Archivo de la etiqueta: transformación lineal

Álgebra Lineal I: Problemas de formas cuadráticas y producto interior

Por Blanca Radillo

Introducción

En las últimas sesiones, hemos introducido el tema de formas bilineales y formas cuadráticas. Más adelante, hablamos de positividad de formas cuadráticas y de producto interior. Ahora veremos algunos problemas de formas cuadráticas y producto interior.

Problemas resueltos de formas cuadráticas

Sabemos que si $T:V\times V\rightarrow \mathbb{R}$ es una transformación lineal, $T$ no necesariamente es una forma bilineal (durante la clase del viernes se discutió un ejemplo), entonces una pregunta interesante es ¿qué información tenemos sobre el núcleo de una forma cuadrática? Es fácil ver que una forma cuadrática no es una transformación lineal, pero está asociada a una forma bilineal. Interesadas en esta pregunta, analizaremos algunas propiedades del núcleo de una forma bilineal y de una forma cuadrática.

Problema 1. a) Si $q$ es una forma cuadrática en $\mathbb{R}^n$, ¿el conjunto $\{ x\in \mathbb{R}^n: q(x)=0 \}$ es un subespacio de $\mathbb{R}^n$?
b) Describe ${ x\in \mathbb{R}^n:q(x)=0}$ si:
1) $q(x,y)=x^2+y^2$,
2) $q(x,y,z)=xy+yz+zx$
3) $q(x,y,z)=(x-y)^2+(y-z)^2+(z-x)^2$.

Solución. a) La respuesta es: no, el conjunto $\{ x\in \mathbb{R}^n: q(x)=0 \}$ no necesariamente es un subespacio, ya que no necesariamente es cerrado bajo la suma. Daremos un ejemplo.

Sea $q:\mathbb{R}^2\rightarrow \mathbb{R}$ definido como $q((x,y))=x^2-y^2$. Sabemos que ésta es una forma cuadrática. Notemos que para todo $x,y \in\mathbb{R}$, si $v_1=(x,x),v_2=(y,-y)$, entonces $q(v_1)=x^2-x^2=0$ y $q(v_2)=y^2-(-y)^2=0$, entonces $v_1,v_2 \in \{ x\in \mathbb{R}^n: q(x)=0 \}$. Pero $v_1+v_2=(x+y,x-y)$ no pertenecen al núcleo de $q$, ya que $q(v_1+v_2)=q((x+y,x-y))=(x+y)^2-(x-y)^2=4xy\neq 0$ si $x,y\neq 0$.

b.1) Sea $(x,y)\in\mathbb{R}^2$ tal que $q((x,y))=x^2+y^2=0$. Como $x,y\in\mathbb{R}$, sabemos que la única posibilidad en que la suma de dos cuadrados sea cero es que ambos sean cero, por lo tanto $\{ x\in \mathbb{R}^2: q(x)=0 \}=\{(0,0)\}$.

b.2) Sea $(x,y,z)\in\mathbb{R}^3$ tal que $q((x,y,z))=xy+yz+zx=0$. Si $x=0$ entonces $yz=0$, esto es posible sólo si $y=0$ o $z=0$. Entonces el núcleo contiene a los ejes $(x,0,0)$, $(0,y,0)$ y $(0,0,z)$. Ahora, si $x=-y$, entonces $xy+yz+zx=-x^2-xz+zx=-x^2=0$, por lo tanto $x=0=y$, obteniendo nuevamente a los ejes. Ahora suponemos que $x+y\neq 0$. Entonces $xy+yz+zx=xy+z(x+y)=0$, obteniendo que $z=-\frac{xy}{x+y}$ (el cono elíptico). Por lo tanto el núcleo de $q$ son los ejes y el cono elíptico.

b.3) Sea $(x,y,z)\in\mathbb{R}^3$ tal que $q((x,y,z))=(x-y)^2+(y-z)^2+(z-x)^2=0$. Al igual que en el inciso (b.1), esto sólo es posible si $x-y=y-z=z-x=0$, entonces $x=y=z$. Por lo tanto, $\{ x\in \mathbb{R}^n: q(x)=0 \}=\{(x,x,x):x\in\mathbb{R}\}$.

$\triangle$

Problema 2. Sea $V=P_2(\mathbb{R})$ el espacio de polinomios en $[-1,1]$ con coeficientes reales de grado a lo más 2 y considera el mapeo $b:V\times V\rightarrow \mathbb{R}$ definido como

$b(f,g)=\int_{-1}^1 tf(t)g(t) dt.$

Prueba que $b$ es una forma bilineal simétrica de $V$. Si $q$ es la forma cuadrática asociada, encuentra las $f$ en $V$ tales que $q(f)=0$.

Solución. Mostrar que $b$ es bilineal es sencillo, y queda como tarea moral. Es fácil ver que es simétrica, ya que

\begin{align*}
b(f,g)&=\int_{-1}^1 tf(t)g(t) dt \\
&=\int_{-1}^1 tg(t)f(t)dt=b(g,f).
\end{align*}

Ahora, queremos encontrar las funciones $f$ tales que $q(f)=b(f,f)=\int_{-1}^1 tf^2(t)dt=0$. Como $f$ es un polinomio de grado $2$, es de la forma $f(x)=ax^2+bx+c$ para reales $a,b,c$ y entonces

\begin{align*}
0&=q(f)\\
&=\int_{-1}^1 tf^2(t)dt \\
&=\int_{-1}^1 t(at^2+bt+c)^2dt \\
& = \int_{-1}^1 t(a^2t^4+2abt^3+(b^2+2ac)t^2+2bct+c^2)dt \\
&=\int_{-1}^1 (a^2t^5+2abt^4+(b^2+2ac)t^3+2bct^2+c^2t)dt \\
&=\frac{4ab}{5}+\frac{4bc}{3}=0
\end{align*}

Esto implica que $4b(3a+5c)=0$, entonces $b=0$ o $3a+5c=0$. Por lo tanto $$\{f\in V:q(f)=0\}=\{ax^2+c \}\cup \{ax^2+bx-\frac{3a}{5}\}.$$

$\square$

Problemas resueltos de producto interior

Ahora recordemos que en la clase de ayer, definimos formas bilineales y cuadráticas positivas y definidas positivas, y a partir de ello, definimos qué es un producto interior. Así, en los siguientes problemas, veremos algunos ejemplos de estas definiciones.

Problema 3. Determina cuáles de las siguientes formas cuadráticas son positivas. ¿Cuáles también son definidas positivas?

  1. $q(x,y,z)=xy+yz+zx$.
  2. $q(x,y,z)=(x-y)^2+(y-z)^2+(z-x)^2$.
  3. $q(x,y,z)=x^2-y^2+z^2-xy+2yz-3zx$.

Solución. Sea $v=(x,y,z)\in\mathbb{R}^3$, recordemos que para cada uno de los incisos $q$ es positiva si $q(v)\geq 0$ para toda $v$ y es definida positiva si es positiva y $q(v)=0$ si y sólo si $v=0$.

1) Si escogemos a $v$ como $v=(1,-2,1)$ tenemos que
\begin{align*}q(v)&=q(1,-2,1)\\&=1(-2)+(-2)(1)+1(1)\\&=-2-2+1\\&=-3.\end{align*} Por lo tanto no es positiva ni definida positiva.

2) Dado que para todo $x,y,z$, tenemos que $(x-y)^2,(y-z)^2,(z-x)^2\geq 0$, entonces $q(v)\geq 0$ para todo $v\in\mathbb{R}^3$. Pero si $q(v)=0$, entonces $x=y=z$, pero no necesariamente son iguales a cero. Por lo tanto, $q$ es positiva pero no es definida positiva.

3) Si tomamos $v=(3,0,3)$, obtenemos que \begin{align*}q(v)&=(3)^2+(3)^2-3(3)(3)\\&=9+9-27\\&=-9\\&<0.\end{align*} Por lo tanto no es positiva ni definida positiva.

$\triangle$

Problema 4. Sea $V=C([a,b],\mathbb{R})$. Prueba que el mapeo $\langle \cdot , \cdot \rangle$ definido por $$\langle f,g \rangle = \int_a^b f(x)g(x) dx$$ es un producto interior en $V$.

Solución. Por lo visto en la clase de ayer, tenemos que un producto interior es una forma bilineal simétrica y definida positiva.
Es fácil ver que es forma bilineal simétrica. Basta con probar que es una forma definida positiva. Entonces $\langle f,f\rangle=\int_0^1 f^2(x)dx \geq 0$ ya que $f^2(x)\geq 0$ para toda $x$. Por lo tanto $\langle \cdot, \cdot \rangle$ es positiva. Como $f^2$ es continua y positiva, si $\int_0^1 f^2(x)dx=0$, implica que $f^2=0$, entonces $f=0$. Por lo tanto, $\langle \cdot , \cdot \rangle$ es definida positiva, y por ende, es un producto interior.

$\triangle$

Para finalizar, el siguiente problema es un ejemplo que pareciera ser producto interior, pero resulta que no serlo.

Problema 5. Sea $C^\infty([0,1],\mathbb{R})$ es el espacio de funciones suaves (funciones continuas cuyas derivadas de cualquier orden existen y son continuas). Definimos el espacio $V={ f\in C^\infty([0,1],\mathbb{R}): f(0)=f(1)=0 }$. Si definimos $$\langle f,g \rangle:=\int_0^1 (f(x)g'(x)+f'(x)g(x))dx,$$ ¿es $\langle \cdot , \cdot \rangle$ un producto interior en $V$?

Solución. Es claro ver que $\langle \cdot, \cdot \rangle$ es bilineal y simétrica, entonces falta demostrar si es o no es una forma definida positiva. Para $f\in V$, tenemos que $\langle f,f \rangle=\int_0^1 2f(x)f'(x)dx.$

Notemos que, por la regla de la cadena, $\frac{d}{dx}f^2(x)=2f(x)f'(x)$, entonces \begin{align*}\langle f,f \rangle&=\int_0^1 \frac{d}{dx} f^2(x) dx\\&=f^2(1)-f^2(0)\\&=0.\end{align*}

Por lo tanto $\langle f,f\rangle=0$ para toda $f$. Esto implica que no es definida positiva, y como consecuencia, no es producto interior de $V$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Ortogonalidad y transformación transpuesta

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya estudiamos la noción de espacio dual y la de ortogonalidad. También vimos cómo a partir de la ortogonalidad podemos definir subespacios como intersección de hiperplanos. Como veremos a continuación, la ortogonalidad también nos permite definir qué quiere decir que consideremos la «transformación transpuesta» de una transformación lineal.

Antes de comenzar, vale la pena recordar también que cada transformación lineal entre espacios de dimensión finita puede ser expresada mediante una matriz que depende de la elección de bases de los espacios vectoriales. Como tal vez te imaginarás, la transformación transpuesta tendrá como matriz a la matriz transpuesta de la transformación original.

Esta intuición nos dice que hay que tener cuidado. Supongamos que estamos trabajando sobre un campo $F$. Si tenemos espacios vectoriales $V$ de dimensión $n$, $W$ de dimensión $m$ y una tranformación lineal $T:V\to W$, recordemos que, tras elegir bases, $T$ está representada por una matriz $A$ en $M_{m,n}(F)$, es decir, con $m$ filas y $n$ columnas.

Pero la matriz transpuesta $^t A$ es de $n$ filas y $m$ columnas, así que típicamente no representará a una transformación de $V$ a $W$, pues las dimensiones no necesariamente coinciden. Podríamos intentar construir una transformación de $W$ a $V$ para que las dimensiones coincidan, pero resulta que esto no es «tan natural», por razones en las que no profundizaremos.

Lo que sí resulta muy natural y fácil de definir es una transformación de $W^\ast$ a $V^\ast$, lo cual tendrá sentido pues ya probamos que $\dim W^\ast = \dim W$ y $\dim V^\ast = \dim V$, así que será representada por una matriz en $M_{n,m}$. Es un poco más difícil conceptualmente, pero las consecuencias matemáticas son más bonitas y útiles. Sin decir más, comenzamos con la teoría.

Definición y ejemplo de transformación transpuesta

Para definir «transformación transpuesta», le hacemos como sigue.

Definición. Sean $V$ y $W$ espacios vectoriales sobre un campo $F$ y sea $T:V\to W$ una transformación lineal. Definimos la transformación transpuesta de $T$, como la transformación $^tT:W^\ast \to V^\ast$ tal que a cada forma lineal $l$ en $W^\ast$ la manda a la forma lineal $^tT(l)$ en $V^\ast$ para la cual $$(^tT(l))(v)=l(T(v)).$$

Otra forma de escribir a la definición es mediante la notación de emparejamiento canónico: $$\langle ^tT(l),v\rangle=\langle l, T(v)\rangle.$$

Veamos un ejemplo para entender mejor la definición.

Ejemplo. Considera a $V=M_{2}(\mathbb{R})$ y $W=\mathbb{R}^2$. Considera la transformación lineal $T:V\to W$ dada por $$T\begin{pmatrix} a& b\\ c&d\end{pmatrix}=(a+b,c+d).$$

La transformación $^t T$ va a mandar a una forma lineal $l$ de $W$ a una forma lineal $^tT(l)$ de $V$. Las formas lineales $l$ en $W$ se ven de la siguiente forma $$l(x,y)=rx+sy.$$ La forma lineal $^tT(l)$ en $V$ debe satisfacer que $^tT(l)=l\circ T$. En otras palabras, para cualquier matriz $\begin{pmatrix} a& b\\ c&d\end{pmatrix}$ se debe tener
\begin{align*}
(^t T(l)) \begin{pmatrix} a& b\\ c&d\end{pmatrix} &= l(a+b,c+d)\\
&=r(a+b)+s(c+d)\\
&=ra+rb+sc+sd.
\end{align*}

Si tomamos la base canónica $E_{11}$, $E_{12}$, $E_{21}$, $E_{22}$ de $V$ y la base canónica $e_1,e_2$ de $W$, observa que la transformación $T$ tiene como matriz asociada a la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\end{pmatrix}$$ (recuerda que se obtiene poniendo como columnas a los vectores coordenada de las imágenes de la base).

Por otro lado, los vectores de la base dual $e_1^\ast$ y $e_2^\ast$ «leen las coordenadas», de modo que $e_1^\ast(x,y)=x$ y $e_2^\ast(x,y)=y$. Por lo que vimos arriba, $(^t T)(e_1)$ es entonces la forma lineal $a+b$ y $(^t T)(e_2)$ es la forma lineal $c+d$. En términos de la base dual en $V^\ast$, estos son $E_{11}^\ast + E_{12}^\ast$ y $E_{21}^\ast+ E_{22}^\ast$ respectivamente. De esta forma, la transformación $^t T$ tiene matriz asociada $$\begin{pmatrix}1&0\\1&0\\0&1\\0&1\end{pmatrix}.$$

$\triangle$

Nota que en el ejemplo la transformación transpuesta tiene como matriz a la matriz transpuesta de la transformación original. Esto es algo que queremos que pase siempre, y más abajo lo demostramos.

Propiedades básicas de transformación transpuesta

Observa que la definición no necesita que $V$ y $W$ sean de dimensión finita. A continuación enunciamos y probamos algunos resultados que se valen también en el contexto de dimensión infinita.

Teorema 1. Tomemos $V$,$W$,$Z$ espacios vectoriales sobre un campo $F$ y $c$ en $F$. Sean $T_1,T_2: V \to W$ transformaciones lineales. Sea $T_3:W\to Z$ una transformación lineal. Se cumple todo lo siguiente:

  1. $^tT_1$ es una transformación lineal.
  2. $^t(T_1+cT_2)= {^tT_1} + c^tT_2$.
  3. $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$.
  4. Si $V=W$ y $T_1$ es invertible, entonces $^t T_1$ también lo es y $(^t T_1)^{-1}= {^t (T_1^{-1})}$.

Para tener un poco más de intuición, observa cómo estas propiedades son análogas a las de transposición para matrices.

Demostración. Las partes 1 y 2 se demuestran usando cuidadosamente las definiciones. Haremos la demostración de $1$ y la demostración de $2$ queda como tarea moral. Para probar $1$, necesitamos probar que $^tT_1:W^\ast \to V^\ast$ es lineal, así que tomemos $l_1$, $l_2$ en $W^\ast$ y $a$ un escalar en $F$. Tenemos que demostrar que $$ ^tT_1(l_1+a l_2)= {^tT_1(l_1)}+ a ^tT_1(l_2).$$

Ésta es una igualdad de formas lineales en $V^\ast$, y para mostrar su validez tenemos que mostrar que se vale en cada $v\in V$. Por un lado,
\begin{align*}
^tT_1(l_1+a l_2)(v) &= (l_1+a l_2)(T_1(v))\\
&=l_1(T_1(v))+a l_2(T_1(v)).
\end{align*}

Por otro lado,
\begin{align*}
(^tT_1(l_1)+ a ^tT_1(l_2))(v)&= {^tT_1(l_1)(v)}+ a ^tT_1(l_2)(v)\\
&= l_1(T_1(v)) + a l_2(T_1(v)).
\end{align*}

En ambos casos obtenemos el mismo resultado, así que $^tT_1(l_1+a l_2)$ y $^tT_1(l_1)+ a ^tT_1(l_2)$ son iguales, mostrando que $^t T_1$ es lineal.

Pasemos a la parte 3. La igualdad $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$ es una igualdad de transformaciones de $Z^\ast$ a $V^\ast$. Para verificar su veracidad, hay que ver que son iguales en cada elemento en su dominio. Tomemos entonces una forma lineal $l$ en $Z^\ast$. Queremos verificar la veracidad de $$ ^t(T_3\circ T_1)(l) = (^t T_1 \circ ^t T_3)(l),$$ que es una igualdad de formas lineales en $V^\ast$, de modo que tenemos que verificarla para cada $v$ en $V$. Por un lado,

\begin{align*}
^t(T_3\circ T_1)(l)(v)&=l((T_3\circ T_1)(v))\\&=l(T_3(T_1(v))),
\end{align*}

Por otro,
\begin{align*}
(^t T_1 \circ ^t T_3)(l)(v)&=(^tT_1(^t T_3 (l)))(v)\\&=(^t T_3 (l))(T_1(v))\\&=l(T_3(T_1(v))).
\end{align*}

En ambos casos obtenemos el mismo resultado.

Para la parte 4 basta notar que si $V=W$ y $T_1$ es invertible, entonces tiene una inversa $S:V\to V$, y por la parte $3$ tenemos que $$^t S\circ ^t T_1 = {^t(T_1\circ S)} = {^t \text{Id}_V} = \text{Id}_{V^\ast},$$

mostrando que $^t T_1$ tiene inversa $^tS$. Observa que estamos usando que la transpuesta de la transformación identidad es la identidad. Esto no lo hemos probado, pero lo puedes verificar como tarea moral.

$\square$

La matriz transpuesta es la matriz de la transformación transpuesta

Cuando estamos trabajando en espacios de dimensión finita, podemos mostrar que la matriz que le toca a la transformación transpuesta es precisamente la transpuesta de la matriz que le toca a la transformación original. Hacemos esto más preciso en el siguiente resultado.

Teorema 2. Sea $T:V\to W$ una transformación lineal entre espacios de dimensión finita y $B$ y $B’$ bases de $V$ y $W$ respectivamente. Si $A$ es la matriz de $T$ con respecto a $B$ y $B’$, entonces $^t A$ es la matriz de la transformación $^t T:W^\ast \to V^\ast$ con respecto a las bases duales $B’^\ast$ y $B^\ast$.

Demostración. Necesitamos definir algo de notación. Llamemos $n=\dim V$, $m=\dim W$, $B=\{b_1,\ldots, b_n\}$, $B’=\{c_1,\ldots, c_m\}$ y $A=[a_{ij}]$. Recordemos que la matriz $A$ está hecha por las coordenadas de las imágenes de la base $B$ en términos de la base $B’$, es decir, que por definición tenemos que para toda $j=1,\ldots, n$: \begin{equation}T(b_j)=\sum_{i=1}^{m} a_{ij} c_i.\end{equation}

La transformación $^t T:W^\ast \to V^\ast$ va de un espacio de dimensión $m$ a uno de dimensión $n$, así que en las bases $B’^\ast$ y $B^\ast$ se puede expresar como una matriz de $n$ filas y $m$ columnas. Afirmamos que ésta es la matriz $^t A$. Para ello, basta mostrar que las coordenadas de las imágenes de la base $B’^\ast$ en términos de la base $B^\ast$ están en las filas de $A$, es decir, que para todo $i=1, \ldots, m$ tenemos que $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast.$$

La anterior es una igualdad de formas lineales en $V^\ast$, de modo que para ser cierta tiene que ser cierta evaluada en todo $v$ en $V$. Pero por linealidad, basta que sea cierta para todo $b_j$ en la base $B$. Por un lado, usando (1),

\begin{align*}
^tT(c^\ast_i)(b_j)&=c^\ast_i(T(b_j))\\
&=c^\ast_i \left(\sum_{k=1}^{m} a_{kj} c_i\right)\\
&=\sum_{k=1}^{m} a_{kj} c^\ast_i(c_k)\\
&=a_{ij},
\end{align*}

en donde estamos usando que por definición de base dual $c_i^\ast (c_i)= 1$ y $c_j^\ast (c_i)=0$ si $i\neq j$. Por otro lado,

\begin{align*}
\left(\sum_{k=1}^{n} a_{ik} b_k^\ast\right)(b_j)&= \sum_{k=1}^{n} a_{ik} b_k^\ast(b_j)\\
&=a_{ij},
\end{align*}

en donde estamos usando linealidad y la definición de base dual para $B$.

Con esto concluimos la igualdad $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast,$$ que muestra que podemos leer las coordenadas de las evaluaciones de $^t T$ en $B’^\ast$ en términos de la base $B^\ast$ en las filas de $A$, por lo tanto podemos leerlas en las columnas de $^t A$. Esto muestra que $^t A$ es la matriz correspondiente a esta transformación en términos de las bases duales.

$\square$

Kernel e imagen de la transformación transpuesta

Finalmente, el siguiente resultado nos habla acerca de cómo están relacionadas las transformaciones transpuestas y la ortogonalidad.

Teorema 3. Sea $T:V\to W$ una transformación lineal entre espacios vectoriales de dimensión finita. Entonces

$$\ker (^t T) = (\Ima (T))^\bot,\quad \ker (T)=(\Ima (^t T))^\bot$$

y

$$\Ima (^t T) = (\ker(T))^\bot\,\quad \Ima (T)=(\ker(^t T))^\bot.$$

Demostración. Demostraremos la igualdad $\ker (^t T) = (\Ima (T))^\bot$. Notemos que $l \in \ker(^t T)$ si y sólo si $(^t T)(l)=0$, lo cual sucede si y sólo si $l\circ T = 0$. Pero esto último sucede si y sólo si para todo $v$ en $V$ se tiene que $l(T(v))=0$, que en otras palabras quiere decir que $l(w)=0$ para todo $w$ en $\Ima (T)$. En resumen, $l\in \ker(^t T)$ pasa si y sólo si $l$ se anula en todo $\Ima (T)$ es decir, si y sólo si está en $(\Ima (T))^\bot$.

El resto de las igualdades se demuestran de manera análoga, o alternativamente, usando la bidualidad canónica. Es un buen ejercicio hacerlo y se deja como tarea moral.

$\square$

Más adelante…

En esta entrada enunciamos un resultado muy importante: dada una transformación lineal $T$, su transformación transpuesta tiene como matriz asociada la matriz transpuesta de la matriz asociada de $T$. Este resultado nos permitirá calcular fácilmente la transpuesta de una transformación, como veremos en la entrada de problemas de este tema.

En la siguiente entrada del blog hablaremos por primera vez de formas bilineales: vamos a ver cómo nuestra discusión de transformaciones lineales facilitará mucho abordar este tema.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la transpuesta de la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=T(7x+8y,6x+7y)$ es invertible. Encuentra a su transpuesta y a la inversa de la transpuesta explícitamente.
  • Muestra la parte $2$ del Teorema 1.
  • Muestra que la transpuesta de la transformación identidad es la identidad.
  • Demuestra el resto de las igualdades del Teorema 3.
  • Encuentra la transpuesta de la transformación traza que va de $M_n(\mathbb{R})$ a los reales. Recuerda que esta transformación manda a una matriz $A=[a_{ij}]$ a la suma de sus entradas en la diagonal principal, es decir $$A\mapsto a_{11}+a_{22}+\ldots+a_{nn}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de rango de transformaciones y matrices.

Por Ayax Calderón

Introducción

Con anterioridad vimos el concepto de rango de una matriz y rango de una transformación lineal, además del muy importante teorema de rango-nulidad y la desigualdad de Sylvester. Vimos también, como contenido optativo, el versátil teorema de la factorización $PJQ$. En esta ocasión nos enfocaremos en resolver problemas de rango que nos servirán para repasar dichos conceptos.

Problemas resueltos

Problema 1. Encuentra el kernel y el rango de la transformación lineal $T:\mathbb{R}_2[x] \longrightarrow \mathbb{R}_3[x]$ definida por $$T(f(x))=2f'(x) + \int _{0}^{x} 3f(t)dt.$$

Antes de comenzar a leer la solución, es conveniente que te convenzas de que $T$ es una transformación lineal y que está bien definida, es decir, que en efecto toma un polinomio de grado a lo más dos con coeficientes reales y lo lleva a un polinomio de grado a lo más tres con coeficientes reales.

Solución. Consideremos $\mathcal{B}=\{1, x, x^2\}$ la base canónica de $\mathbb{R}_2[x]$.
Entonces
\begin{align*}
\Ima(T)&=\text{span}(\{T(1),T(x),T(x^2)\})\\
&= \text{span}(\{3x,2+\frac{3}{2}x^2,4x+x^3\}).
\end{align*}

Para determinar el rango de $\Ima{T}$, colocamos a las coordenadas de estas imágenes en la siguiente matriz $A$,

$$A=\begin{pmatrix}
0 & 3 & 0 & 0\\
2 & 0 & \frac{3}{2} & 0\\
0 & 4 & 0 & 1 \end{pmatrix}$$

y con el algoritmo de reducción gaussiana llegamos a que

$$A_{red}=\begin{pmatrix}
1 & 0 & \frac{3}{4} & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 \end{pmatrix}$$

Como $A_{red}$ tiene $3$ pivotes se sigue que $\rank(T)=3$.

Luego, por el teorema de rango nulidad se tiene que

\begin{align*}
3&=\dim(\mathbb{R}_2[x])\\
&= \dim (\ker (T))+\rank(T)\\
&=\dim(\ker(T))+3.
\end{align*}

Así, $\dim(\ker(T))=0$, por lo tanto $\ker(T)=\{0\}$.

$\triangle$

La desigualdad de Sylvester nos ayuda a acotar el rango de una suma de matrices por abajo. La desigualdad $$\rank(A+B)\leq \rank(A)+\rank(B)$$ nos ayuda a acotarlo por arriba. Combinar ambas ideas puede ser útil en problemas de rango de matrices.

Problema 2. Sea $A\in M_n(\mathbb{C})$ una matriz idempotente. Prueba que $$\rank(A)+\rank(I_n-A)=n.$$

Recuerda que una matriz es idempotente si $A^2=A$.

Solución. Como $A^2=A$, entonces $A(I_n – A)=O_n$.
Luego, por la desigualdad de Sylvester se tiene que
\begin{align*}
0&=\rank(O_n)\\
&=\rank(A(I_n-A))\\
&\geq \rank(A) + \rank(I_n-A)-n,
\end{align*}

entonces $$\rank(A)+\rank(I_n-A)\leq n.$$

Por otro lado, como para cualesquiera matrices $X,Y$ se tiene
$\rank(X+Y)\leq \rank(X)+\rank(Y)$, entonces
$$n=\rank(I_n)\leq \rank(A) + \rank(I_n-A),$$
de modo que $$n\leq \rank(A)+\rank(I_n – A).$$

Combinando ambas desigualdades, $$\rank(A)+\rank(I_n-A)=n.$$

$\square$

Problema 3. Encuentra el rango de la transformación lineal $T:\mathbb{R}_2[x]\longrightarrow M_2(\mathbb{R})$ definida por
$$T(f(x))=\begin{pmatrix}
f(1)-f(2) & 0\\
0 & f(0)\end{pmatrix}.$$

Solución. Para determinar el rango, basta tomar una base, encontrar la imagen de sus elementos bajo $T$ y determinar cuántos de estos elementos son linealmente independientes. Considera $\mathcal{B}=\{1,x,x^2\}$ la base canónica de $\mathbb{R}_2[x]$. Tenemos que

\begin{align*}
\Ima(T)&=\text{span}(T(\mathcal{B}))\\
&=\text{span}(\{T(1), T(x), T(x^2)\})\\
&=\text{span}\left(\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix}, \begin{pmatrix}
-3 & 0\\
0 & 0\end{pmatrix} \right\} \right )\\
&=\text{span}\left (\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix} \right\} \right ).
\end{align*}

Notemos también que $\mathcal{C}=\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix}} \right\}$ es linealmente independiente.

Por lo tanto $\mathcal{C}$ es una base para $\Ima(T)$ y así $\rank(T)=2$.

$\triangle$

Problema 4. Sean $A\in M_{3,2}(\mathbb{R})$ y $B\in M_{2,3}(\mathbb{R})$ matrices tales que
$$AB=\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix} $$

Muestra que $BA$ es la identidad.

El enunciado no parece mostrar que este sea uno de los problemas de rango de matrices. Sin embargo, para poder resolverlo usaremos las herramientas que hemos desarrollado hasta ahora.

Partiremos el problema en los siguientes pasos.

  1. Verificar que $(AB)^2=AB$ y que $\rank(AB)=2$.
  2. Probar que $BA$ es invertible.
  3. Probar que $(BA)^3=(BA)^2$ y deducir que $BA=I_2$.

Solución.

1. Realizamos la operación matricial:

$$\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}=\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}$$

Ahora, aplicando reducción gaussiana en $AB$ obtenemos que $$(AB)_{red}=\begin{pmatrix}
1 & 0 & -1\\
0 & 1 & 1\\
0 & 0 & 0\end{pmatrix}.$$

Como $(AB)_{red}$ tiene sólo dos pivotes, entonces $\rank(AB)=2$.

2. Usando la desigualdad de rango para producto de matrices, obtenemos que
\begin{align*}
\rank(BA)&\geq \rank(A(BA)B)\\
&=\rank((AB)^2)\\
&=\rank(AB)=2.
\end{align*}

Entonces, $\rank(BA)\geq 2$. Por otro lado, como $BA\in M_2(\mathbb{R})$, entonces $\rank(BA)\leq 2$. Así, $\rank(BA)=2$ y $BA$ es una matriz en $M_2(\mathbb{R})$, así que es invertible.

3. Como $(AB)^2=AB$, entonces $B(AB)^2 A=B(AB)A=(BA)^2$. Por consiguiente $BABABA=(BA)^2$ y así $(BA)^3=(BA)^2$ y como $BA$ es invertible, podemos multiplicar en ambos lados de esta última igualdad por $((BA)^{-1})^2$ para obtener $BA=I_2$.

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»