Archivo de la etiqueta: Independencia lineal de soluciones

Ecuaciones Diferenciales I – Videos: Propiedades del conjunto de soluciones a un sistema lineal de ecuaciones de primer orden

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio de los sistemas de ecuaciones diferenciales de primer orden $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ donde revisamos las principales definiciones y enunciamos el teorema de existencia y unicidad correspondiente a sistemas de primer orden y sus problemas de condición inicial. Es momento ahora de estudiar las principales propiedades que cumple el conjunto de soluciones a un sistema lineal de ecuaciones de primer orden, las cuales se comportan de una manera bastante similar al conjunto de soluciones a una ecuación de segundo orden lineal que revisamos en la unidad anterior.

Iniciaremos revisando al conjunto de soluciones al sistema lineal homogéneo $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}$$ el cual cumple el principio de superposición, es decir, si tenemos $n$ soluciones, digamos ${\textbf{X}_{1}}(t), {\textbf{X}_{2}}(t),…,{\textbf{X}_{n}}(t)$, entonces cualquier combinación lineal de estas también lo será. Si recuerdas tus cursos de Álgebra Lineal, esta última propiedad nos dice que el conjunto de soluciones es cerrado bajo la suma y producto por escalar usuales definidos para matrices. Con estas operaciones, veremos que el conjunto de soluciones al sistema lineal homogéneo forma un espacio vectorial.

Posteriormente definiremos el Wronskiano de un subconjunto de soluciones al sistema lineal homogéneo, el cual es similar más no igual al Wronskiano que definimos para ecuaciones lineales de segundo orden. En la tarea moral demostrarás la relación que tienen estos dos Wronskianos.

Si hablamos del Wronskiano y del conjunto de soluciones como un espacio vectorial, debemos hablar también de dependencia e independencia lineal entre las soluciones al sistema. Además, demostraremos que si el Wronskiano no se anula entonces el subconjunto de soluciones es linealmente independiente. Además si lo último ocurre podremos expresar cualquier solución como una combinación lineal de las soluciones linealmente independientes. Con estos conceptos podremos definir a la matriz fundamental de soluciones del sistema, la cual revisaremos más a detalle en entradas posteriores.

Terminaremos revisando el caso no homogéneo $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}+ {\textbf{Q}}$$ demostrando que su solución general será la suma de la solución general al sistema homogéneo y una solución particular al sistema no homogéneo.

El espacio vectorial del conjunto de soluciones a un sistema lineal homogéneo

En el primer video probamos el principio de superposición de soluciones al sistema lineal homogéneo. Además, vemos que el conjunto de soluciones al sistema forma un espacio vectorial con la suma y producto por escalar usuales para matrices.

El Wronskiano de un subconjunto de soluciones e independencia lineal

Definimos el Wronskiano de un subconjunto de soluciones al sistema lineal homogéneo, así como los conceptos de dependencia e independencia lineal de soluciones. Probamos un importante teorema que relaciona estos dos conceptos y nos dice cómo se ve la solución general al sistema. Finalizamos definiendo la matriz fundamental de soluciones del sistema.

Solución general al sistema lineal no homogéneo

Finalizamos la entrada demostrando que la solución general al sistema lineal no homogéneo es la suma de la solución general al sistema homogéneo y una solución particular al sistema no homogéneo.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿El conjunto de soluciones a un sistema lineal no homogéneo forma un espacio vectorial con las operaciones usuales de matrices?
  • Prueba que $$\textbf{X}_{1}(t)=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} ; \, \textbf{X}_{2}(t)=\begin{pmatrix} t \\ 2 \\ 0 \end{pmatrix} ; \, \textbf{X}_{3}(t)=\begin{pmatrix} t^{2} \\ t \\ 0 \end{pmatrix}$$ son linealmente independientes en $\mathbb{R}.$
  • Sean ${\textbf{X}_{1}}(t), {\textbf{X}_{2}}(t),…,{\textbf{X}_{n}}(t)$ soluciones al sistema $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}$$ en el intervalo $[a,b]$. Demuestra que $W[{\textbf{X}_{1}}, {\textbf{X}_{2}},…,{\textbf{X}_{n}}](t)=0 \, \, \forall t \in [a,b]$, ó $W[{\textbf{X}_{1}}, {\textbf{X}_{2}},…,{\textbf{X}_{n}}](t) \neq 0 \, \, \forall t \in [a,b]$.
  • Considera el sistema lineal $$\dot{\textbf{X}}=\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \textbf{X}.$$ Prueba que $$\textbf{X}_{1}(t)=\begin{pmatrix} e^{t} \\ -e^{t} \end{pmatrix} ; \, \textbf{X}_{2}(t)=\begin{pmatrix} e^{-t} \\ e^{-t} \end{pmatrix}$$ son soluciones al sistema. Además prueba que son linealmente independientes en $\mathbb{R}$ y por lo tanto forma una matriz fundamental de soluciones al sistema.
  • Considera la ecuación $$\ddot{y}+p(t)\dot{y}+q(t)y=0$$ y su sistema de ecuaciones correspondiente $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \textbf{X}.$$ Prueba que si $\textbf{X}_{1}(t)$, $\textbf{X}_{2}(t)$ son soluciones linealmente independientes al sistema de ecuaciones, y si $y_{1}(t)$, $y_{2}(t)$ forman un conjunto fundamental de soluciones a la ecuación de segundo orden, entonces se satisface la identidad $$W[y_{1}, y_{2}](t)=cW[\textbf{X}_{1}, \textbf{X}_{2}](t)$$ para alguna constante $c \neq 0$.

Más adelante

En la siguiente entrada comenzaremos a resolver algunos sistemas lineales bastante sencillos. El método que estudiaremos será el de eliminación de variables, el cual consiste en eliminar variables dependientes hasta quedarnos con una ecuación diferencial de orden superior. Resolviendo esta última ecuación podremos encontrar la solución general al sistema original. Este método funciona para sistemas lineales con coeficientes constantes.

¡Hasta la próxima!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales homogéneas de segundo orden. Propiedades del conjunto de soluciones

Por Eduardo Vera Rosales

Introducción

Hola a todos. Después de haber estudiado ecuaciones diferenciales de primer orden, llegamos a la segunda unidad del curso donde analizaremos ecuaciones diferenciales de segundo orden. Dada la dificultad para resolver este tipo de ecuaciones, nos enfocaremos únicamente en las ecuaciones lineales de segundo orden, es decir, de la forma $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t).$$

En esta entrada comenzaremos con el caso de las ecuaciones homogéneas de segundo orden, es decir, cuando $g(t)$ es la función constante cero en un intervalo $(\alpha,\beta)$. Estudiaremos la teoría de las soluciones a este tipo de ecuaciones antes de analizar las distintas técnicas para resolverlas. Debido a que el conjunto de soluciones a este tipo de ecuaciones se comportan de buena manera, podremos encontrar la solución general a la ecuación si previamente conocemos dos soluciones particulares que cumplan una hipótesis que daremos a conocer en el intervalo $(\alpha,\beta)$. Definiremos el Wronskiano y la independencia lineal de dos soluciones a una ecuación diferencial, y probaremos distintos teoremas y propiedades de las soluciones con base en estos conceptos.

¡Comencemos!

Ecuaciones lineales homogéneas de segundo orden, Teorema de existencia y unicidad y solución general

En este video damos una introducción a las ecuaciones diferenciales de segundo orden, y en particular, a las ecuaciones lineales de segundo orden. Enunciamos el teorema de existencia y unicidad para ecuaciones lineales de segundo orden, y comenzamos a desarrollar la teoría para encontrar la solución general a ecuaciones homogéneas.

Conjunto fundamental de soluciones y el Wronskiano

Continuando con la teoría de las soluciones a ecuaciones homogéneas de segundo orden, demostramos un par de teoremas que nos ayudan a encontrar la solución general a este tipo de ecuaciones. Además, definimos al conjunto fundamental de soluciones de la ecuación homogénea y el Wronskiano de dos funciones.

Independencia lineal de soluciones

En este último video definimos el concepto de independencia lineal de soluciones a la ecuación homogénea de segundo orden, y demostramos un teorema que nos da otra forma de encontrar un conjunto fundamental de soluciones a la ecuación diferencial homogénea.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que $y_{1}(t)=\sin{t}$ y $y_{2}(t)=\cos{t}$ son soluciones a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+y=0.$$ Posteriormente prueba que $y(t)=k_{1}\sin{t}+k_{2}\cos{t}$ también es solución a la ecuación, donde $k_{1}$, $k_{2}$ son constantes.
  • Prueba que $\{\sin{t},\cos{t}\}$ es un conjunto fundamental de soluciones a la ecuación del ejercicio anterior. ¿En qué intervalo es el conjunto anterior un conjunto fundamental de soluciones?
  • Prueba que si $p(t)$, $q(t)$ son continuas en $(\alpha,\beta)$, $y_{1}(t)$, $y_{2}(t)$ son soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en $(\alpha,\beta)$ y existe $t_{0}$ en dicho intervalo, donde $W[y_{1},y_{2}](t_{0})\neq 0$, entonces $\{y_{1}(t),y_{2}(t)\}$ forman un conjunto fundamental de soluciones en $(\alpha,\beta)$.
  • Prueba que si $p(t)$, $q(t)$ son continuas en $(\alpha,\beta)$, entonces existe un conjunto fundamental de soluciones $\{y_{1}(t),y_{2}(t)\}$ a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en el mismo intervalo. (Hint: Toma un punto en el intervalo $(\alpha,\beta)$ y dos problemas de condición inicial adecuados de tal forma que puedas utilizar el teorema de existencia y unicidad y el Wronskiano para deducir el resultado).
  • Prueba que $y_{1}(t)=t|t|$, $y_{2}(t)=t^{2}$ son linealmente independientes en $[-1,1]$ pero linealmente dependientes en $[0,1]$. Verifica que el Wronskiano se anula en $\mathbb{R}$. ¿Pueden ser $y_{1}(t)$, $y_{2}(t)$ soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en $(-1,1)$ si $p$ y $q$ son continuas en este intervalo?

Más adelante

En la próxima entrada conoceremos el método de reducción de orden, donde supondremos que ya conocemos una solución particular $y_{1}(t)$ a la ecuación lineal homogénea de segundo orden, y con ayuda de esta hallaremos una segunda solución $y_{2}(t)$ tal que forma un conjunto fundamental de soluciones junto con $y_{1}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»