Archivo de la etiqueta: regla de la cadena

Cálculo Diferencial e Integral III: Regla de la cadena para campos vectoriales

Por Alejandro Antonio Estrada Franco

Introducción

Tenemos ya la definición de diferenciabilidad, y su versión manejable: la matriz jacobiana. Seguiremos construyendo conceptos y herramientas del análisis de los campos vectoriales muy importantes e interesantes. A continuación, enunciaremos una nueva versión de la regla de la cadena, que nos permitirá calcular las diferenciales de composiciones de campos vectoriales entre espacios de dimensión arbitraria. Esta regla tiene numerosas aplicaciones y es sorprendentemente fácil de enunciar en términos de producto de matrices.

Primeras ideas hacia la regla de la cadena

La situación típica de regla de la cadena es considerar dos funciones diferenciables que se puedan componer. A partir de ahí, buscamos ver si la composición también es diferenciable y, en ese caso, intentamos dar la derivada de la composición en términos de las derivadas de las funciones. Veamos qué pasa en campos vectoriales.

Pensemos en $f:S_{f}\subseteq \mathbb{R}^{m}\rightarrow \mathbb{R}^{n}$, $g:S_{g}\subseteq \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}$ y en su composición $h=f\circ g$ definida sobre alguna vecindad $V\subseteq S_g$ de $\bar{a}$ y tal que $g(V)\subseteq S_f$. Pensemos que $g$ es diferenciable en $\bar{a}$ con derivada $G_\bar{a}$ y que $f$ es diferenciable en $\bar{b}:=g(\bar{a})$ con derivada $F_\bar{b}$.

Exploremos la diferenciabilidad de la composición $h$ en el punto $\bar{a}$. Para ello, tomemos un $\bar{y}\in \mathbb{R}^{l}$ tal que $\bar{a}+\bar{y}\in V$ y consideremos la siguiente expresión:

\begin{align*}
h(\bar{a}+\bar{y})-h(\bar{a})=f(g(\bar{a}+\bar{y}))-f(g(\bar{a})).
\end{align*}

Tomando $\bar{v}=g(\bar{a}+\bar{y})-g(\bar{a})$, tenemos $\bar{b}+\bar{v}=g(\bar{a})+\bar{v}=g(\bar{a}+\bar{y})$. De esta forma,

\begin{align*}
f(g(\bar{a}+\bar{y}))-f(g(\bar{a}))=f(\bar{b}+\bar{v})-f(\bar{b}).
\end{align*}

Por la diferenciabilidad de $g$ en $\bar{a}$, tenemos que podemos escribir

$$\bar{v}=G_{\bar{a}}(\bar{y})+||\bar{y}||E_{g}(\bar{a};\bar{y}),$$ con $\lim\limits_{\bar{y}\to \bar{0}}E_{g}(\bar{a};\bar{y})=0$.

Usando la diferenciabilidad de $f$ en $\bar{b}$, y la linealidad de su derivada $F_\bar{b}$, tenemos entonces que:

\begin{align*}
f(\bar{b}+\bar{v})-f(\bar{b})&=F_\bar{b}(\bar{v})+||\bar{v}||E_f(\bar{b};\bar{v})\\
&=F_\bar{b}(G_{\bar{a}}(\bar{y})+||\bar{y}||E_{g}(\bar{a};\bar{y}))+||\bar{v}||E_f(\bar{b};\bar{v})\\
&=(F_{b}\circ G_{\bar{a}})(\bar{y})+||\bar{y}||(F_{\bar{b}}\circ E_{g}(\bar{a};\bar{y}))+||\bar{v}||E_{f}(\bar{b};\bar{v}),
\end{align*}

con $\lim\limits_{\bar{y}\to \bar{0}}E_{f}(\bar{b};\bar{v})=0$.

Concatenando nuestras igualdades, podemos reescribir esto como

\[ h(\bar{a}+\bar{y})-h(\bar{a})=(F_{\bar{b}}\circ G_{\bar{a}})(\bar{y})+||\bar{y}||E_{h}(\bar{a};\bar{y}),\] en donde hemos definido

\[ E_{h}(\bar{a};\bar{y})=(F_{\bar{b}}\circ E_{g})(\bar{a};\bar{y})+\frac{||\bar{v}||}{||\bar{y}||}E_{f}(\bar{b};\bar{v}).\] Si logramos demostrar que $\lim\limits_{\bar{y}\to \bar{0}}E_{h}(\bar{a};\bar{y})=0$, entonces tendremos la diferenciabilidad buscada, así como la derivada que queremos. Dejemos esto en pausa para enunciar y demostrar un lema auxiliar.

Un lema para acotar la norma de la derivada en un punto

Probemos el siguiente resultado.

Lema. Sea $\phi:S\subseteq \mathbb{R}^l\to \mathbb{R}^m$ un campo vectorial diferenciable en un punto $\bar{c}\in S$ y $T_\bar{c}$ su derivada. Entonces, para todo $\bar{v}\in \mathbb{R}^{l}$, se tiene:

$$||T_{\bar{c}}(\bar{v})||\leq \sum_{k=1}^{m}||\triangledown \phi_{k}(\bar{c})||||\bar{v}||.$$

Donde $\phi(\bar{v})=\left( \phi_{1}(\bar{v}),\dots ,\phi_{m}(\bar{v})\right)$

Demostración. Procedemos con desigualdad del triángulo como sigue:

\begin{align*}
||T_{\bar{c}}(\bar{v})||&=\left|\left|\sum_{k=1}^{m}(\triangledown \phi_{k}(\bar{c})\cdot \bar{v})e_{k}\right|\right|\\
&\leq \sum_{k=1}^{m}||(\triangledown \phi_{k}(\bar{c})\cdot \bar{v})e_k||\\
&=\sum_{k=1}^{m}|\triangledown \phi_{k}(\bar{c})\cdot \bar{v}|
\end{align*}

y luego usamos la desigualdad de Cauchy-Schwarz en cada sumando para continuar como sigue

\begin{align*}
\leq \sum_{k=1}^{m}||\triangledown \phi_{k}(\bar{c})||||\bar{v}||,
\end{align*}

que es lo que buscábamos.

$\square$

Conclusión del análisis para regla de la cadena

Retomando el análisis para $E_{h}(\bar{a};\bar{y})$, dividamos el límite en los dos sumandos.

Primer sumando:

Como $F_{\bar{b}}$ es lineal, entonces es continua. También, sabemos que $\lim\limits_{\bar{y}\to \bar{0}}E_{g}(\bar{a};\bar{y})=0$. Así,

\begin{align*}
\lim\limits_{\bar{y}\to \bar{0}}(F_{\bar{b}}\circ E_{g})(\bar{a};\bar{y})&=F_{\bar{b}}\left(\lim\limits_{\bar{y}\to \bar{0}} E_{g}(\bar{a};\bar{y})\right)\\
&=F_\bar{b}(\bar{0})\\
&=0.
\end{align*}

Segundo sumando:

Retomando la definición de $\bar{v}$, aplicando desigualdad del triángulo y el lema que demostramos,

\begin{align*}
||\bar{v}||&=||G_{\bar{a}}(\bar{y})+||\bar{y}||E_{g}(\bar{a};\bar{y})||\\
&\leq ||G_{\bar{a}}(\bar{y})||+||\bar{y}||||E_{g}(\bar{a};\bar{y})||\\
&\leq \left(\sum_{k=1}^{m}||\triangledown g_{k}(\bar{a})||||\bar{y}||\right)+||\bar{y}||||E_{g}(\bar{a};\bar{y})||.
\end{align*}

Dividiendo ambos lados entre $||\bar{y}||$, obtenemos entonces que

$$ \frac{||\bar{v}||}{||\bar{y}||}\leq \sum_{k=1}^{m}||\triangledown g_{k}(\bar{a})||+||E_{g}(\bar{a};\bar{y})||. $$

De aquí se ve que conforme $\bar{y}\to \bar{0}$, la expresión $\frac{||\bar{v}||}{||\bar{y}||}$ está acotada superiormente por la constante $A:=\sum_{k=1}^{m}||\triangledown g_{k}(\bar{a})||.$ Además, si $\bar{y}\to \bar{0}$, entonces $\bar{v}\to \bar{0}$. Así,

\[0\leq \lim\limits_{\bar{y}\to \bar{0}}\frac{||\bar{v}||}{||\bar{y}||}E_{f}(\bar{b},\bar{v})\leq A\lim\limits_{\bar{y}\to \bar{0}}E_{f}(\bar{b},\bar{v})=0 \] pues $\lim\limits_{\bar{y}\to \bar{0}}\bar{v}=\bar{0}$ implica $\lim\limits_{\bar{y}\to \bar{0}}E_{f}(\bar{b},\bar{v})$.

Hemos concluido que $$h(\bar{a}+\bar{y})-h(\bar{a})=(F_{\bar{b}}\circ G_{\bar{a}})(\bar{y})+||\bar{y}||E_{h}(\bar{a};\bar{y}),$$

con $\lim_{\bar{y}\to \bar{0}} E_h(\bar{a};\bar{y})=0$. Esto precisamente es la definición de $h=f\circ g$ es diferenciable en $\bar{a}$, y su derivada en $\bar{a}$ es la transformación lineal dada por la composición de transformaciones lineales $F_\bar{b}\circ G_\bar{a}$.

Recapitulación de la regla de la cadena

Recapitulamos toda la discusión anterior en el siguiente teorema.

Teorema (Regla de la cadena). Sean $f:S_{f}\subseteq \mathbb{R}^{m}\rightarrow \mathbb{R}^{n}$, $g:S_{g}\subseteq \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}$ campos vectoriales. Supongamos que la composición $f\circ g$ está definida en todo un abierto $S\subseteq S_g$. Supongamos que $g$ es diferenciable en un punto $\bar{a}\in S$ con derivada $G_\bar{a}$ y $f$ es diferenciable en $\bar{b}:=g(\bar{a})$ con derivada $F_\bar{b}$. Entonces, $h$ es diferenciable en $\bar{a}$ con derivada $F_\bar{b}\circ G_\bar{a}$.

Dado que la representación matricial de la composición de dos transformaciones lineales es igual al producto de estas, podemos reescribir esto en términos de las matrices jacobianas como el siguiente producto matricial: $$Dh(\bar{a})=Df(\bar{b})Dg(\bar{a}).$$

Usos de la regla de la cadena

Hagamos algunos ejemplos de uso de regla de la cadena. En el primer ejemplo que veremos a continuación, la función $f$ es un campo escalar.

Ejemplo 1. Tomemos $g:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ campo vectorial, y $f:U\subseteq \mathbb{R}^{m}\rightarrow \mathbb{R}$ campo escalar. Consideremos $h=f\circ g$ y supongamos que se satisfacen las hipótesis del teorema de la regla de la cadena. Tenemos: \[ Df(\bar{b})=\begin{pmatrix} \frac{\partial f}{\partial x_{1}}(\bar{b}) & \dots & \frac{\partial f}{\partial x_{m}}(\bar{b}) \end{pmatrix} \] y \[ Dg(\bar{a})=\begin{pmatrix}\frac{\partial g_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial g_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial g_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix} . \]

Por la regla de la cadena tenemos $Dh(\bar{a})=Df(\bar{b})Dg(\bar{a})$ esto implica \[ \begin{pmatrix} \frac{\partial h}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial h}{\partial x_{n}}(\bar{a}) \end{pmatrix}=\begin{pmatrix} \frac{\partial f}{\partial x_{1}}(\bar{b}) & \dots & \frac{\partial f}{\partial x_{m}}(\bar{b}) \end{pmatrix}\begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial g_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial g_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}. \]

Así \[ \begin{pmatrix} \frac{\partial h}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial h}{\partial x_{n}}(\bar{a}) \end{pmatrix}= \begin{pmatrix} \sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(\bar{b})\frac{\partial g_{i}}{\partial x_{1}}(\bar{a}) & \dots & \sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(\bar{b})\frac{\partial g_{i}}{\partial x_{n}}(\bar{a}) \end{pmatrix}. \]

En otras palabras, tenemos las siguientes ecuaciones para calcular cada derivada parcial de $h$: \[ \frac{\partial h}{\partial x_{j}}(\bar{a})=\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(\bar{b})\frac{\partial g_{i}}{\partial x_{j}}(\bar{a}).\]

$\triangle$

Ejemplo 2. Sean $\bar{a}=(s,t)$ y $\bar{b}=(x,y)$ puntos en $\mathbb{R}^{2}$. Pensemos que las entradas de $\bar{b}$ están dadas en función de las entradas de $\bar{a}$ mediante las ecuaciones $x=g_{1}(s,t)$ y $y=g_{2}(s,t)$. Pensemos que tenemos un campo escalar $f:\mathbb{R}^2\to \mathbb{R}$, y definimos $h:\mathbb{R}^2\to \mathbb{R}$ mediante $$h(s,t)=f(g_{1}(s,t),g_{2}(s,t)).$$

Por el ejemplo anterior \[ \frac{\partial h}{\partial s}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial s} \] y \[ \frac{\partial h}{\partial t}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial t}. \] Como tarea moral queda que reflexiones qué significa $\partial x$ cuando aparece en el «numerador» y qué significa cuando aparece en el «denominador».

$\triangle$

Ejemplo 3. Para un campo escalar $f(x,y)$ consideremos un cambio de coordenadas $x=rcos\theta$, $y=rsen\theta$ es decir tomemos la función $\phi (r,\theta)=f(rcos\theta ,rsen\theta )$.

Por el ejemplo anterior tenemos \[ \frac{\partial \phi }{\partial r}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial r} \] y \[ \frac{\partial \phi }{\partial \theta }=\frac{\partial f}{\partial x}\frac{\partial x}{\partial \theta }+\frac{\partial f}{\partial y}\frac{\partial y}{\partial \theta } \] donde, haciendo las derivadas parciales tenemos: \[ \frac{\partial x}{\partial r}=cos\theta ,\hspace{1cm}\frac{\partial y}{\partial r}=sen\theta \] y \[ \frac{\partial x}{\partial \theta }=-rsen\theta,\hspace{1cm}\frac{\partial y}{\partial \theta }=-rcos\theta. \] Finalmente obtenemos: \[ \frac{\partial \phi }{\partial r }=\frac{\partial f }{\partial x }cos\theta +\frac{\partial f }{\partial y }sen\theta \] y \[ \frac{\partial \phi }{\partial \theta }=-\frac{\partial f }{\partial x }rsen\theta +\frac{\partial f }{\partial y }rcos\theta \] que son las derivadas parciales del cambio de coordenadas en el dominio de $f$.

$\triangle$

Mas adelante…

En la siguiente entrada comenzaremos a desarrollar la teoría para los importantes teoremas de la función inversa e implícita si tienes bien estudiada esta sección disfrutaras mucho de las siguientes.

Tarea moral

  1. Considera el campo escalar $F(x,y,z)=x^{2}+y sen(z)$. Imagina que $x,y,z$ están dados por valores $u$ y $v$ mediante las condiciones $x=u+v$, $y=vu$, $z=u$. Calcula $\frac{\partial F}{\partial u}$, $\frac{\partial F}{\partial v}$.
  2. Sea $g(x,y,z)=(xy,x)$, y $f(x,y)=(2x,xy^{2},y)$. Encuentra la matriz jacobiana del campo vectorial $g\circ f$. Encuentra también la matriz jacobiana del campo vectorial $f\circ g$.
  3. En la demostración del lema que dimos, hay un paso que no justificamos: el primero. Convéncete de que es cierto repasando el contenido de la entrada anterior Diferenciabilidad.
  4. Imagina que sabemos que la función $f:\mathbb{R}^n\to \mathbb{R}^n$ es invertible y derivable en $\bar{a}$ con derivada $T_\bar{a}$. Imagina que también sabemos que su inversa $f^{-1}$ es derivable en $\bar{b}=f(\bar{a})$ con derivada $S_\bar{b}$. De acuerdo a la regla de la cadena, ¿Qué podemos decir de $T_\bar{a}\circ S_\bar{b}$? En otras palabras, ¿Cómo son las matrices jacobianas entre sí, en términos de álgebra lineal?
  5. Reflexiona en cómo todas las reglas de la cadena que hemos estudiado hasta ahora son un corolario de la regla de la cadena de esta entrada.

Entradas relacionadas

Cálculo Diferencial e Integral II: Recordatorio de derivadas

Por Moisés Morales Déciga

Introducción

Durante esta unidad se empezaron a estudiar las integrales indefinidas, como una generalización o una ampliación de la definición al empezar a considerarse como funciones, a la vez que se mencionaron e ilustraron las propiedades que éstas tienen.

Pero para poder seguir avanzando en el curso, es necesario recordar el proceso de derivación.

Muy seguramente haz escuchado que existe una relación entre la integral y la derivada, puede ser que incluso te hayan contado que la integral es la función inversa a la derivación o que son procesos opuestos y demás posibilidades.

Por otro lado, si aun no lo haz escuchado te comento que sí existe una relación entre ambos procesos pero no es formalmente correcto mencionarlo como inversos. Esto lo detallaremos más adelante.

Y como vamos a ilustrar esta relación, es necesario recordar la derivada y las reglas de derivación que se encontraron en el primer curso de cálculo.

La derivada

A partir de lo desarrollado en Cálculo I, se define coloquialmente a la derivada como la pendiente de la recta tangente a la curva en un punto o como la razón o velocidad de cambio de la función ante cambios de su variable independiente.

Formalmente, se define a la derivada como el siguiente límite.

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) \ – \ f(x)}{h} $$

Donde $f'(x)$ es la derivada de $f(x)$.

Al igual que en la entrada anterior, la derivada tiene propiedades con las cuales nos facilita su manejo al momento de operar la transformación con diferentes funciones, entre las cuales tenemos las siguientes propiedades.

Para las propiedades señaladas a continuación, es necesario considerar lo siguiente:

Sean $f$ y $g$ dos funciones derivables en $x_0$, es decir, que existe $f'(x_0)$ y $g'(x_0)$.

Derivada de suma de funciones y producto por una constante

  • $ (f + g)'(x_0) = f'(x_0) + g'(x_0)$
  • $(cf)'(x_0) = c f'(x_0)$

Derivada de producto de funciones

  • $(f \cdot g)’ (x_0) = f(x_0) \cdot g'(x_0) + f'(x_0) \cdot g(x_0)$
  • Si $g(x_0) \neq 0$ y $g'(x_0) \neq 0$, entonces

$$\left( \frac{1}{g} \right) ^{‘} (x_0) = – g(x_0) \left( \frac{1}{(g(x_0))^{2}} \right) $$

Estas son las propiedades que se ilustraron en el curso de Cálculo I, si quieres recordar la entrada, sigue este enlace. En esta entrada se presentan unas demostraciones de las propiedades, así como unos ejemplos.

Pero en este caso, podemos utilizar la notación de la integral indefinida para mostrar las propiedades y las reglas de derivación, como se muestra adelante.

Reglas de derivación

Para todas las siguientes reglas de derivación, suponga que la función es derivable.

Multiplicación por una constante

$$ \phi(x)=cf(x), \Rightarrow \phi'(x)=cf'(x).$$

Derivada de una suma

$$\phi(x)=f(x)+g(x), \Rightarrow \phi'(x)=f'(x)+g'(x).$$

Derivada del producto

$$\phi(x)=f(x) g(x), \Rightarrow \phi'(x)=f(x)g'(x) + f'(x)g(x) .$$

Derivada de un cociente

$$\phi(x) = \frac{f(x)}{g(x)}, \Rightarrow \phi'(x) = \frac{g(x)f'(x) – f(x)g'(x) }{[g(x)]^2}.$$

Derivación directa

Una vez que recordamos la derivada, su definición y las reglas de derivación, podemos recordar las fórmulas de derivación para funciones particulares, lo que nos permite calcular la derivada de forma directa o inmediata.

Esto nos facilita el proceso, ya que una vez que vemos la función, sabemos de forma instantánea, cual es su diferencial.

Derivación de potencias

Este es un caso de la derivada de un producto.

En caso de tener una potencia de la forma $x^n$.

\begin{align*}
\frac{d}{dx}x^n=n \cdot x^{n-1}.
\end{align*}

En caso de tener una raíz, es decir, la función es de la forma $\sqrt[n]{x}$, también tiene un tratamiento de potencia, como se muestra adelante.

\begin{align*}
\frac{d}{dx}\sqrt[n]{x} & = \frac{d}{dx} x^{\frac{1}{n}} \\
& =\frac{1}{n} x^{({\frac{1}{n} \ – \ 1)}} .
\end{align*}

Y por último, si tenemos un caso combinado, se tiene la siguiente regla.

\begin{align*}
\frac{d}{dx}\sqrt[n]{x^m} & = \frac{d}{dx} x^{\frac{m}{n}} \\
& =\frac{m}{n} x^{({\frac{m}{n} \ – \ 1)}} .
\end{align*}

Derivación de funciones racionales

En general, es un caso de la derivada de cociente, pero también puede ser tratada como una potencia.

\begin{align*}
\frac{d}{dx} \frac{1}{{x^m}} & = \frac{d}{dx} x^{- \ m} \\
& = – \ m \ x^{- \ m – 1} \\
& =-\frac{m}{x^{m+1}}
\end{align*}

Derivación de funciones trigonométricas

$$\frac{d}{dx}sen(x)=cos(x).$$

$$\frac{d}{dx}cos(x)=-sen(x).$$

\begin{align*}
\frac{d}{dx}tan(x) & =\frac{1}{{cos^2}(x)} \\
& =sec^2(x) \\
& =1+tan^2(x).
\end{align*}

\begin{align*}
\frac{d}{dx}cot(x) & =-\frac{1}{sen^2(x)} \\
& =-cosec^2(x) \\
&=-(1+cot^2(x)).
\end{align*}

Derivación de funciones inversas trigonométricas

$$\frac{d}{dx}arcsen(x)=\frac{1}{\sqrt{(1-x^2)}}.$$

$$\frac{d}{dx}arccos(x)=-\frac{1}{\sqrt{(1-x^2)}}.$$

$$\frac{d}{dx}arctan(x)=\frac{1}{1+x^2}.$$

$$\frac{d}{dx}arccot(x)=-\frac{1}{1+x^2}.$$

Derivada de la función exponencial

$$\frac{d}{dx}a^x=log(a)a^x.$$

$$\frac{d}{dx}e^x=e^x.$$

Derivada de la función logaritmo

$$\frac{d}{dx} log(a)x=\frac{1}{x ln(a)}.$$

$$\frac{d}{dx} ln(x)=\frac{1}{x}.$$

Regla de la cadena

Esta regla se utiliza cuando estamos haciendo composición de funciones o la función que estamos derivado es producto de otra transformación. Esta propiedad nos especifica la derivación en estos casos.

Tenemos dos funciones $\phi$ y $g$ continuas en sus intervalos de definición, no necesariamente están definidas en el mismo intervalo.

Entonces, la función compuesta $f(x)=g[\phi(x)]$ es también continua.

Entonces, si queremos obtener la derivada de la función $f(x)$, aplicamos el siguiente teorema llamado como «regla de la cadena».

$$f'(x) = g'(\phi) \phi'(x).$$

Si quieres recordar a detalle la regla de la cadena, así como su demostración, puedes consultarlo en el siguiente enlace.

Más adelante…

Este ha sido un repaso muy corto y muy general sobre la derivada, en caso de querer recordarlo con mayor detalle o si tienes algún tema que te gustaría retomar con mayor detenimiento, puedes consultar la página de curso en el siguiente enlace, donde se enfoca en el cálculo diferencial.

Este pequeño recordatorio nos permitió introducir la diferencial a partir de la notación correspondiente de la integral indefinida, lo que nos ayuda de forma indirecta a ver la relación que tiene la derivada con la integral.

En la siguiente entrada se verá la introducción a los dos teoremas que tienen una alta importancia dentro del curso y que se emplearán en muchos cursos ya que, como su nombre lo dice, son fundamentales.

Estos teoremas explican formalmente la relación que existe entre el cálculo integral y el cálculo diferencial, así que nos van a facilitar cuando se tenga un problema que involucre ambos procesos.

Tarea moral

Encuentre las siguientes derivadas.

  1. $\ y(x) = (x^3 + 4x^2 – 7)^6.$
  2. $\ y(x) = sin^2(2x^3).$
  3. $ \ y(x) = \frac{1}{6x} + e^{2x}.$
  4. $\ y(x) = 3x cos(x^2) – (x^2+2x+1) tan(x) .$
  5. $\ y(x) = 4 ln((x-2)^2). $

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: Propiedades de la integral indefinida
  • Entrada siguiente: Intuición de los teoremas fundamentales del cálculo

Cálculo Diferencial e Integral I: La regla de la cadena

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente revisamos, entre otras cosas, cómo derivar la suma, el producto y el cociente de funciones. La siguiente operación a analizar es la composición de funciones, tema del cual tratará esta entrada.

Demostración de la regla de la cadena

Teorema. Sean $A$, $B \subset \RR$, $g: A \to \RR$, $f: B \to \RR$ y $x_0 \in A$ tales que

  1. Para todo $x \in A$, $g(x) \in B$.
  2. $g$ es derivable en $x_0$, es decir $$\lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} = g'(x_0).$$
  3. $f$ es derivable en $g(x_0)$, es decir $$\lim_{t \to x_0} \frac{f(t)-f(g(x_0))}{t-g(x_0)} = f'(g(x_0)).$$

Entonces $f \circ g$ es derivable en $x_0$, además $$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

Demostración.

Para realizar esta demostración haremos uso de una función auxiliar de la que probaremos propiedades específicas.

$$\rho (t) = \begin{cases}
\frac{f(t)-f(g(x_0))}{t-g(x_0)}-f'(g(x_0)), & \text{ si $t \neq g(x_0)$} \\
0, & \text{ si $t = g(x_0)$.}
\end{cases}$$

Podemos observar que la función $\rho$ está «inspirada» en la definición de derivada de $f$ en el punto $g(x_0)$. Procederemos a puntualizar 5 observaciones de nuestra función auxiliar.

  1. Como $f: B \to \RR$, entonces $\rho: B \to \RR$.
  2. El límite de $\rho$ en $g(x_0)$ es cero, puesto que
    \begin{align*}
    \lim_{t \to g(x_0)} \rho (t) & = \lim_{t \to g(x_0)} \left( \frac{f(t)-f(g(x_0))}{t-g(x_0)} – f'(g(x_0)) \right) \\ \\
    & = \lim_{t \to g(x_0)} \frac{f(t)-f(g(x_0))}{t-g(x_0)} – \lim_{t \to g(x_0)} f'(g(x_0)) \\ \\
    & =f'(g(x_0))-f'(g(x_0)) \text{, por el supuesto 3} \\ \\
    & = 0.
    \end{align*}

    $$\therefore \lim_{t \to g(x_0)} \rho (t) = 0.$$
  3. $\rho$ es continua en $g(x_0)$, puesto que $$\lim_{t \to g(x_0)} \rho(t) = 0 = \rho (g(x_0)).$$
  4. Para todo $t \in B$, se sigue de la definición de $\rho$ que $$f(t)-f(g(x_0)) = (\rho(t)+f'(g(x_0)) (t-g(x_0)).$$
  5. Por el supuesto 2, $g$ es derivable en $x_0$ lo que implica que también es continua en tal punto, además por la observación 3, sabemos que $\rho$ es continua en $g(x_0).$ Por tanto, se tiene que
    \begin{gather*}
    \lim_{x \to x_0} \rho (g(x)) = \rho (g(x_0)) = 0. \\
    \therefore \rho \circ g \text{ es continua en } x_0.
    \end{gather*}

Ahora que establecimos las 5 observaciones, estamos listos para calcular la derivada de la composición:

\begin{align*}
(f \circ g)'(x_0) & = \lim_{x \to x_0} \frac{ f(g(x))-f(g(x_0)) }{x – x_0} \\ \\
& = \lim_{x \to x_0} \frac{ ( \rho(g(x))+f'(g(x_0)) )( g(x)-g(x_0) ) }{x-x_0} \text{, por la obs 4} \\ \\
&= \lim_{x \to x_0} \left( ( \rho(g(x))+f'(g(x_0)) ) \cdot \frac{g(x)-g(x_0)}{x-x_0} \right) \\ \\
& =\lim_{x \to x_0} ( \rho(g(x))+f'(g(x_0)) ) \cdot \lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} \\ \\
& =(0+f'(g(x_0))) \cdot g'(x_0) \text{, por la obs 3 y el supuesto 2} \\ \\
& = f'(g(x_0)) g'(x_0).
\end{align*}

$$\therefore (f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

$\square$

Aplicando la regla de la cadena

A continuación revisaremos algunos ejemplos donde aplicaremos la proposición anterior. La idea general de los ejercicios será expresar una función en términos de la composición de otras dos.

Ejemplo 1. Encuentra la derivada de la función $F(x) = (3x+1)^2$.

Notemos que podemos ver a $F$ como la composición de las siguientes dos funciones
$$ f(x) = x^2, \qquad g(x) = 3x + 1.$$

Así, $F(x) = f(g(x))$. Y empleando la regla de la cadena se tiene que

\begin{align*}
F'(x) & = f'(g(x)) g'(x) \\
& = 2g(x)g'(x) \\
& =2 (3x+1)(3) \\
& = 6(3x+1) \\
& = 18x+6.
\end{align*}

Ejemplo 2. Deriva la función $F(x) = \sqrt{\frac{x^2+1}{x^3+3}}$.

Definimos las funciones

$f(x) = \sqrt{x}$ con derivada $f'(x) = \frac{1}{2 \sqrt{x}}$ y $g(x) = \frac{x^2+1}{x^3+3}$ con derivada
\begin{align*}
g'(x) & = \frac{ (x^3+3)(2x)-(x^2+1)(3x^2) }{ (x^3+3)^2 } \\
& = \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }.
\end{align*}

Con lo anterior, se tiene que $F(x) = f(g(x))$, y empleando la regla de la cadena tenemos

\begin{align*}
F'(x) & = f'(g(x)) g'(x) \\
& =\frac{1}{ 2\sqrt{g(x)} } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 } \\
& = \frac{1}{ 2\sqrt{ \frac{ x^2+1 }{ x^3+3 } } } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }\\
& = \frac{ \sqrt{x^3+3} }{2 \sqrt{x^2+1} } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }.
\end{align*}

Más adelante…

En las siguientes entradas haremos un resumen de las «reglas de derivación» que hemos visto hasta ahora y probaremos algunas más; particularmente se hará la revisión de las derivadas para las funciones trigonométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Teorema de Carathéodory. Sea $f$ definida en un intervalo $A$ y sea $a \in A$. Entonces $f$ es derivable en $a$ si y solo si existe una función $\rho$ en $A$ que es continua en $a$ y satisface:
    $$f(x) – f(a) = \rho (x) (x-a) \text{ para } x \in A.$$
    En este caso, se tiene que $\rho(a) = f'(a)$.
  • Deriva la función $f(x) = \sqrt{5-2x+x^2}$.
  • Si $f: \RR \to \RR$ es derivable en $x_0$ y $f(x_0) = 0$. Prueba que $g(x) := |f(x)|$ es derivable en $x_0$ si y solo si $f'(x_0) = 0$.
  • Determina en dónde es derivable cada una de las siguientes funciones de $\RR \to \RR$ y encuentra la derivada:
    • $f(x) = |x|+|x+1|.$
    • $g(x) = 2x + |x|.$
    • $h(x) = x|x|.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»