Archivo de la etiqueta: cuadrilátero circunscrito

Geometría Moderna I: Cuadrilátero bicéntrico

Por Rubén Alexander Ocampo Arellano

Introducción

Decimos que un cuadrilátero convexo es bicéntrico si es circunscrito y cíclico al mismo tiempo. Ahora que hemos estudiado a los cuadriláteros cíclicos y cuadriláteros circunscritos por separado, nos podemos preguntar cuando un cuadrilátero cumple con ambas definiciones y que propiedades tiene, en esta entrada abordaremos este tema.

Dos caracterizaciones para el cuadrilátero bicéntrico

Teorema 1. Sea $\square ABCD$ un cuadrilátero circunscrito y sean $E$, $F$, $G$ y $H$ los puntos de tangencia del incírculo a los lados $AB$, $BC$, $CD$ y $AD$ respectivamente, entonces $\square ABCD$ es bicéntrico si y solo si $EG \perp FH$.

Figura 1

Demostración. $\angle BEF$ y $\angle EFB$ son ángulos semiinscritos que abarcan el mismo arco, $\overset{\LARGE{\frown}}{EF}$, por lo tanto, son iguales $\angle BEF = \angle EFB = \mu$.

De manera análoga tenemos que, $\angle DGH = \angle GHD = \nu$.

Así que en los triángulos $\triangle BEF$ y $\triangle DHG$ se tiene $\pi = \angle B + 2 \mu = \angle D + 2 \nu$ por lo que
$\begin{equation} 2\pi = \angle B + \angle D + 2(\mu + \nu). \end{equation}$

Ahora supongamos que $EG$ y $FH$ son perpendiculares, y sea $P = EG \cap FH$, entonces $\angle HPE =\dfrac{\pi}{2}$, así que en $\triangle HPE$, $\dfrac{\pi}{2} = \angle PEH + \angle EHP$.

Pero $\angle EHF$ y $\angle BEF$ abren el mismo arco, por lo tanto, $\angle EHF = \mu$, de manera similar $\angle GEH = \nu$, por lo tanto $\mu + \nu = \dfrac{\pi}{2}$.

Sustituyendo la ultima igualdad en $(1)$ tenemos
$2\pi = \angle B + \angle D + \pi$
$\Leftrightarrow \angle B + \angle D = \pi$
$\Leftrightarrow \square ABCD$ es cíclico.

La proposición reciproca se muestra tomando en sentido contrario la prueba.

$\blacksquare$

Teorema 2. Sea $\square ABCD$ circunscrito, $I$ su incentro, $K$ y $J$ las intersecciones de los lados $AB$ con $DC$ y $AD$ con $BC$ respectivamente entonces $\square ABCD$ es bicéntrico si y solo si $IK \perp IJ$.

Figura 2

Demostración. Notemos que el incírculo de $\square ABCD$ es al mismo tiempo el excentro de $\triangle AJB$ y $\triangle BKC$ opuesto a los vértices $J$ y $K$ respectivamente.

Esto implica que $IJ$ e $IK$ son las bisectrices internas de $\angle J$ y $\angle K$ respectivamente.

Sean $E$, $F$, $G$ y $H$ los puntos de contacto del incírculo con $AB$, $BC$, $CD$ y $DA$ respectivamente, en la prueba del teorema anterior vimos que $\angle JHF = \angle HFJ$ y $\angle EGK = \angle KEG$.

Por lo tanto, $\triangle JHF$ y $\triangle KEG$ son isósceles.

Entonces las bisectrices de $\angle J$ y $\angle K$ son mediatrices de $FH$ y $EG$ respectivamente.

En consecuencia, $JL \perp FH$ y $KM \perp EG$, donde $L$ y $M$ son los puntos medios de $FH$ y $EG$ respectivamente.

De esto último se sigue que en el cuadrilátero $\square LPMI$, $\angle LIM + \angle MPL =\pi$.

Por lo tanto, $IJ \perp IK \Leftrightarrow FH \perp EG \Leftrightarrow \square ABCD$  es bicéntrico.

La última doble implicación se da por el teorema 1.

$\blacksquare$

Teorema de Fuss

Teorema 3, de Fuss. En un cuadrilátero bicéntrico el circunradio $R$, el inradio $r$ y la distancia $d$ entre el circuncentro y el incentro se relacionan mediante la siguiente expresión:
$\dfrac{1}{(R + d)^2} + \dfrac{1}{(R – d)^2} = \dfrac{1}{r^2}$.

Demostración. Sean $\square ABCD$ bicéntrico, $(O, R)$, $(I, r)$ el circuncírculo y el incírculo respectivamente, $E$ y $F$ los puntos de tangencia de los lados $AB$ y $BC$ respectivamente con $(I, r)$.

Figura 3

Dado que $\square ABCD$  es cíclico, entonces $\angle A + \angle C = \pi$ y como $I$ es la intersección de las bisectrices internas de $\square ABCD$ tenemos lo siguiente:

$\begin{equation} \angle EAI + \angle ICF = \dfrac{\pi}{2}. \end{equation}$

Como $\triangle AEI$ y $\triangle CFI$ son triángulos rectángulos y tienen la misma altura desde $I$.

Al “pegar” los triángulos $\triangle AEI$ y $\triangle CFI$ por la altura formamos un triángulo rectángulo $\triangle ACI$ cuya área es :

$(\triangle ACI) = \dfrac{(AE + FC)r}{2} = \dfrac{AI \times CI}{2}$
$\Leftrightarrow (AE + FC)^2r^2 = AI^2 \times CI^2$.

Figura 4

Podemos calcular $AC$ aplicando el teorema de Pitágoras
$AI^2 + CI^2 = AC^2 = (AE + FC)^2$.

De las últimas dos expresiones obtenemos $(AI^2 + CI^2)r^2 = AI^2 \times CI^2 \Leftrightarrow$
$\begin{equation} \dfrac{1}{AI^2} + \dfrac{1}{CI^2} = \dfrac{1}{r^2}. \end{equation}$

Consideremos $G$ y $H$ los puntos donde $AI$ y $CI$ intersecan a $(O, R)$.

$\angle HAB = \angle HCB = \angle ICF$ pues son subtendidos por el mismo arco.

Por la ecuación $(2)$,
$\angle HAG = \angle HAB + \angle BAG = \angle ICF + \angle EAI = \dfrac{\pi}{2}$,
por lo tanto, $HG$ es diámetro.

Con el teorema de Apolonio calculamos la mediana $IO$ en $\triangle IHG$
$\begin{equation} IH^2 + IG^2 = 2IO^2 + \dfrac{HG^2}{2} = 2d^2 + \dfrac{(2R)^2}{2} = 2(d^2 + R^2). \end{equation}$

Como $\square AHGC$ es cíclico, entonces
$\begin{equation} AI \times GI = HI \times CI = d^2 – R^2. \end{equation}$

Donde la última igualdad se debe a la potencia de $I$ respecto de $(O, R)$.

De $(4)$ y $(5)$ obtenemos

$\dfrac{1}{AI^2} + \dfrac{1}{CI^2} = \dfrac{GI^2}{(R^2 – d^2)^2} + \dfrac{HI^2}{(R^2 – d^2)^2}$
$= \dfrac{GI^2 + HI^2}{(R^2 – d^2)^2} = \dfrac{2(d^2 + R^2)}{(R^2 – d^2)^2} = \dfrac{(R + d)^2 + (R – d)^2}{(R^2 – d^2)^2}$
$\begin{equation} = \dfrac{1}{(R + d)^2} + \dfrac{1}{(R – d)^2}. \end{equation}$

De $(3)$ y $(6)$ obtenemos la relación buscada
$\dfrac{1}{r^2} = \dfrac{1}{(R + d)^2} + \dfrac{1}{(R – d)^2}$.

$\blacksquare$

Puntos colineales en el cuadrilátero bicéntrico

Teorema 4. En un cuadrilátero bicéntrico el incentro, el circuncentro y la intersección de las diagonales son colineales.

Demostración. Sean $\square ABCD$ bicéntrico, $I$, $O$, su incentro y circuncentro respectivamente y consideremos $E$, $F$, $G$ y $H$ las intersecciones de $AI$, $BI$, $CI$ y $DI$ con $(O, R)$, el circuncírculo de $\square ABCD$, respectivamente.

Figura 5

En $\triangle GDB$ la mediatriz de $BD$ pasa por $N$ el punto medio de $BD$ y $O$, y la mediana por $G$ pasa por $G$ y $N$.

Como $CG$ es bisectriz de $\angle DCB$, entonces $\angle DBG = \angle DCG = \angle GCB = \angle GDB$, por tanto, $\triangle GBD$ es isósceles y así la mediatriz de $BD$ y la mediana por $G$ coinciden, por lo que $G$, $N$ y $O$ son colineales, al mismo tiempo que esta recta es diámetro pues pasa por $O$.

En la prueba del teorema de Fuss vimos que $GE$ es diámetro por lo tanto $G$, $N$, $O$ y $E$ son colineales además $\angle ONP = \dfrac{\pi}{2}$ donde $P$ es la intersección de las diagonales $AC$ y $BD$.

De manera análoga $F$, $M$, $O$ y $H$ son colineales donde $M$ es el punto medio de $AC$ y $\angle PMO = \dfrac{\pi}{2}$.

Se sigue que $\square PNOM$ es cíclico, por lo tanto
$\begin{equation} \angle MNP = \angle MOP. \end{equation}$

Por otro lado, como $\square DBHF$ es cíclico e $I$ es la intersección de las diagonales, por construcción, se sigue que $\triangle IBD \sim \triangle IHF$, son semejantes.

$\Rightarrow \dfrac{IB}{IH} = \dfrac{BD}{FH} = \dfrac{\dfrac{1}{2}BD}{\dfrac{1}{2}FH} = \dfrac{BN}{OH}$ y como $\angle IBN = \angle OHI$, por criterio de semejanza LAL, $\triangle IBN \sim \triangle IHO$.

Por lo tanto, $\angle BNI = \angle IOH$ y así
$\begin{equation}  \angle INP = \angle MOI. \end{equation}$

Por el teorema de Newton, sabemos que $N$, $I$ y $M$ son colineales, además $I$ se encuentra entre $N$ y $M$.

Por las ecuaciones $(7)$ y $(8)$ tenemos
$\angle MOI =  \angle INP = \angle MNP = \angle MOP$.

Es decir, el ángulo que forman las rectas $IO$ y $MO$ es el mismo ángulo que forman las rectas $PO$ y $MO$, por lo tanto $IO$ y $PO$ son la misma recta, y así los puntos $I$, $O$ y $P$ son colineales.

$\blacksquare$

Acotando el área del cuadrilátero bicéntrico

Teorema 5. El área de un cuadrilátero bicéntrico $\square ABCD$ con inradio $r$ y circunradio $R$ cumple la siguiente desigualdad:
$4r^2 \leq (\square ABCD) \leq 2R^2$.

Demostración. Primero veamos que $4r^2 \leq (\square ABCD)$, sean $E$, $F$, $G$ y $H$ los puntos de tangencia del incírculo con los lados $AB$, $BC$, $CD$ y $AD$ respectivamente.

Figura 6

Como las tangentes desde un punto a una circunferencia son iguales tenemos
$AE = AH = x$, $BE = BF = y$, $CF = CG = z$ y $DG = DH = w$.

En la demostración del teorema de Fuss vimos que $\angle IAH + \angle GCI = \dfrac{\pi}{2}$ de esto se sigue que $\triangle IHA$ y $\triangle CGI$ son semejantes
$\Rightarrow \dfrac{r}{z} = \dfrac{x}{r} \Leftrightarrow r^2 = xz$.

De manera análoga vemos que $r^2 = yw$.

Aplicando la desigualdad entre la media aritmética y la media geométrica obtenemos

$(\square ABCD) = 2((\triangle IAE) + (\triangle IBF) + (\triangle ICG) + (\triangle IDH))$
$= r(x + y + z + w)$
$ = 2r (\dfrac{x + z}{2} + \dfrac{y + w}{2}) \geq 2r(\sqrt{xz} + \sqrt{yw})$
$ = (2r)(2r) = 4r^2$.

Donde la igualdad se da si y solo si $x = y = z = w = r$, si esto es así entonces $\triangle ADC$ es isósceles, entonces, $\angle IAH = \angle GCI = \dfrac{\pi}{4}$.

Por lo tanto, $\angle A= \angle C = \dfrac{\pi}{2}$.

Del mismo modo vemos que $\angle B = \angle C = \dfrac{\pi}{2}$, y así, $\square ABCD$ es un cuadrado.

$\blacksquare$

Ahora veamos que $(\square ABCD) \leq 2R^2$, tracemos la diagonal $BD$ y sean $E$ y $F$ los pies de las perpendiculares a $BD$ trazadas desde $A$ y $C$ respectivamente y $P$ la intersección de las diagonales.

Figura 7

Por el teorema de Pitágoras, $AE \leq AP$ y $CF \leq CP \Rightarrow AE + CF \leq AC$
y se tiene la igualdad si y solo si las diagonales son perpendiculares.

Luego,
$(\square ABCD) = (\triangle ABD) + (\triangle CBD) $
$= \dfrac{BD}{2}(AE + CF) \leq \dfrac{AC \times BD}{2}$.

Como $\square ABCD$  es cíclico entonces cada diagonal es menor o igual que el diámetro $2R$ del circuncírculo.

Por lo tanto $(\square ABCD) \leq 2R^2$, donde la igualdad se da si y solo si las diagonales son perpendiculares y son diámetros del circuncírculo, es decir, $\square ABCD$  es un cuadrado.

$\blacksquare$

Más adelante…

En la siguiente entrada veremos una generalización del teorema de Ptolomeo, el teorema de Casey.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que para un cuadrilátero bicéntrico $\square ABCD$ de lados $a$, $b$, $c$ y $d$, diagonales $p$ y $q$, inradio $r$ y circunradio $R$ se tiene:
    $i)$ $(\square ABCD) = \sqrt{abcd}$,
    $ii)$ $8pq \leq (a + b + c + d)^2$,
    $iii)$ $\sqrt{2}r \leq R$.
  2.  Sea $\square ABCD$ un cuadrilátero circunscrito y sean $E$, $F$, $G$ y $H$ los puntos de tangencia del incírculo a los lados $AB$, $BC$, $CD$ y $AD$ respectivamente, considera los puntos medios $I$, $J$, $K$ y $L$ de los segmentos $HE$, $EF$, $FG$ y $GH$ respectivamente muestra que $\square ABCD$ es cíclico si y solo si $\square IJKL$ es un rectángulo.
Figura 8
  1. Sea $\square ABCD$ bicéntrico, $(I, r)$ el incírculo y $P$ la intersección de las diagonales, muestra que:
    $i)$ $\dfrac{1}{AI^2} + \dfrac{1}{CI^2} = \dfrac{1}{BI^2} + \dfrac{1}{DI^2} = \dfrac{1}{r^2}$,
    $ii)$ $\dfrac{AP}{CP} = \dfrac{AI^2}{CI^2}$ , $Wikipedia\dfrac{BP}{DP} = \dfrac{BI^2}{DI^2}$.
  2. Construye un cuadrilátero bicéntrico.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Cuadrilátero circunscrito

Por Rubén Alexander Ocampo Arellano

Introducción

Decimos que un cuadrilátero convexo es circunscrito si sus lados son tangentes a una misma circunferencia dentro del cuadrilátero. Nos referimos a dicha circunferencia como el incírculo y a su radio como el inradio del cuadrilátero.

Sabemos que los lados de un triángulo siempre son tangentes a una misma circunferencia, el incírculo del triángulo, cuyo centro es el punto donde concurren las bisectrices internas, en esta entrada estudiaremos cuando un cuadrilátero es circunscrito y algunas propiedades.

Primera caracterización para el cuadrilátero circunscrito

Teorema 1. Un cuadrilátero es circunscrito si y solo si la suma de dos lados opuestos es igual a la suma de los otros dos lados opuestos.

Demostración. Sean $\square ABCD$ un cuadrilátero circunscrito, $E$, $F$, $G$ y $H$ los puntos de tangencia de la circunferencia a los lados $AB$, $BC$, $CD$ y $AD$ respectivamente y consideremos $I$ el incentro de $\square ABCD$.

Figura 1

Recordemos que las tangentes a una circunferencia desde un punto externo a esta son iguales, por lo tanto, $AH = AE = x$, $BE = BF = y$, $CF = CG = z$, $DG = DH = w$.

Entonces $AB + CD = (x + y) + (z + w) = (x + w) + (y + z) = AD + BC$.

$\blacksquare$

Ahora supongamos que en $\square ABCD$ se tiene que $AB + CD = AD + BC$ y que tiene un par de lados adyacentes que no son iguales.

Sin pérdida de generalidad podemos suponer que $AB > BC$ entonces,
$\begin{equation} AD – CD = AB – BC > 0. \end{equation}$.

Figura 2

Sean $E \in AB$ y $F \in AD$ tales que $EB = BC$ y $FD = CD$ entonces por la ecuación $(1)$ $AE = AF$ y así $\triangle AEF$, $\triangle BCE$ y $\triangle DFC$ son isósceles.

Por lo tanto, las bisectrices internas de los ángulos $\angle EAF$, $\angle CBE$ y $\angle ADC$, son las mediatrices de $\triangle EFC$, por lo tanto, concurren en un punto $I$.

Como $I$ está en las bisectrices internas de los ángulos $\angle AEF$, $\angle BCE$ y $\angle DFC$, entonces, equidista a cado uno de los lados que forman dichos ángulos y de esta forma $I$ es el centro de una circunferencia tangente a los lados de $\square ABCD$.

La otra posibilidad es que todos los lados del cuadrilátero sean iguales es decir el cuadrilátero sea un rombo, este caso se queda como ejercicio.

$\blacksquare$

Teorema de Newton

Teorema 2, de Leon Anne. Sea $\square ABCD$ un cuadrilátero que no es un paralelogramo, el lugar geométrico de los puntos $P$ en el interior de $\square ABCD$ tal que $(\triangle APB) + (\triangle CPD) = (\triangle BPC) + (APD)$, es la recta de Newton de $\square ABCD$.

Demostración. Sean $P$ un punto en el interior de $\square ABCD$ tal que $(\triangle APB) + (\triangle CPD) = (\triangle BPC) + (APD)$ y $F$ el punto medio de $BD$.

Figura 3

Podemos ver el área de los triángulos considerados como suma y diferencia de otras áreas:

$(\triangle APB) = (\triangle AFB) + (\triangle BFP) – (\triangle AFP)$,
$ (\triangle CPD) = (\triangle CFD) + (\triangle CFP) – (\triangle DFP)$,
$(\triangle APD) = (\triangle AFD) + (\triangle AFP) + (\triangle DFP)$,
$ (\triangle BPC) = (\triangle BFC) – (\triangle BFP) – (\triangle CFP)$.

Entonces, por hipótesis:
$(\triangle AFB) + (\triangle BFP) – (\triangle AFP) + (\triangle CFD) + (\triangle CFP) – (\triangle DFP)$
$= (\triangle AFD) + (\triangle AFP) + (\triangle DFP) + (\triangle BFC) – (\triangle BFP) – (\triangle CFP)$.

$\Leftrightarrow$
$(\triangle AFB) + 2(\triangle BFP) + (\triangle CFD) + 2(\triangle CFP)$
$\begin{equation} = (\triangle AFD) + 2(\triangle AFP) + 2(\triangle DFP) + (\triangle BFC). \end{equation}$

Notemos que como $B$, $F$ y $D$ son colineales entonces $\triangle AFB$ y $\triangle AFD$ tienen la misma altura desde $A$, y ya que $FB = FD$ entonces $(\triangle AFB) = (\triangle AFD)$.

Igualmente podemos ver que
$(\triangle BFP) = (\triangle DFP)$ y $(\triangle CFD) = (\triangle BFC)$.

De la ecuación $(2)$ se sigue que $(\triangle CFP) = (\triangle AFP)$.

Como ambos triángulos tienen la misma base entonces las alturas trazadas desde $A$ y $C$ a la recta $FP$ son la mismas, digamos $AG = CH$.

Consideremos $E$ la intersección de $AC$ con $FP$, entonces $\triangle AEG$ y $\triangle CEH$ son congruentes, por criterio ángulo, lado, ángulo.

Por lo tanto $E$ es el punto medio de $AC$ y así $P$ está en la recta de Newton de $\square ABCD$.

La implicación reciproca se puede ver tomando en sentido contrario los argumentos anteriores.

$\blacksquare$

Teorema 3. De Newton. Si un cuadrilátero es circunscrito entonces su incentro esta en la recta de Newton del cuadrilátero.

Demostración. Sean $\square ABCD$ un cuadrilátero circunscrito $I$ y $r$ el centro y el radio de su incírculo respectivamente, entonces por el teorema 1 sabemos que:
$AB + CD = AD + BC$
$\Rightarrow \dfrac{r}{2}(AB + CD) = \dfrac{r}{2}(AD + BC)$
$\Rightarrow (\triangle AIB) + (\triangle CID) = (\triangle AID) + (\triangle BIC)$.

Por lo tanto, $I$ se encuentra en la recta de Newton de $\square ABCD$.

$\blacksquare$

Rectas concurrentes en el cuadrilátero circunscrito

Teorema 4. Sea $\square ABCD$ un cuadrilátero circunscrito y sean $E$, $F$, $G$ y $H$ los puntos de tangencia del circuncírculo con los lados $AB$, $BC$, $CD$ y $AD$ respectivamente, entonces,
$i)$ las cuerdas $EG$, $FH$ y las diagonales $AC$, $BD$ son concurrentes
$ii)$ si $P$ es el punto de concurrencia, entonces,
$\dfrac{AP}{CP}  = \dfrac{x}{z}$ y $\dfrac{BP}{DP}  = \dfrac{y}{w}$.

Donde $AH = AE = x$, $BE = BF = y$, $CF = CG = z$, $DG = DH = w$.

Demostración. Sean $I$ el incentro de $\square ABCD$ y $P = AC \cap EG$.

Como $AB$ y $CD$ son tangentes al circuncírculo en $E$ y $G$ respectivamente, entonces $\angle GEA = \angle DGE$, pues ambos son ángulos semiinscritos que abarcan el mismo arco.

Figura 4

Por lo tanto,
$\sin \angle PEA = \sin \angle DGP = \sin (\pi – \angle DGP) = \sin \angle PGC$.

Por otro lado,
$2(\triangle AEP) = AP \times EP \sin \angle APE = AE \times EP \sin \angle PEA$,
$2(\triangle CGP) = PG \times CP \sin \angle CPG = CG \times GP \sin \angle PGC$.

$\Rightarrow \dfrac{(\triangle AEP) }{(\triangle CGP)} = \dfrac{AP \times EP}{PG \times CP} = \dfrac{AE \times EP}{CG \times GP}$
$\Rightarrow \dfrac{AP}{CP}  = \dfrac{AE}{CG}$.

Lo que significa que la cuerda $EG$ divide internamente a la diagonal $AC$ en la razón $\dfrac{AE}{CG} = \dfrac{x}{z}$.

Similarmente podemos mostrar que la cuerda $FH$ divide internamente a la diagonal $AC$ en la razón $\dfrac{x}{z}$, por lo tanto, $EG$, $FH$, se intersecan en $AC$.

Repitiendo este procedimiento, pero esta vez para la diagonal $BD$ podemos ver que $BD$, $EG$ y $FH$ concurren, y que $\dfrac{BP}{DP}  = \dfrac{y}{w}$.

Por lo tanto, las diagonales $AC$, $BD$ y las cuerdas $EG$, $FH$ son concurrentes.

$\blacksquare$

Corolario. Tenemos las siguientes igualdades (figura 4),
$\dfrac{(\triangle APB)}{xy} = \dfrac{(\triangle BPC)}{yz} = \dfrac{(\triangle CPD)}{zw} = \dfrac{(\triangle APD)}{xw}$.

Demostración. Notemos que los triángulos $\triangle APB$ y $\triangle BPC$ tienen la misma altura desde el vértice $B$, y ya que $A$, $P$ y $C$ son colineales, entonces usando la razón, encontrada en el teorema anterior, en la que $P$ divide a $AC$.

$\dfrac{(\triangle APB)}{(\triangle BPC)} = \dfrac{AP}{PC} = \dfrac{x}{z} \Leftrightarrow \dfrac{(\triangle APB)}{xy} = \dfrac{(\triangle BPC)}{zy}$.

Las otras igualdades se muestran de manera análoga.

$\blacksquare$

Una propiedad referente a inradios

Teorema 5. Sean $\square ABCD$ circunscrito, $P$ el punto de intersección de las diagonales, y consideremos los inradios $r_{1}$, $r_{2}$, $r_{3}$, $r_{4}$, de los triángulos $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$ respectivamente, entonces
$\dfrac{1}{ r_{1}} + \dfrac{1}{ r_{3}} = \dfrac{1}{ r_{2}} + \dfrac{1}{ r_{4}}$.

Demostración. Por el corolario anterior, sea $\lambda = \dfrac{(\triangle APB)}{xy} = \dfrac{(\triangle BPC)}{yz} = \dfrac{(\triangle CPD)}{zw} = \dfrac{(\triangle APD)}{xw} \neq 0$.

Figura 5

Por el teorema 4, tenemos que $\dfrac{AP}{CP}  = \dfrac{x}{z}$ y $\dfrac{BP}{DP}  = \dfrac{y}{w}$.

Entonces sean $\eta = \dfrac{AP}{x}  = \dfrac{CP}{z}$ y $\mu = \dfrac{BP}{y}  = \dfrac{DP}{w}$.

Ahora calculamos el área de $\triangle APB$.

$(\triangle APB) = r_{1}s = \dfrac{r_{1}}{2}(AP + PB + AB)$
$\Leftrightarrow \dfrac{1}{r_{1}} = \dfrac{AP + PB + AB}{2(\triangle APB)} = \dfrac{AP + PB + AB}{2 \lambda xy}$
$\Leftrightarrow \dfrac{2 \lambda}{r_{1}} = \dfrac{AP + PB + AB}{xy} = \dfrac{x \eta + y \mu + (x + y)}{xy}$
$= \dfrac{x(\eta + 1) + y(\mu + 1))}{xy} = \dfrac{\eta + 1}{y} + \dfrac{\mu + 1}{x}$.

De manera análoga podemos ver que
$\dfrac{2 \lambda}{r_{3}} = \dfrac{\eta + 1}{w} + \dfrac{\mu + 1}{z}$.

Entonces,
$\dfrac{2 \lambda}{r_{1}} + \dfrac{2 \lambda}{r_{3}} = \dfrac{\eta + 1}{y} + \dfrac{\mu + 1}{x} + \dfrac{\eta + 1}{w} + \dfrac{\mu + 1}{z}$.

Podemos encontrar de la misma forma
$\dfrac{2 \lambda}{r_{2}} + \dfrac{2 \lambda}{r_{4}} = \dfrac{\eta + 1}{y} + \dfrac{\mu + 1}{z} + \dfrac{\mu + 1}{x} + \dfrac{\eta + 1}{w}$.

Por lo tanto,
$\dfrac{2 \lambda}{r_{1}} + \dfrac{2 \lambda}{r_{3}} = \dfrac{2 \lambda}{r_{1}} + \dfrac{2 \lambda}{r_{3}}$
$\Leftrightarrow \dfrac{1}{r_{1}} + \dfrac{1}{r_{3}} = \dfrac{1}{r_{2}} + \dfrac{1}{r_{4}}$.

$\blacksquare$

Puntos cíclicos en el cuadrilátero circunscrito

Lema. Sean $\triangle ABC$, $I$ y $r$ el incentro y el inradio de su circuncírculo entonces
$i)$ $AB + AC – BC = 2 r \cot \dfrac{\angle A}{2}$,
$ii)$ $AI = \dfrac{r}{\sin \dfrac{\angle A}{2}}$.

Demostración. Consideremos $D$, $E$ y $F$ los puntos de tangencia de $(I, r)$ con $AB$, $BC$ y $AD$ respectivamente entonces $AD = AF$, $BD = BE$ y $CE = CF$ además en el triángulo rectángulo $\triangle ADI$
$\tan\dfrac{\angle A}{2} = \dfrac{ID}{AD} \Leftrightarrow AD = r \cot \dfrac{\angle A}{2}$.

Figura 6

Por lo tanto, $AB + AC – BC = (AD + BD) + (AF + CF) – (BE + CE) = 2AD = 2 r \cot \dfrac{\angle A}{2}$.

Por otra parte en $\triangle ADI$,
$\sin \dfrac{\angle A}{2} = \dfrac{ID}{IA} \Leftrightarrow AI = \dfrac{r}{\sin \dfrac{\angle A}{2}}$.

$\blacksquare$

Teorema 6. Sean $\square ABCD$ circunscrito, $P$ la intersección de las diagonales, $I_{1}$, $I_{2}$, $I_{3}$ e $I_{4}$ los incentros de los triángulos $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$ respectivamente entonces el cuadrilátero $\square I_{1}I_{2}I_{3} I_{4}$ es cíclico.

Demostración. Sean $r_{1}$, $r_{2}$, $r_{3}$ y $r_{4}$ los inradios de $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$ respectivamente, notemos que $\angle APB = \angle CPD$ y $\angle BPC = \angle DPA$ pues son opuestos por el vértice, entonces
$2(\angle APB + \angle DPA) = 2\pi \Leftrightarrow \dfrac{\angle APB + \angle DPA}{2} = \dfrac{\pi}{2}$ por lo que
$\sin \dfrac{\angle APB}{2} = \cos \dfrac{\angle DPA}{2}$ y $\cos \dfrac{\angle APB}{2} = \sin \dfrac{\angle DPA}{2}$.

Figura 7

Aplicando el lema parte 1 a $\triangle APB$ y $\triangle CPD$ obtenemos
$(AP + BP – AB) + (CP + DP – CD)$
$= 2 r_{1} \cot \dfrac{\angle APB}{2} + 2 r_{3}  \cot \dfrac{\angle CPD}{2} = 2\cot \dfrac{\angle APB}{2}( r_{1} + r_{3})$.

Hacemos lo mismo con $\triangle BPC$ y $\triangle APD$,
$(BP + CP – BC) + (DP + AP – AD) = 2\cot \dfrac{\angle DPA}{2}( r_{2} + r_{4})$.

Como $\square ABCD$ es circunscrito por el teorema 1, $AB + CD = BC + AD$ por lo que
$(AP + BP – AB) + (CP + DP – CD) = (BP + CP – BC) + (DP + AP – AD)$.

Y por lo tanto,
$2\cot \dfrac{\angle APB}{2}( r_{1} + r_{3}) = 2\cot \dfrac{\angle DPA}{2}( r_{2} + r_{4})$

$\Rightarrow \dfrac{ r_{1} + r_{3}}{ r_{2} + r_{4}} = \dfrac{\cot \dfrac{\angle DPA}{2}}{\cot \dfrac{\angle APB}{2}}$
$= \dfrac{\dfrac{\cos \dfrac{\angle DPA}{2}}{\sin \dfrac{\angle DPA}{2}}}{\dfrac{\cos \dfrac{\angle APB}{2}}{\sin \dfrac{\angle APB}{2}}}
= \dfrac{\dfrac{\sin \dfrac{\angle APB}{2}}{\cos \dfrac{\angle APB}{2}}}{\dfrac{\cos \dfrac{\angle APB}{2}}{\sin \dfrac{\angle APB}{2}}}
= \dfrac{\sin^2 \dfrac{\angle APB}{2}}{\cos^2 \dfrac{\angle APB}{2}}$

$\begin{equation} = \tan^2 \dfrac{\angle APB}{2}. \end{equation}$

Por otra parte aplicamos el lema parte 2 a $\triangle APB$ y $\triangle CPD$
$PI_{1} \times PI_{3} = \dfrac{r_{1}}{\sin \dfrac{\angle APB}{2}} \dfrac{r_{3}}{\sin \dfrac{\angle CPD}{2}} = \dfrac{ r_{1} r_{3}}{\sin^2 \dfrac{\angle APB}{2}}$.

Hacemos lo mismo con $\triangle BPC$ y $\triangle APD$
$PI_{2} \times PI_{4} = \dfrac{r_{2}}{\sin \dfrac{\angle BPC}{2}} \dfrac{r_{4}}{\sin \dfrac{\angle DPA}{2}} = \dfrac{ r_{2} r_{4}}{\sin^2 \dfrac{\angle DPA}{2}}$.

Realizamos el cociente de las dos últimas expresiones encontradas
$\dfrac{PI_{2} \times PI_{4}}{PI_{1} \times PI_{3}} = \dfrac{r_{2} r_{4}}{\sin^2 \dfrac{\angle DPA}{2}} \dfrac{\sin^2 \dfrac{\angle APB}{2}}{r_{1} r_{3}} = \dfrac{r_{2} r_{4}}{r_{1} r_{3}} \dfrac{\sin^2 \dfrac{\angle APB}{2}}{\cos^2 \dfrac{\angle APB}{2}}$

$\begin{equation} = \dfrac{r_{2} r_{4}}{r_{1} r_{3}} \tan^2 \dfrac{\angle APB}{2}. \end{equation}$

Entonces podemos sustituir la ecuación $(3)$ en $(4)$
$\dfrac{PI_{2} \times PI_{4}}{PI_{1} \times PI_{3}} = (\dfrac{r_{2} r_{4}}{r_{1} r_{3}}) (\dfrac{r_{1} + r_{3}}{r_{2} + r_{4}}) = \dfrac{\dfrac{r_{1} + r_{3}}{r_{1} r_{3}}}{\dfrac{r_{2} + r_{4}}{r_{2} r_{4}}}
= \dfrac{\dfrac{1}{r_{1}} + \dfrac{1}{r_{3}}}{\dfrac{1}{r_{2}} + \dfrac{1}{r_{4}}}$.

Por el teorema 5, sabemos que
$\dfrac{1}{r_{1}} + \dfrac{1}{ r_{3}} = \dfrac{1}{r_{2}} + \dfrac{1}{ r_{4}}$.

Por lo tanto,
$\dfrac{PI_{2} \times PI_{4}}{ PI_{1} \times PI_{3}} = 1$
$\Leftrightarrow PI_{2} \times PI_{4} = PI_{1} \times PI_{3}$.

Como $P = I_1I_3 \cap I_2I_4$, pues estas rectas son las bisectrices interna y externa de $\angle APB$, por el teorema de las cuerdas, el cuadrilátero $\square I_1I_2I_3I_4$ es cíclico.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos características de los cuadriláteros que son tanto cíclicos como circunscritos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $i)$ Muestra que un cuadrilátero convexo es circunscrito si y solo si sus bisectrices internas son concurrentes.
    $ii)$ Prueba que todo rombo es circunscrito.
  2. Muestra que $\square ABCD$ convexo, es circunscrito si y solo si los incírculos de los triángulos $\triangle ABC$ y $\triangle ACD$ son tangentes entre si.
  3. Sea $\square ABCD$ convexo, consideremos los incirculos de los triángulos $\triangle ABD$, $\triangle ABC$, $\triangle BCD$ y $\triangle ADC$ que son tangentes a los lados del cuadrilátero en $M$, $T$, $N$, $O$, $P$, $Q$, y $R$, $S$ respectivamente, muestra que $\square ABCD$ es circunscrito si y solo si $MN + QR = OP + ST$.
  1. Si $\square ABCD$ es circunscrito, con lados $a$, $b$, $c$ y $d$ muestra que:
    $i)$ $(\square ABCD) = \sqrt{abcd} \sin \dfrac{\angle A + \angle C}{2} = \sqrt{abcd} \sin \dfrac{\angle B + \angle D}{2}$,
    $ii)$ $(\square ABCD) \leq \sqrt{abcd}$.
  2. Sean $\square ABCD$ circunscrito, $I$ el incentro del cuadrilátero y $P$ la intersección de las diagonales, muestra que los ortocentros de los triángulos $\triangle AIB$, $\triangle BIC$, $\triangle CID$, $\triangle AID$ y $P$ son colineales.
  1. Sean $\square ABCD$ circunscrito y $P$ la intersección de sus diagonales, muestra que los centros de los excírculos de los triángulos $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$ opuestos a $P$ forman un cuadrilátero cíclico.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»