matriz es $3$.

$\triangle$

A veces queremos ver que el rango de un producto de matrices es grande. Una herramienta que puede servir en estos casos es la desigualdad de Sylvester.

Problema (Desigualdad de Sylvester). Muestra que para todas las matrices $A$, $B$ en $M_n(F)$ se tiene que $$\rank(AB)\geq \rank(A)+\rank(B)-n.$$

Solución. Tomemos $T_1:F^n\to F^n$ y $T_2:F^n\to F^n$ tales que $T_1(X)=AX$ y $T_2(X)=BX$. Lo que tenemos que probar es que $$\rank(T_1\circ T_2) \geq \rank(T_1) + \rank(T_2) – n.$$

Consideremos $S_1$ como la restricción de $T_1$ a $\Ima T_2$. Tenemos que $\ker S_1 \subset \ker T_1$, así que $\dim \ker S_1 \leq \dim \ker T_1$. Por el teorema de rango-nulidad en $S_1$, tenemos que
\begin{align*}
rank(T_2) &= \dim \Ima T_2 \\
&= \dim \ker S_1 + \rank(S_1) \\
&= \dim \ker S_1 + \rank(T_1\circ T_2)\\
&\leq \dim \ker T_1 + \rank(T_1\circ T_2),
\end{align*} así que $$\rank(T_2)\leq \dim \ker T_1 + \rank(T_1\circ T_2).$$

Por el teorema de rango-nulidad en $T_1$ tenemos que $$\dim \ker T_1 + \rank(T_1)=n.$$

Sumando la desigualdad anterior con esta igualdad obtenemos el resultado.

$\square$

El teorema $PJQ$ (opcional)

El siguiente resultado no se encuentra en el temario usual de Álgebra Lineal I. Si bien no formará parte de la evaluación del curso, recomendamos fuertemente conocerlo y acostumbrarse a usarlo pues tiene amplias aplicaciones a través del álgebra lineal.

Teorema (Teorema PJQ). Sea $A$ una matriz en $M_{m,n}(F)$ y $r$ un entero en $\{0,\ldots,\min(m,n)\}$. El rango de $A$ es igual a $r$ si y sólo si existen matrices invertibles $P\in M_m(F)$ y $Q\in M_n(F)$ tales que $A=PJ_rQ$, en donde $J_r$ es la matriz en $M_{m,n}$ cuyas primeras $r$ entradas de su diagonal principal son $1$ y todas las demás entradas son cero, es decir, en términos de matrices de bloque, $$J_r=\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}.$$

No damos la demostración aquí. Se puede encontrar en el libro de Titu Andreescu, Teorema 5.68. Veamos algunas aplicaciones de este teorema.

Problema 1. Muestra que una matriz tiene el mismo rango que su transpuesta.

Solución. Llamemos $r$ al rango de $A$. Escribimos $A=PJ_rQ$ usando el teorema $PJQ$, con $P$ y $Q$ matrices invertibles. Tenemos que $^tA=^tQ\, ^tJ_r \,^tP$, con $^tQ$ y $^tP$ matrices invertibles. Además, $^t J_r$ es de nuevo de la forma de $J_r$. Así, por el teorema $PJQ$, tenemos que $^t A$ es de rango $r$.

Combinando el problema anterior con el resultado del rango de una matriz en términos de sus vectores columna obtenemos lo siguiente.

Proposición. El rango de una matriz en $M_{m,n}(F)$ es igual a la dimensión del subespacio de $F^n$ generado por sus vectores renglón.

Terminamos esta entrada con una aplicación más del teorema $PJQ$.

Problema 2. Muestra que una matriz $A$ de rango $r$ se puede escribir como suma de $r$ matrices de rango $1$. Muestra que es imposible hacerlo con menos matrices.

Solución. Expresamos $A=PJ_rQ$ usando el teorema $PJQ$. Si definimos $A_i=PE_{ii}Q$ para $i=1,\ldots,r$, donde $E_{ii}$ es la matriz cuya entrada $(i,i)$ es uno y las demás cero, claramente tenemos que $J_r=E_{11}+E_{22}+\ldots+E_{rr}$, por lo que $$A=PJ_rQ=A_1+A_2+\ldots+A_r.$$ Además, como $E_{ii}$ es de rango $1$, por el teorema $PJQ$ cada matriz $A_i$ es de rango $1$.

Veamos que es imposible con menos. Si $B_1,\ldots,B_s$ son matrices de rango $1$, como el rango es subaditivo tenemos que $\rank (B_1+\ldots+B_s)\leq s$. Así, si sumamos menos de $r$ matrices, no podemos obtener a $A$.

$\square$

Más adelante…

Esta entrada es solamente una breve introducción al concepto de rango y a algunas propiedades que pueden ser de utilidad al momento de calcular el rango de una matriz o una transformación lineal. Más adelante, veremos que el rango de una matriz está también relacionado con las soluciones de su sistema lineal homogéneo asociado.

El teorema de rango-nulidad es fundamental para el álgebra lineal. Muchas veces necesitamos calcular el rango de la imagen de una transformación lineal, pero es mucho más fácil calcular la dimensión de su kernel. O viceversa. En estas situaciones es muy importante recordar la forma en la que dicho teorema las relaciona.

Con este tema termina la segunda unidad del curso. Ahora estudiaremos aspectos un poco más geométricos de espacios vectoriales. En la siguiente unidad, hablaremos de dualidad, ortogonalidad, formas bilineales y productos interiores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Termina de hacer la reducción gaussiana del primer ejemplo.
  • Sea $T$ una transformación de un espacio vectorial $V$ de dimensión finita a si mismo. Usa el teorema de rango-nulidad para mostrar que si $T$ es inyectiva o suprayectiva, entonces es biyectiva.
  • Determina el rango de la matriz $$\begin{pmatrix} 0 & 0 & 0 & 8 & 3\\ 7 & 8 & -1 & -2 & 0\\ 3 & -1 & 4 & 4 & -9\end{pmatrix}.$$
  • Demuestra que aplicar operaciones elementales a una matriz no cambia su rango.
  • Demuestra que matrices similares tienen el mismo rango.
  • Demuestra por inducción que para matrices $A_1,\ldots, A_n$ del mismo tamaño tenemos que $$\rank (A_1+\ldots+A_n)\leq \sum_{i=1}^n \rank(A_i).$$
  • Escribe la demostración de la última proposición de la sección del teorema $PJQ$
  • Revisa la demostración del teorema de descomposición $PJQ$ en el libro de Titu Andreescu.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de transformaciones lineales, vectores independientes y forma matricial

Por Ayax Calderón

Introducción

En esta entrada resolveremos algunos problemas acerca de transformaciones lineales, de su efecto en conjuntos generadores, independientes y bases, y de la forma matricial de transformaciones lineales.

Problemas resueltos

El siguiente problema es para repasar qué le hace una transformación lineal a una combinación lineal, y cómo podemos usar este hecho para saber cuánto vale una transformación lineal evaluada en un vector, sabiendo qué le hace a los elementos de una base.

Problema 1. Sean $$v_1=(1,0,0), v_2=(1,1,0), v_3=(1,1,1),$$

y sea $T:\mathbb{R}^3\to \mathbb{R}^2$ una transformación lineal tal que \begin{align*}T(v_1)&=(3,2)\\ T(v_2)&=(-1,2)\\ T(v_3)&=(0,1).\end{align*}

Calcula el valor de $T(5,3,1)$.

Solución. Primero observemos que ${(1,0,0), (1,1,0), (1,1,1)}$ es una base de $\mathbb{R}^3$, entonces existen $a,b,c\in \mathbb{R}$ tales que $$(5,3,1)=a(1,0,0)+b(1,1,0)+c(1,1,1).$$
Si logramos expresar a $(5,3,1)$ de esta forma, después podremos usar que $T$ es lineal para encontrar el valor que queremos. Encontrar los valores de $a,b,c$ que satisfacen la ecuación anterior lo podemos ver como el sistema de ecuaciones $$\begin{pmatrix}
1 & 1 & 1\\
0 & 1 & 1\\
0 & 0 & 1\end{pmatrix} \begin{pmatrix}
a\\
b\\
c\end{pmatrix} = \begin{pmatrix}
5\\
3\\
1\end{pmatrix}.$$

Para resolver este sistema, consideramos la matriz extendida del sistema y la reducimos
\begin{align*} & \begin{pmatrix}
1 & 1 & 1 & 5\\
0 & 1 & 1 & 3\\
0 & 0 & 1 & 1\end{pmatrix} \\ \to &\begin{pmatrix}
1 & 0 & 0 & 2\\
0 & 1 & 1 & 3\\
0 & 0 & 1 & 1\end{pmatrix} \\ \to & \begin{pmatrix}
1 & 0 & 0 & 2\\
0 & 1 & 0 & 2\\
0 & 0 & 1 & 1\end{pmatrix}\end{align*}

Así, $a=2, b=2, c=1$.

Finalmente, usando que $T$ es transformación lineal,

\begin{align*}
T(5,3,1)&=T(2(1,0,0)+2(1,1,0)+(1,1,1))\\
&=2T(1,0,0)+2T(1,1,0)+T(1,1,1)\\
&=2(3,2)+2(-1,2)+(0,1)\\
&=(6,4)+(-2,4)+(0,1)\\
&=(4,9).
\end{align*}

$\triangle$

Veamos ahora un problema para practicar encontrar la matriz correspondiente a una base.

Problema 2. Sea $\mathbb{R}_n[x]$ el espacio de los polinomios de grado a lo más $n$ con coeficientes reales.

Considera la transformación lineal $T:\mathbb{R}_3[x]\to \mathbb{R}_2[x]$ dada por $T(p(x))=p'(x)$, es decir, aquella que manda a cada polinomio a su derivada.

Sean $\beta=(1,x,x^2,x^3)$ y $\gamma=(1,x,x^2)$ las bases canónicas ordenadas de $\mathbb{R}_3[x]$ y $\mathbb{R}_2[x]$, respectivamente. Encuentra la representación matricial de la transformación $T$.

Solución. Primero le aplicamos $T$ a cada uno de los elementos de $\beta$, que simplemente consiste en derivarlos. Obtenemos que:

$T(1)=0=0\cdot 1 + 0\cdot x + 0\cdot x^2$
$T(x)=1=1\cdot 1 + 0\cdot x + 0\cdot x^2$
$T(x^2)=2x=0\cdot 1 + 2\cdot x + 0\cdot x^2$
$T(x^3)=3x^2=0\cdot 1 + 0\cdot x + 3\cdot x^2$

Para construir la matriz de cambio de base, lo que tenemos que hacer es formar una matriz con cuatro columnas (una por cada elemento de la base $\beta$). La primera columna debe tener las coordenadas de $T(1)$ en la base $\gamma$. La segunda columna, las coordenadas de $T(x)$ en la base $\gamma$. Y así sucesivamente. Continuando de este modo, llegamos a que

$$\begin{pmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 3\end{pmatrix}$$
es la forma matricial de $T$ con respecto a las bases canónicas.

$\triangle$

Finalmente, el siguiente problema combina muchas de las ideas relacionadas con la forma matricial de una transformación. Se recomienda fuertemente que lo leas con detenimiento. Es un ejemplo en el que encontramos tres formas matriciales: las de dos transformaciones y las de su composición. Después, se verifica que la de la composición en efecto es el producto de las correspondientes a las dos transformaciones.

Problema 3. Considera las transformaciones

\begin{align*}
T:\mathbb{R}^3&\to \mathbb{R}_2[x]\quad\text{y}\\
S:\mathbb{R}_2[x] &\to M_2(\mathbb{R})
\end{align*}

dadas por

\begin{align*}
T(a,b,c)&=a+2bx+3cx^2\quad \text{y}\\
S(a+bx+cx^2)&=\begin{pmatrix}
a & a+b\\
a-c & b\end{pmatrix}.
\end{align*}

Consideramos la base ordenada $B_1=(1,x,x^2)$ de $\mathbb{R}_2[x]$, la base canónica ordenada $B_2$ de $\mathbb{R}^3$ y la base ordenada $B_3=(E_{11}, E_{12}, E_{21}, E_{22})$ de $M_2(\mathbb{R})$.

  1. Verifica que $T$ y $S$ son transformaciones lineales.
  2. Escribe las matrices asociadas a $T$ y $S$ con respecto a las bases dadas.
  3. Encuentra la matriz asociada a la composición $S\circ T$ con respecto a las bases anteriores usando el resultado que dice que es el producto de las dos matrices que ya encontraste.
  4. Calcula explícitamente $S\circ T$, después encuentra directamente su matriz asociada con respecto a las bases anteriores y verifica que el resultado obtenido aquí es el mismo que en el inciso anterior.

Solucion. 1. Sea $u\in \mathbb{R}$ y sean $(a,b,c), (a’,b’,c’)\in \mathbb{R}^3$.
Entonces

\begin{align*}
T(u&(a,b,c)+(a’,b’,c’))\\
&=T(au+a’,bu+b’,cu+c’)\\
&=(au+a’)+2(bu+b’)x+3(cu+c’)x^2\\
&=u(a+2bx+3cx^2)+(a’+2b’x+3c’x^2)\\
&=uT(a,b,c)+T(a’,b’,c’).
\end{align*}

Así, $T$ es lineal.

Ahora, sea $u\in \mathbb{R}$ y sean $a+bx+cx^2, a’+b’x+c’x^2\in \mathbb{R}_2[x]$.
Entonces

\begin{align*}
S(u&(a+bx+cx^2)+(a’+b’x+c’x^2))\\
&=S(ua+a’+(ub+b’)x+(uc+c’)x^2)\\
&=\begin{pmatrix}
ua+a’ & (ua+a’)+(ub+b’)\\
ua+a’-(uc+c’) & ub+b’\end{pmatrix}\\
&=u\begin{pmatrix}
a & a+b\\
a-c & b\end{pmatrix} + \begin{pmatrix}
a’ & a’+b’\\
a’-c’ & b’\end{pmatrix}\\
&=uS(a+bx+cx^2)+S(a’+b’x+c’x^2).
\end{align*}

Así, $S$ es lineal.

2. Empezamos calculando la matriz $\Mat_{B_1,B_2}(T)$ de $T$ con respecto a $B_1$ y $B_2$. La base $B_2$ es la base canónica ordenada de $\mathbb{R}^3$, es decir, $B_2=(e_1,e_2,e_3)$. Aplicando $T$ en cada uno de estos vectores,

\begin{align*}
T(e_1)&=T(1,0,0)=1=1\cdot 1 + 0\cdot x + 0\cdot x^2,\\
T(e_2)&=T(0,1,0)=2x= 0\cdot 1 + 2\cdot x + 0 \cdot x^2,\\
T(e_3)&=T(0,0,1)=3x^2= 0\cdot 1 + 0\cdot x + 3 \cdot x^2.
\end{align*}

Así, $$\Mat_{B_1,B_2}(T)=\begin{pmatrix}
1 & 0 & 0\\
0 & 2 & 0\\
0& 0 & 3\end{pmatrix}.$$

De manera análoga, calculamos

\begin{align*}
S(1)&=\begin{pmatrix}
1 & 1\\
1 & 0\end{pmatrix} \\
&= 1 \cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0\cdot E_{22},\\
S(x)&=\begin{pmatrix}
0 & 1\\
0 & 1\end{pmatrix} \\
&= 0 \cdot E_{11} + 1 \cdot E_{12} + 0 \cdot E_{21} + 1\cdot E_{22},\\
S(x^2)&=\begin{pmatrix}
0 & 0\\
-1 & 0\end{pmatrix} \\
&= 0 \cdot E_{11} + 0 \cdot E_{12} + (-1) \cdot E_{21} + 0\cdot E_{22}.\end{align*}

Por lo tanto $$\Mat_{B_3,B_1}(S)=\begin{pmatrix}
1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & -1\\
0 & 1 & 0\end{pmatrix}.$$

3. Usando el resultado de que la forma matricial de una composición de transformaciones es el producto de sus formas matriciales, $$\Mat_{B_3,B_2}(S\circ T)=\Mat_{B_3,B_1}(S)\cdot \Mat_{B_1,B_2}(T).$$

Así, tenemos que:
\begin{align*}
\Mat_{B_3,B_2}(S\circ T)&=\begin{pmatrix}
1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & -1\\
0 & 1 & 0\end{pmatrix} \begin{pmatrix}
1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 3\end{pmatrix} \\
&= \begin{pmatrix}
1 & 0 & 0\\ 1 & 2 & 0\\ 1 & 0 & -3\\
0 & 2 & 0\end{pmatrix}.\end{align*}

4. Calculamos la composición directamente como sigue:

\begin{align*}
(S\circ T)(a,b,c)&=S(T(a,b,c))\\
&= S(a+2bx+3cx^2)\\
&=\begin{pmatrix}
a & a+2b\\
a-3c & 2b\end{pmatrix}.
\end{align*}

Para encontrar la matriz que representa a esta transformación lineal, evaluamos en cada elemento de $B_2$.

\begin{align*}
(S\circ T)(e_1)&=\begin{pmatrix}
1 & 1\\
1 & 0\end{pmatrix}\\
& = 1\cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0 \cdot E_{22},\\
(S\circ T)(e_2)&=\begin{pmatrix}
0 & 2\\
0 & 2\end{pmatrix} \\
&= 0\cdot E_{11} + 2 \cdot E_{12} + 0 \cdot E_{21} + 2 \cdot E_{22},\\
(S\circ T)(e_2)&=\begin{pmatrix}
0 & 0\\
-3 & 0\end{pmatrix} \\
&= 0 \cdot E_{11} + 0 \cdot E_{12} +(-3) \cdot E_{21} + 0 \cdot E_{22}.
\end{align*}

Así, la matriz asociada a $S\circ T$ con las bases indicadas es $$\Mat_{B_3,B_2}(S\circ T)= \begin{pmatrix}
1 & 0 & 0\\ 1 & 2 & 0\\ 1 & 0 & -3\\
0 & 2 & 0\end{pmatrix}.$$

Esto es, por supuesto, justo lo que se obtuvo en el inciso 3.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Forma matricial de una transformación lineal

Por Ayax Calderón

Introducción

Durante la primera unidad de este curso vimos que las transformaciones lineales $T:F^n \to F^m$ pueden ser descritas por medio de matrices $A\in M_{m,n}(F)$. Nuestro objetivo ahora es extender este resultado para describir transformaciones lineales $T:V\to W$ entre espacios vectoriales de dimensión finita $V$ y $W$. Es decir, para cada una de estas transformaciones, queremos ver cómo se ven en forma matricial.

Sin embargo, a diferencia de lo que sucedía antes, la descripción en esta forma no será única. Para construir una matriz que represente a una transformación lineal, necesitaremos fijar bases para $V$ y $W$. Distintas bases nos darán distintas matrices.

Para esta entrada todos los espacios vectoriales que usemos son de dimensión finita sobre el campo $F$. Usaremos los resultados de la entrada pasada, en la que estudiamos qué le hacen las transformaciones lineales a los conjuntos linealmente independientes, a los generadores y a las bases.

Un paréntesis técnico de isomorfismos

Quizás a estas alturas ya te hayas dado cuenta de que, en cierto sentido, los espacios vectoriales con la misma dimensión se parecen mucho entre sí. Por ejemplo, los espacios vectoriales $\mathbb{R}^4$, $M_2(\mathbb{R}) $ y $\mathbb{R}_3[x]$ pueden pensarse «como el mismo» si identificamos a cada vector $(a,b,c,d)$ con la matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, o bien con el polinomio $a+bx+cx^2+dx^3$. Esta identificación es biyectiva y «respeta las operaciones».

Con esta motivación, veamos una definición formal.

Definición. Decimos que una transformación lineal $T:V\to W$ es un isomorfismo de espacios vectoriales si es biyectiva. Lo denotamos como $V\simeq_{T} W$, que se lee «$V$ isomorfo a $W$ mediante $T$».

Problema. Sea $T:V\to W$ un isomorfismo de espacios vectoriales. Prueba que su inversa $T^{-1}:W\to V$ es un isomorfismo de espacios vectoriales.

Demostración. La transformación $T^{-1}$ es biyectiva, pues es invertible de inversa $T$, así que sólo hace falta checar que $T^{-1}$ es lineal. Tomemos $w_1$, $w_2$ en $W$, y $c$ en el campo. Como $T$ es suprayectiva, podemos tomar $v_1=T^{-1}(w_1)$ y $v_2=T^{-1}(w_2)$. Entonces $T(v_1)=w_1$ y $T(v_2)=w_2$, así
\begin{align*}
T^{-1}(w_1+cw_2)&=T^{-1}(T(v_1)+cT(v_2))\\
&=T^{-1}(T(v_1+cv_2))\\
&=v_1+cv_2
\end{align*}

En la segunda igualdad estamos usando que $T$ es lineal. De esta forma, concluimos que $T^{-1}$ es lineal también.

$\square$

Formalicemos ahora sí nuestra intuición de que «todos los espacios vectoriales de la misma dimensión finta $n$ sobre un mismo campo se comportan igual». En términos matemáticos, decimos que «es posible clasificar los espacios vectoriales de dimensión finita distintos de $\{0\}$, salvo isomorfismos». Para mostrar esto, veremos que para cada entero positivo $n$ todos los espacios vectoriales de dimensión $n$ son isomorfos a $F^n$. El siguiente resultado da el isomorfismo de manera explícita.

Teorema. Sea $n$ un entero positivo y sea $V$ un espacio vectorial de dimensión finita sobre $F$. Si $B={e_1,\dots,e_n}$ es una base de $V$, entonces la transformación $i_B:F^n\to V$ definida por $$i_B(x_1,\dots,x_n)=x_1e_1+x_2e_2+\dots+x_ne_n$$ es un isomorfismo de espacios vectoriales.

La verificación de los detalles de este teorema queda como tarea moral. Como sugerencia, recuerda que una base $B$ de $V$ te permite expresar a cada vector de $V$ (de aquí saldrá la suprayectividad) de manera única (de aquí saldrá la inyectividad) como combinación lineal de elementos de $B$.

Corolario. Si $T:V\to W$ es un isomorfismo de espacios vectoriales, entonces $\dim V=\dim W$.

Bases ordenadas

Sea $V$ un espacio vectorial de dimensión finita $n$. Una base ordenada de $V$ es simplemente una base para la cual nos importa en qué orden están sus elementos. La escribimos con notación de paréntesis en vez de llaves, es decir, en vez de poner $B=\{v_1,\ldots,v_n\}$, ponemos $B=(v_1,\ldots,v_n)$ para hacer énfasis en el orden.

Ejemplo 1. El conjunto $\{(1,2),(3,4)\}$ es una base de $\mathbb{R}^2$. De aquí, podemos obtener dos bases ordenadas, $B=((1,2),(3,4))$ y $B’=((3,4),(1,2))$. Aunque tienen a los mismos elementos, las pensamos como bases ordenadas diferentes pues sus elementos aparecen en diferente orden.

Del mismo modo, las bases $B=(1,x,x^2,x^3)$ y $B’=(x^3,x^2,x,1)$ son la misma base de $\mathbb{R}_2[x]$, pero son distintas como bases ordenadas.

$\triangle$

Por las discusión en la sección anterior, la elección de una base ordenada en un espacio vectorial $V$ de dimensión $n$ nos permite identificar $V$ con $F^{n}$. Es decir, dada una base $B$, podemos «ponerle coordenadas» a los elementos de $V$. Dependiendo de la base ordenada escogida, es posible que obtengamos diferentes coordenadas.

Ejemplo 2. Consideremos el espacio vectorial $M_2(\mathbb{R})$. Se puede verificar que cada uno de los siguientes conjuntos ordenados son una base:

\begin{align*}
B&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B’&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B»&=\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)
\end{align*}

Como cada uno de ellos es una base, entonces podemos escribir a la matriz $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ como combinación lineal de elementos de cada uno de $B$, $B’$ o $B»$.

Si lo hacemos para $B$, tendríamos (en orden), a los coeficientes $1,2,3,4$, así que las coordenadas de $A$ en la base ordenada $B$ serían $(1,2,3,4)$.

Si lo hacemos para $B’$, tendríamos (en orden), a los coeficientes $1,3,2,4$, así que las coordenadas de $A$ en la base ordenada $B’$ serían $(1,3,2,4)$. Aunque $B$ y $B’$ tengan los mismos elementos, las coordenadas difieren pues como bases ordenadas $B$ y $B’$ son distintas.

Si lo hacemos para $B»$, tendríamos (en orden), a los coeficientes $1,1,1,1$, así que las coordenadas de $A$ en la base ordenada $B»$ serían $(1,1,1,1)$. Aquí obtenemos coordenadas muy distintas pues $B$ y $B»$ ni siquiera tienen a los mismos elementos.

$\triangle$

La forma matricial de una transformación lineal

Consideremos ahora espacios vectoriales $V$ y $W$ de dimensiones $n$ y $m$ respectivamente. Supongamos que tenemos una transformación lineal $T:V\to W$. Escogemos bases ordenadas $B_V=(v_1,\dots, v_n)$ y $B_W=(w_1,\dots,w_m)$ de $V$ y $W$ respectivamente. Ten cuidado, aquí $(v_1,\dots, v_n)$ no es un vector de $F^n$, sino una colección ordenada de vectores de $V$.

Por el teorema de caracterización de espacios vectoriales de dimensión finita, tenemos los isomorfismos $$i_{B_{V}}:F^n\to V,$$ $$i_{B_{W}}:F^m\to W.$$

¿Cómo podemos usar todas estas transformaciones para construir una transformación $F^n\to F^m$? La idea es usar el inverso de $i_{B_W}$ y componer todo.

Así, consideramos $\psi_T$ como la composición de las transformaciones $i_{B_{V}}, T, i_{B_{W}}^{-1}$, es decir, $$\psi_T:F^n\to F^m,$$ está dada por $$\psi_T=i_{B_W}^{-1}\circ T\circ i_{B_{V}}.$$

De esta forma, $\psi_T$ es una transformación lineal entre $F^n$ y $F^m$. ¡Este tipo de transformaciones ya las conocemos! Sabemos que $\psi_T$ se describe de manera única por medio de una matriz $A\in M_{m,n}(F).$ Esta es, por definición, la matriz asociada a $T$ con respecto a las bases $B_V$ y $B_W$ o bien la forma matricial de $T$. Dicha matriz depende fuertemente de las dos bases, así que la denotaremos como $\text{Mat}_{B_W,B_V}(T)$ . Por el momento sólo pongamos mucha atención en el orden en el que escribimos las bases en los subíndices. Es importante más adelante veremos que resulta útil escribirlo así.

Cuando $T:V\to V$ va de un espacio vectorial a sí mismo y usamos sólo una base $B$, simplificamos la notación a $\text{Mat}_B(T)$.

Evaluar $T$ usando su forma matricial

La construcción anterior parece muy complicada, pero en realidad es muy natural. Lo que está sucediendo es lo siguiente. Ya sabemos que toda transformación lineal entre $F^n$ y $F^m$ está dada por matrices. Podemos extender esto a una descripción de transformaciones lineales entre $V$ y $W$ identificando $V$ con $F^n$ y $W$ con $F^m$ vía la elección de bases en $V$ y $W$.

Notemos que si definimos $A:=\text{Mat}_{B_{W},B_{V}}(T)$, entonces tenemos que

$i_{B_{W}}(Ax)=T(i_{B_{V}}(x))$ … (1)

Esta igualdad nos va a ayudar a decir quién es $T$ en términos de las entradas de la matriz $A$. Sea $\{e_1,\dots,e_n\}$ la base canónica de $F^n$ y $\{f_1,\dots,f_m\}$ la base canónica de $F^m$. Si$ A=[a_{ij}]$, entonces por definición $Ae_i=a_{1i}f_1+\dots+a_{mi}f_{m}$, así para $x=e_i$ se tiene

$i_{B_{W}}(Ax)=i_{B_{W}}(a_{1i}f_1+\dots + a_{mi}f_m) = a_{1i}w_1+\dots + a_{mi}w_m.$

Por otro lado, $i_{B_{V}}(e_i)=v_i$, de manera que la relación (1) es equivalente a la relación

$T(v_i)=a_{1i}w_1+\dots + a_{mi}w_m$

Aquí empieza a haber mucha notación, pero no hay que perderse. Hasta ahora lo que tenemos es que «podemos saber cuánto vale la transformación $T$ en cada elemento de la base de $V$ en términos de la matriz $A$». ¡Este es un paso importante, pues en la entrada anterior vimos que basta saber qué le hace una transformación a los elementos de la base para saber qué le hace a cualquier vector! Resumimos lo obtenido hasta ahora.

Proposición. Sea $T:V\to W$ una transformación lineal y sean $B_V=\{v_1,\dots v_n\}, B_W=\{w_1,\dots,w_m\}$ bases en $V$ y $W$, respectivamente. Escribamos $\text{Mat}_{B_W,B_V}(T)=[a_{ij}]$. Entonces para toda $1\leq i\leq n$ se tiene $$T(v_i)=\displaystyle\sum_{j=1}^m a_{ji}w_j.$$

Así, si tenemos la matriz $A$ que representa a $T$ en las bases $B_V$ y $B_W$ y un vector arbitrario $v$ en $V$, para saber quién es $T(V)$ basta:

  • Usar la proposición anterior para saber quién es $T(v_i)$ para cada $v_i$ en la base $B_V$.
  • Expresar a $v$ en términos de la base $B_V$ como, digamos, $v=c_1v_1+\ldots+c_nv_n$.
  • Usar que $T$ es lineal para concluir que $T(v)=c_1T(v_1)+\ldots+c_nT(v_n)$ y usar los valores de $T(v_i)$ encontrados en el primer inciso.

Forma matricial de composiciones de transformaciones lineales

Para finalizar esta entrada queremos entender la relación entre la composición $S\circ T$ de transformaciones lineales y las matrices asociadas de $T$ y $S$. En otras palabras, sean $T:V\to W$ y $S:W\to U$ transformaciones lineales fijas y supongamos que $m=dimV$, $n=dimW$, $p=dimU$. También fijemos las bases $B_U, B_V, B_W$ en $U,V,W$, respectivamente. Para simplificar las cosas escribamos

$\mathcal{A}=\text{Mat}_{B_U,B_W}(S)$ y $\mathcal{B}=\text{Mat}_{B_W,B_V}(T)$

Con respecto a las bases $B_U,B_V,B_W$ se tienen los isomorfismos $i_{B_U}, i_{B_V}, i_{B_W}$ definidos como lo hicimos anteriormente en esta misma entrada del blog, y por definición de $\mathcal{A}, \mathcal{B}$ se tiene

$i_{B_W}(\mathcal{B}x)=T(i_{B_V}(x))$ con $x\in F^m$,

$i_{B_U}(\mathcal{A}y)=S(i_{B_W}(y))$ con $y\in F^n$.

Aplicando $S$ en la primera relación y después usando la segunda relación, se tiene para $x\in F^m$

$(S\circ T)(i_{B_V}(x))=S(i_{B_W}(\mathcal{B}x))=i_{B_U}(\mathcal{A} \mathcal{B}x)$.

Esta última relación y la definición de $\text{Mat}_{B_U,B_V}(S\circ T)$ nos muestra que

$\text{Mat}_{B_U,B_V}(S\circ T)=\mathcal{A} \cdot \mathcal{B}$.

En otras palabras, la composición de transformaciones lineales se reduce a multiplicar sus matrices asociadas o de manera más formal

Teorema. Sean $T:V\to W$ y $S:W\to U$ transformaciones lineales entre espacios vectoriales de dimensión finita y sean $B_U, B_V, B_W$ bases de $U,V,W$, respectivamente. Entonces

$\text{Mat}_{B_U,B_V}(S\circ T)=\text{Mat}_{B_U,B_W}(S)\cdot \text{Mat}_{B_W,B_V}(T).$

Cuando tenemos transformaciones lineales de un espacio vectorial $V$ a sí mismo, y usamos la misma base $B$, el resultado anterior se puede escribir de una manera más sencilla.

Corolario. Sean $T_1,T_2:V\to V$ transformaciones lineales en un espacio vectorial de dimensión finita $V$, y sea $B$ una base de $V$. Entonces

$\text{Mat}_{B}(T_1\circ T_2)=\text{Mat}_{B}(T_1)\cdot \text{Mat}_{B}(T_2)$.

Más adelante…

En esta entrada comenzamos con una transformación lineal $T:V\to W$ y bases ordenadas de de $V$ y $W$ para representar a $T$ como una matriz. Así mismo, vimos cómo tras una elección de base podemos pensar a cualquier vector en términos de sus «coordenadas», usando a los coeficientes que permiten expresarlo (de manera única) como combinación lineal de elementos de la base. Las matrices y coordenadas que así obtenemos nos ayudarán mucho. Sin embargo, será fundamental entender qué es lo que sucede con estas representaciones cuando elegimos bases diferentes, y cómo podemos cambiar de ciertas coordenadas o matrices a otras cuando hacemos un cambio de base. Esto es lo que estudiaremos en las siguientes entradas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que la relación «son isomorfos» para espacios vectoriales es una relación de equivalencia.
  • Muestra que la transformación $i_B$ dada en el teorema de clasificación de espacios vectoriales de dimensión finita en efecto es un isomorfismo.
  • Asegúrate de entender el último corolario.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»