Variable Compleja I: Introducción a los números complejos

Por Pedro Rivera Herrera

Introducción

A lo largo del tiempo el desarrollo de las Matemáticas ha sido una constante abstracción entre lo real y lo necesario. Es claro que la necesidad de resolver distintas problemáticas ha sido la motivación para dar soluciones que a su vez permitan desarrollar nuevas teorías que den sustento y validez a dichos planteamientos. Muchos de los resultados y de las teorías que tenemos actualmente parecen haber sido trabajados de manera consecutiva, sin embargo hoy sabemos que se han dado de forma independiente, y que algunas de las ramas de las Matemáticas que convergen en teorías más generales fueron, en principio, abordadas en distinto tiempo y con distinto enfoque. El hecho de que hoy podamos entender conceptos que parecen evidentes es gracias a todo este desarrollo.

Tanto la definición como el concepto que tenemos hoy en día sobre lo que es un número complejo han cambiado durante el desarrollo de la teoría de los Números Complejos. Con ánimos de plantear soluciones a problemas como ecuaciones cuadráticas y cubicas, pero sobre todo de entender y explicar expresiones que requerían hablar de algunas “cantidades sofisticadas”, como les llamó Cardano, se ha desarrollado la teoría que hoy conocemos como Variable Compleja. Aunque estos números estuvieron presentes en problemas matemáticos desde el primer siglo, como en cálculos de volúmenes de pirámides hechos por Herón de Alejandría alrededor del año 75 D.C., este concepto se tuvo que abstraer primero para poder comprender expresiones en las que se tenían raíces de números negativos. Del mismo modo en que el concepto de número negativo en principio parecía inconcebible, tanto que se les llego a llamar “falsos números”, los números complejos fueron tratados en ocasiones como “cantidades imposibles”, ya que no eran aceptados por estar fuera de lo real.

Antecedentes

En la historia de los números complejos aparecen nombres de grandes matemáticos que en su tiempo hicieron algún aporte en la teoría y comprensión de estos números, por lo que es importante mencionar algunos de sus resultados con la finalidad de entender un poco mejor el origen de la Variable Compleja.

Aunque los primeros resultados trascendentes al trabajar con números complejos se dieron durante el siglo XVI, desde los primeros siglos algunos matemáticos hindúes como Bhaskara Acharya (486 D.C.) y Mahavira Acharya (850 D.C.) tenían en sus trabajos escritos como “el cuadrado tanto de un número positivo como de un número negativo es positivo y la raíz cuadrada de un número positivo es doble: positiva y negativa, mientras que no existe la raíz cuadrada de un número negativo, porque no existen números negativos al elevarlos al cuadrado” y “como es natural, una cantidad negativa no es una cantidad al cuadrado, por lo que no tiene raíz cuadrada”. Estas ideas nos dejan claro que el contexto para hablar de un número complejo, tal y como lo conocemos ahora, no era favorable. Fue hasta el año de 1545 cuando el matemático italiano Girolamo Cardano, publicó su libro Ars Magna (El Gran Arte), en el cual describía métodos algebraicos para resolver ecuaciones cuadráticas y cúbicas, cuando los números complejos comenzaron a ser necesarios.

La importancia del trabajo de Cardano está en que reconoce la necesidad de trabajar con “cantidades sofisticadas” para dar solución a ecuaciones que se habían catalogado como “imposibles”. Es quizás la sutileza que observó Cardano en sus soluciones la que abre un nuevo capítulo para los números complejos.

Si deseas conocer más acerca de la historia de los números complejos y los resultados de Cardano puedes consultar los libros An Introduction to Complex Analysis de Agarwal, Ravi P., Numbers de Ebbinghaus, H.D., y Ars Magna or the Rules of Algebra by Girolamo Cardano traducido al inglés por Richard Witmer.

Fórmula de Cardano

Antes de presentar el resultado de Cardano, consideremos el siguiente:

Lema 1.
Dada una ecuación de la forma:

\begin{equation*}
ax^3 + bx^2 + cx + d = 0, \tag{1.1}
\end{equation*}

con $a, b, c, d \in \mathbb{C}$ y $a \neq 0$, podemos reducirla a una ecuación sin el término cuadrático de la forma:

\begin{equation*}
x^3 + px + q = 0,
\end{equation*}

donde $p= – \frac{b^2}{3a^2} + \frac{c}{a}$ y $q = \frac{2b^3}{27a^3} – \frac{bc}{3a^2} + \frac{d}{a}$.

Demostración. Dadas las hipótesis, primeramente hagamos al polinomio (1.1) un polinomio mónico:

\begin{equation*}
x^3 + Bx^2 + Cx + D = 0, \quad \text{donde} \quad B=\frac{b}{a}, \, C = \frac{c}{a}, \, D = \frac{d}{a}.
\end{equation*}

Consideremos ahora el cambio de variable $x = y + e$. Entonces:

\begin{equation*}
(y+e)^3 + B(y+e)^2 + C(y+e) + D = 0.
\end{equation*}

Desarrollando y agrupando tenemos que:

\begin{equation*}
y^3 + (B+3e)y^2 + (3e^2 + 2Be + C)y + (e^3 + Be^2 + Ce + D) = 0,
\end{equation*}

Si hacemos $B+3e=0$, entonces $e = \frac{-B}{3}$. Por lo que, definiendo:

\begin{equation*}
p:= 3e^2 + 2Be + C = – \frac{B^2}{3} + C,
\end{equation*}

\begin{equation*}
q:= e^3 + Be^2 + Ce + D = \frac{2B^3}{27} – \frac{BC}{3} + D,
\end{equation*}

se sigue el resultado haciendo las sustituciones correspondientes:

\begin{equation*}
y^3 + py + q = 0 \quad \text{o simplemente} \quad x^3 + px + q = 0,
\end{equation*}

con $p= – \frac{b^2}{3a^2} + \frac{c}{a}$ y $q = \frac{2b^3}{27a^3} – \frac{bc}{3a^2} + \frac{d}{a}$.

$\blacksquare$

De acuerdo con el resultado anterior, dada una ecuación cúbica como en (1.1), para reducirla a una ecuación sin el término cuadrático basta con usar un cambio de variable de la forma $x=y-\frac{b}{3a}$.

Teorema 1. (Fórmula de Cardano.)
Sean $a, b, c, d \in \mathbb{R}$ con $a \neq 0$. Las raíces de la ecuación cúbica:

\begin{equation*}
ax^3 + bx^2 + cx + d = 0, \tag{1.2}
\end{equation*}

están dadas por:

\begin{equation*}
x = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \sqrt[3]{-\frac{q}{2} – \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} – \frac{b}{3a}. \tag{1.3}
\end{equation*}

Donde $p= – \dfrac{b^2}{3a^2} + \dfrac{c}{a}$ y $q = \dfrac{2b^3}{27a^3} – \dfrac{bc}{3a^2} + \dfrac{d}{a}$.

Demostración. Dadas las hipótesis, de acuerdo con el Lema 1 tenemos que la ecuación (1.2), utilizando el cambio de variable $x=y-\frac{b}{3a}$, se puede simplificar como:
\begin{equation*}
y^3 + py + q = 0, \tag{1.4}
\end{equation*}

donde $p= – \dfrac{b^2}{3a^2} + \dfrac{c}{a}$ y $q = \dfrac{2b^3}{27a^3} – \dfrac{bc}{3a^2} + \dfrac{d}{a}$.

Notemos que:

\begin{align*}
\left(\alpha + \beta\right)^3 & = \alpha^3 + \beta^3 + 3\alpha^2 \beta + 3\alpha \beta^2\\
& = \alpha^3 + \beta^3 + 3\alpha\beta \left(\alpha + \beta\right),
\end{align*}

de donde obtenemos:
\begin{align*}
\left(\alpha + \beta\right)^3 – 3\alpha\beta \left(\alpha + \beta\right) – \left(\alpha^3 + \beta^3\right) = 0. \tag{1.5}
\end{align*}

Si definimos $q = – \left(\alpha^3 + \beta^3\right)$ y $p = – 3\alpha\beta$ en (1.5), entonces $y = \alpha + \beta$ es una solución de (1.4). Tenemos entonces que:
\begin{align*}
p = -3 \alpha \beta \quad \Longrightarrow \quad \left(\alpha \beta\right)^3 = -\left(\frac{p}{3}\right)^3.\\ \tag{1.6}
q = – \left(\alpha^3 + \beta^3\right) \quad \Longrightarrow \quad \alpha^3 + \beta^3 = -q.
\end{align*}

De (1.6) se sigue que $\beta^3 = -\frac{p^3}{27 \alpha^3}$, por lo que podemos obtener la siguiente ecuación en términos de $\alpha^3$:
\begin{align*}
-q &= \alpha^3 + \beta^3\\
&= \alpha^3 -\frac{p^3}{27 \alpha^3},
\end{align*}

o equivalentemente:

\begin{equation*}
\left( \alpha^3 \right)^2 + q \alpha^3 – \frac{p^3}{27} = 0. \tag{1.7}
\end{equation*}

Resolviendo (1.7) para $\alpha^3$ tenemos que las soluciones son:

\begin{align*}
\alpha^3 & = \frac{-q \pm \sqrt{q^2 + 4\left(\frac{p}{3}\right)^3}}{2}\\
& = -\frac{q}{2} \pm \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}
\end{align*}

Notemos que el mismo resultado se obtiene para $\beta^3$. De acuerdo con (1.6), como $\alpha^3 + \beta^3 = -q$, entonces sin pérdida de generalidad:

\begin{equation*}
\alpha^3 = -\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3} \quad \Longrightarrow \quad \alpha = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}.
\end{equation*}

\begin{equation*} \beta^3 = -\frac{q}{2} – \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3} \quad \Longrightarrow \quad \beta = \sqrt[3]{-\frac{q}{2} – \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}.
\end{equation*}

Considerando que tenemos 2 raíces cuadradas y 3 raíces cúbicas, entonces hay en total 6 raíces, pero dadas las condiciones en (1.6), tenemos que fijado un valor de $\alpha$, entonces el valor de $\beta$ está determinado por la igualdad $p = – 3\alpha \beta$, lo cual nos garantiza que (1.4) tiene solo 3 soluciones, que de acuerdo con lo anterior son de la forma:

\begin{align*}
x & = y \,-\, \frac{b}{3a}\\
& = \left(\alpha + \beta\right) \,-\, \frac{b}{3a}\\
& = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \sqrt[3]{-\frac{q}{2} – \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} \,-\, \frac{b}{3a},
\end{align*}

donde $p= – \dfrac{b^2}{3a^2} + \dfrac{c}{a}$ y $q = \dfrac{2b^3}{27a^3} – \dfrac{bc}{3a^2} + \dfrac{d}{a}$.

$\blacksquare$

Corolario 1.
Las raíces de la ecuación cúbica:

\begin{equation*}
x^3 + px + q = 0.
\end{equation*}

están dadas por:

\begin{equation*}
x = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \sqrt[3]{-\frac{q}{2} – \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}.
\end{equation*}

$\blacksquare$

Observación 1.1.
El resultado de Cardano parecía no tener sentido en el caso en que $\left(\dfrac{q}{2}\right)^2 + \left(\dfrac{p}{3}\right)^3< 0$, sin embargo fue la sutileza de Cardano la que le permitió asumir que trabajar con «cantidades sofisticadas», a decir expresiones donde aparecían números negativos dentro de raíces cuadradas, daba resultados útiles aunque fuera de lo real. Cardano mostró que las ecuaciones cúbicas con ésta condición tenían soluciones reales dadas como suma de raíces cúbicas imaginarias.

Ejemplo 1.
Consideremos las siguientes ecuaciones:

  • a) $ \quad x^3 – 30x -36 =0$.
  • b) $ \quad x^3 – 15x – 4 = 0$.

Es claro que estas ecuaciones no eran consideradas “imposibles” desde que $x = 6$ es solución de a) y $x = 4$ es solución de b). Sin embargo usando la fórmula de Cardano obtenemos las siguientes soluciones:

  • a) Tenemos que $p = -30 $ y $q = -36$, entonces sustituyendo en la solución del Corolario 1 tenemos que:
    \begin{align*}
    x & = \sqrt[3]{18 + \sqrt{-676}} + \sqrt[3]{18 – \sqrt{-676}}\\
    & = \sqrt[3]{18 + \sqrt{-1} \, 26} + \sqrt[3]{18 – \sqrt{-1} \, 26}.
    \end{align*}
  • b) Tenemos que $p = -15 $ y $q = -4$, entonces sustituyendo en la solución del Corolario 1 tenemos que:
    \begin{align*}
    x & = \sqrt[3]{2 + \sqrt{-121}} + \sqrt[3]{2 – \sqrt{-121}}\\
    & = \sqrt[3]{2 + \sqrt{-1} \, 11} + \sqrt[3]{2 – \sqrt{-1} \, 11}.
    \end{align*}

Lo que observó Cardano claramente era cuestionable, aunque fue hasta 1572 que el matemático italiano Rafael Bombelli en su libro «L’Algebra» desarrolló las reglas básicas del álgebra de los números complejos. Usando la notación moderna para $\sqrt{-1}$, es decir la letra $i$, misma que fue usada por primera vez por el matemático Leonhard Euler, Bombelli estableció que:

  • $(\pm 1)i = \pm i $.
  • $(\pm 1)(-i) = \mp i $.
  • $(+i)(+i) = -1$.
  • $(-i)(+i) = (+i)(-i) = +1$.

Es entonces cuando los resultados que aparentemente no tenían sentido alguno lo cobran gracias a Bombelli, quien estableció la forma correcta de operar con estos números, tanto que mediante el uso de las propiedades de los números reales manipula las expresiones obtenidas por Cardano resolviendo así que:

  • Para la ecuación a):

\begin{align*}
x & = \left(\sqrt[3]{18 + \sqrt{-1} \, 26}\right) + \left(\sqrt[3]{18 – \sqrt{-1} \, 26}\right)\\
& = \left(a + \sqrt{-1} \, b\right) + \left( a – \sqrt{-1} \, b \right).
\end{align*}

Que equivalentemente podemos expresar como:

\begin{align*}
18 + \sqrt{-1} \, 26 & = \left(a + \sqrt{-1} \, b\right)^3\\
& = \left(a^3 -3ab^2\right) + \sqrt{-1}\left( 3a^2b – b^3\right).
\end{align*}

\begin{align*}
18 – \sqrt{-1} \, 26 & = \left(a – \sqrt{-1} \, b\right)^3\\
& = \left(a^3 -3ab^2\right) – \sqrt{-1}\left(3a^2b-b^3\right).
\end{align*}

Entonces:

\begin{align*}
18 = a^3 -3ab^2\\
26 = 3a^2b – b^3.
\end{align*}

Por lo que para $a = 3$ y $b=1$ notamos que se satisface el sistema, entonces:

\begin{equation*}
x = \left(3 + \sqrt{-1} \right) + \left( 3 – \sqrt{-1} \right) = 6.
\end{equation*}

  • Para la ecuación b):

\begin{align*}
x & = \left(\sqrt[3]{2 + \sqrt{-1} \, 11}\right) + \left(\sqrt[3]{2 – \sqrt{-1} \, 11}\right)\\
& = \left(a + \sqrt{-1} \, b\right) + \left( a – \sqrt{-1} \, b \right).
\end{align*}

Que equivalentemente podemos expresar como:

\begin{align*}
2 + \sqrt{-1} \, 11 & = \left(a + \sqrt{-1} \, b\right)^3\\
& = \left(a^3 -3ab^2\right) + \sqrt{-1}\left( 3a^2b – b^3\right).
\end{align*}

\begin{align*}
2 – \sqrt{-1} \, 11 & = \left(a – \sqrt{-1} \, b\right)^3\\
& = \left(a^3 -3ab^2\right) – \sqrt{-1}\left( 3a^2b – b^3\right).
\end{align*}

Entonces:

\begin{align*}
2 = a^3 -3ab^2\\
11 = 3a^2b – b^3.
\end{align*}

Por lo que para $a = 2$ y $b=1$ notamos que se satisface el sistema, entonces:

\begin{equation*}
x = \left(2 + \sqrt{-1} \right) + \left( 2 – \sqrt{-1} \right) = 4.
\end{equation*}

Todo el desarrollo anterior fue posible gracias al trabajo hecho por Bombelli. Después de Cardano y Bombelli hubo aportaciones de grandes matemáticos como Descartes, Leibniz, Euler, Wallis, Wessel, Argand, Gauss, Cauchy, Hamilton, entre otros, quienes colaboraron en el desarrollo y comprensión de estos números y su teoría, la construcción moderna que tenemos hoy en día de los números complejos, su operabilidad, interpretación geométrica, incluso su mismo nombre, es sin duda el resultado de la abstracción y unificación de todas estas ideas.

Observación 1.2.
Es importante mencionar que a lo largo de este curso haremos uso de las siguientes notaciones para referirnos a los distintos conjuntos:

  • Números naturales y naturales positivos:

\begin{align*}
\mathbb{N} = \{0,1,2,\ldots\},\\
\mathbb{N}^+ = \{1,2,\ldots\}.
\end{align*}

  • Números enteros, enteros positivos y enteros negativos:

\begin{align*}
\mathbb{Z} = \{\ldots, -2, -1, 0, 1 , 2,\ldots\},\\
\mathbb{Z}^+ = \{1 , 2,\ldots\},\\
\mathbb{Z}^- = \{-1, -2, \ldots\}.
\end{align*}

  • Números racionales:

\begin{equation*}
\mathbb{Q} = \left\{ \frac{p}{q} \, : \, p,q\in\mathbb{Z}, \, q\neq 0 \right\}.
\end{equation*}

  • Números reales $\mathbb{R} = (-\infty,\infty)$ y reales positivos $\mathbb{R}^+ = (0,\infty)$.

Tarea Moral

  1. Encuentra las otras dos raíces cúbicas de las ecuaciones a) y b) del ejemplo 1. ¿También son reales?
  2. Consideremos al discriminante $\triangle = \left( \dfrac{q}{2} \right)^2 + \left( \dfrac{p}{3} \right)^3$. De acuerdo con los ejemplos, notamos que las raíces reales estaban dadas como suma de raíces cúbicas complejas en el caso en que $\triangle<0$. ¿Qué pasa cuando $\triangle = 0$ y $\triangle>0$?.
  3. Considera las siguientes ecuaciones:
  • a) $ \quad x^3 + 6x + 20 = 0$.
  • b) $ \quad x^3 -6x – 4 = 0 $.

Utilizando la fórmula de Cardano encuentra la solución y de ser necesario realiza un poco de álgebra para simplificar los resultados, observa que $x=-2$ es una solución para ambas ecuaciones ¿Cómo es su discriminante $\triangle$ ?

  1. Resuelve el siguiente problema planteado por el matemático chino Qin Jinshao en el siglo XIII:

Una ciudad está rodeada por una muralla circular con dos puertas, una al norte y otra al sur. Saliendo por la puerta norte y caminando 3 li hacia el norte se llega hasta un árbol. Saliendo por la puerta sur, hay que caminar 9 li hacia el este para ver el mismo árbol. Calcular el diámetro de la ciudad.

Hint: considera que ambos triángulos del esquema anterior son semejantes.

  1. Considera el siguiente problema, el cual llegó a considerarse insoluble:

Divide 10 en dos partes, tales que su producto sea igual a 40.

Es decir, encuentra los números $x, y$ tales que:

\begin{align*}
x+y = 10,\\
xy = 40.
\end{align*}

Es fácil ver que no existen soluciones reales para este problema. Sin embargo, haciendo un poco de cuentas obtendríamos que $x=5+\sqrt{-15}$ y $y=5-\sqrt{-15}$ son las soluciones a nuestro problema. ¿Consideras entonces que $\sqrt{-1}$ es un factor clave en las soluciones de algunas ecuaciones insolubles en los reales?

Más adelante…

Hasta ahora hemos motivado la necesidad de trabajar con números complejos. Es posible realizar un análisis más exhaustivo de la solución para ecuaciones cúbicas, considerando casos particulares y determinando las condiciones necesarias para la existencia de raíces reales e imaginarias, pero esto se escapa de los objetivos del curso, por lo que dejaremos hasta aquí este pequeño resumen histórico de la construcción y desarrollo de los números complejos.

En la siguiente entrada haremos la construcción formal de los números complejos como un campo, definiremos propiamente lo que entenderemos por un número complejo, así como sus operaciones algebraicas y algunas propiedades importantes que nos permitirán ir trabajando con estos números e interpretarlos mejor desde una perspectiva geométrica.

Entradas relacionadas

Probabilidad I: Propiedades de una Medida de Probabilidad

Por Octavio Daniel Ríos García

Introducción

En la entrada antepasada definimos lo que es una medida de probabilidad. Esto es, dimos una lista de propiedades que debe de cumplir una función para llamarla «medida de probabilidad». Como en toda teoría matemática, esto da lugar a más propiedades. Por ello, en esta entrada veremos varios resultados que se desprenden de la definición de medida de probabilidad.

Regla de complementación

Dado $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, puede pasarnos que obtener la probabilidad de un evento es muy difícil. Sin embargo, quizás calcular la probabilidad de su complemento sea más fácil. Por ello, veamos primero una propiedad que relaciona la probabilidad de un evento con la de su complemento.


Proposición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Para cualquier evento $A \in \mathscr{F}$ se cumple que

\[ \mathbb{P}(A^{\mathsf{c}}) = 1 − \mathbb{P}(A). \]


Demostración. Sea $A \in \mathscr{F}$ un evento. Nuestro objetivo es demostrar que $\mathbb{P}(A^{\mathsf{c}}) = 1 − \mathbb{P}(A)$. Para hacerlo, recuerda que en la entrada antepasada vimos que una medida de probabilidad es finitamente aditiva. Además, nota que $A \cap A^{\mathsf{c}} = \emptyset$; es decir, $A$ y $A^{\mathsf{c}}$ son ajenos. En consecuencia, se cumple que

\[ \mathbb{P}(A \cup A^{\mathsf{c}}) = \mathbb{P}(A) + \mathbb{P}(A^{\mathsf{c}}). \]

Por otro lado, por la definición del complemento relativo se tiene que $A \cup A^{\mathsf{c}} = \Omega$, con lo que $\mathbb{P}(A \cup A^{\mathsf{c}}) = \mathbb{P}(\Omega) = 1$. Por lo tanto, se sigue que

\[ \mathbb{P}(A) + \mathbb{P}(A^{\mathsf{c}}) = 1. \]

Finalmente, despejando a $\mathbb{P}(A^{\mathsf{c}})$, obtenemos que $\mathbb{P}(A^{\mathsf{c}}) = 1 − \mathbb{P}(A)$, que es justamente lo que queríamos demostrar.

$\square$

Esta propiedad será útil en numerosos ejemplos de conteo que veremos más adelante.

¿Qué pasa con la probabilidad de la unión de dos eventos?

En la entrada antepasada nos encontramos con un problema. Al momento de obtener la suma de las probabilidades de dos eventos $A$ y $B$ que no son ajenos, podía salirnos más de $1$. Sin embargo, había una pista de qué podíamos hacer al respecto. Notamos que contábamos algo más de una vez. Más precisamente, contamos $A \cap B$ más de una vez. Además, en la tarea moral te sugerimos que pensaras qué hacerle a $\mathbb{P}(A) + \mathbb{P}(B)$ para que coincida con $\mathbb{P}(A\cup B)$. La siguiente proposición nos da la respuesta.


Proposición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Sean $A$, $B \in \mathscr{F}$ eventos cualesquiera. Entonces se cumple que

\[ \mathbb{P}(A \cup B) + \mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B). \]


Demostración. Sean $A$, $B \in \mathscr{F}$ eventos. Primero, aplicando algunas propiedades de las operaciones de conjuntos, podemos ver lo siguiente:

\begin{align*}
A &= A \cap \Omega \\
&= A \cap (B \cup B^{\mathsf{c}}) \\ &= (A \cap B) \cup (A \cap B^{\mathsf{c}}) \\ &= (A \cap B) \cup (A \smallsetminus B).
\end{align*}

Además, observa que $(A \cap B) \cap (A \smallsetminus B) = \emptyset$. De manera similar, se tiene que

\[ B = (A \cap B) \cup (B \smallsetminus A), \]

y además, $(A \cap B) \cap (B \smallsetminus A) = \emptyset$. En consecuencia, por la aditividad finita de $\mathbb{P}$, podemos ver que

\begin{align*}
\mathbb{P}(A) &= \mathbb{P}(A \cap B) + \mathbb{P}(A \smallsetminus B), \\
\mathbb{P}(B) &= \mathbb{P}(A \cap B) + \mathbb{P}(B \smallsetminus A),
\end{align*}

Sumando estas dos expresiones obtenemos que

\begin{equation}
\label{sum}
\mathbb{P}(A) + \mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A \smallsetminus B) + \mathbb{P}(A \cap B) + \mathbb{P}(B \smallsetminus A).
\end{equation}

Ahora, observa que $A \cup B = (A \smallsetminus B) \cup (A \cap B) \cup (B \smallsetminus A)$, y que los tres conjuntos en esta unión son ajenos entre sí. Por la aditividad finita de $\mathbb{P}$, esto implica que

\begin{equation}
\label{partition}
\mathbb{P}((A \smallsetminus B) \cup (A \cap B) \cup (B \smallsetminus A)) = \mathbb{P}(A \smallsetminus B) + \mathbb{P}(A \cap B) + \mathbb{P}(B \smallsetminus A).
\end{equation}

Luego, sustituyendo \eqref{sum} en \eqref{partition} y utilizando que $A \cup B = (A \smallsetminus B) \cup (A \cap B) \cup (B \smallsetminus A)$,

\begin{align*}
\mathbb{P}(A) + \mathbb{P}(B) &= \mathbb{P}(A \cap B) + \mathbb{P}((A \smallsetminus B) \cup (A \cap B) \cup (B \smallsetminus A)) \\ &= \mathbb{P}(A \cap B) + \mathbb{P}(A \cup B).
\end{align*}

En conclusión, hemos llegado a que

\begin{align*}
\mathbb{P}(A) + \mathbb{P}(B) &= \mathbb{P}(A \cap B) + \mathbb{P}(A \cup B),
\end{align*}

que es justamente lo que queríamos demostrar.

$\square$

Alternativamente, la expresión que obtuvimos en esta proposición puede escribirse como sigue.

\[ \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) − \mathbb{P}(A \cap B), \]

que corresponde a «quitar» la parte que contamos más de una vez en la probabilidad de $A \cup B$. En resumen, esta proposición nos da una expresión para calcular la probabilidad de cualquier unión de dos eventos sin necesidad de que estos sean ajenos. Esta propiedad es conocida como el principio de inclusión-exclusión para $2$ eventos.

Interpretación visual del principio de inclusión-exclusión

En el caso para $2$ eventos, podemos representar visualmente los eventos $A$ y $B$ mediante un diagrama de Venn-Euler. En la siguiente figura están representados $A$ y $B$.

Figura. Animación de lo que ocurre al obtener $\mathbb{P}(A) + \mathbb{P}(B)$. Observa que $A \cap B$ se ve más oscuro porque lo contamos $2$ veces.

Al colorearlos, estamos pensando que lo coloreado de color rojo representa a $\mathbb{P}(A)$, y lo de color verde representa a $\mathbb{P}(B)$. Además, los coloreamos con una opacidad baja para que se note que la parte en donde se traslapan, que es $A \cap B$, se colorea dos veces cuando sumamos las áreas sombreadas por separado: esto lo comentamos previamente, en $\mathbb{P}(A) + \mathbb{P}(B)$ se cuenta $2$ veces a $A \cap B$. Por ello, para obtener $\mathbb{P}(A \cup B)$ se le resta $\mathbb{P}(A \cap B)$ a $\mathbb{P}(A) + \mathbb{P}(B)$.

Figura. $\mathbb{P}(A \cup B)$ sería el valor representado por colorear a todo $A \cup B$, sin que haya porciones más oscuras.

En la figura anterior resaltamos con la misma opacidad a todo $A \cup B$ con azul. Al restarle $\mathbb{P}(A \cap B)$ a $\mathbb{P}(A) + \mathbb{P}(B)$ aseguramos que $A \cap B$ no se contabiliza $2$ veces.

Principio de inclusión-exclusión para más eventos

El principio de inclusión-exclusión aplica para cualquier familia finita de eventos. Por ejemplo, sean $A_{1}$, $A_{2}$ y $A_{3}$ eventos. Podemos aplicar el principio de inclusión-exclusión (al cual abreviaremos P.I.E. por ahora) para $2$ eventos a $A_{1} \cup A_{2}$ y $A_{3}$. Es decir, se tiene que

\[ \mathbb{P}((A_{1} \cup A_{2}) \cup A_{3}) = \mathbb{P}(A_{1} \cup A_{2}) + \mathbb{P}(A_{3}) − \mathbb{P}((A_{1} \cup A_{2}) \cap A_{3}). \]

Aplicamos nuevamente el P.I.E. para $2$ eventos para optener $\mathbb{P}(A_{1} \cup A_{2})$, por lo que nos queda

\begin{equation}
\label{pie0}
\mathbb{P}((A_{1} \cup A_{2}) \cup A_{3}) = \mathbb{P}(A_{1}) + \mathbb{P}(A_{2}) − \mathbb{P}(A_{1} \cap A_{2}) + \mathbb{P}(A_{3}) − \mathbb{P}((A_{1} \cup A_{2}) \cap A_{3}).
\end{equation}

Luego, podemos aplicar la distributividad a $(A_{1} \cup A_{2}) \cap A_{3}$ y obtener que

\[(A_{1} \cup A_{2}) \cap A_{3} = (A_{1}\cap A_{3}) \cup (A_{2} \cap A_{3})). \]

Aplicando nuevamente el P.I.E. para $2$ eventos obtenemos $\mathbb{P}((A_{1}\cap A_{3}) \cup (A_{2} \cap A_{3}))$. Esto es,

\begin{equation}
\label{pie1}
\mathbb{P}((A_{1}\cap A_{3}) \cup (A_{2} \cap A_{3})) = \mathbb{P}(A_{1} \cap A_{3}) + \mathbb{P}(A_{2} \cap A_{3}) − \mathbb{P}((A_{1}\cap A_{3}) \cap (A_{2} \cap A_{3})),
\end{equation}

y recordando que la intersección de conjuntos es conmutativa y asociativa, podemos reacomodar el último término de \eqref{pie1} como

\begin{align*}
(A_{1}\cap A_{3}) \cap (A_{2} \cap A_{3}) &= A_{1} \cap (A_{3} \cap A_{2} \cap A_{3}) \\
&= A_{1} \cap (A_{2} \cap A_{3} \cap A_{3}) \\ &= A_{1} \cap (A_{2} \cap A_{3}) \\ &= A_{1} \cap A_{2} \cap A_{3},
\end{align*}

y así, la igualdad \eqref{pie1} puede reescribirse como

\begin{equation}
\label{pie2}
\mathbb{P}((A_{1}\cap A_{3}) \cup (A_{2} \cap A_{3})) = \mathbb{P}(A_{1} \cap A_{3}) + \mathbb{P}(A_{2} \cap A_{3}) − \mathbb{P}(A_{1} \cap A_{2} \cap A_{3}).
\end{equation}

Finalmente, sustituimos \eqref{pie2} en \eqref{pie0} para obtener

\begin{align*}
\mathbb{P}((A_{1} \cup A_{2}) \cup A_{3}) = \mathbb{P}(A_{1}) + \mathbb{P}(A_{2}) − \mathbb{P}(A_{1} \cap A_{2}) + \mathbb{P}(A_{3}) − (\mathbb{P}(A_{1} \cap A_{3}) + \mathbb{P}(A_{2} \cap A_{3}) − \mathbb{P}(A_{1} \cap A_{2} \cap A_{3})),
\end{align*}

que puede reescribirse como

\begin{align*} \mathbb{P}(A_{1} \cup A_{2} \cup A_{3}) = \mathbb{P}(A_{1}) + \mathbb{P}(A_{2}) + \mathbb{P}(A_{3}) − \mathbb{P}(A_{1} \cap A_{2}) − \mathbb{P}(A_{1} \cap A_{3}) − \mathbb{P}(A_{2} \cap A_{3}) + \mathbb{P}(A_{1} \cap A_{2} \cap A_{3}).
\end{align*}

En conclusión, obtuvimos una fórmula para el cálculo de la probabilidad de la unión de cualesquiera $3$ eventos.

Interpetación visual del P.I.E. para tres eventos

Nuevamente podemos auxiliarnos de un diagrama de Venn-Euler para representar visualmente a los $3$ eventos.

Figura. Animación que muestra $3$ conjuntos. Se sombrea primero cada uno individualmente, luego dos a dos, y luego los tres, para exhibir los pedazos que se contabilizan más de una vez.

Con rojo representamos a $\mathbb{P}(A)$, con verde a $\mathbb{P}(B)$ y con ámbar a $\mathbb{P}(C)$. En la animación anterior se muestra cada una de las regiones por separado, luego dos a dos, y luego las tres juntas. Así, se exhibe que estamos contabilizando más de una vez algunas de las regiones del diagrama, y pone en evidencia cuáles son las que deberíamos de quitar.

Figura. $\mathbb{P}(A \cup B \cup C)$ sería el valor representado por el área coloreada de morado, sin que haya áreas más opacas que otras.

En esta última figura, representamos el valor $\mathbb{P}(A \cup B \cup C)$ con el área de color morado. Aquí pasan más cosas que en el caso de $2$ eventos. Recuerda que la expresión que obtuvimos para $\mathbb{P}(A \cup B \cup C)$ es

\begin{align*}
\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) − \mathbb{P}(A \cap B) − \mathbb{P}(A \cap C) − \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C).
\end{align*}

Al sumar $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$, las intersecciones dos a dos de los eventos se contabilizan una vez más de lo que deberían, es lo mismo lo que nos pasó con el caso para $2$ eventos. Por ello, restamos la probabilidad de cada intersección dos a dos. Sin embargo, observa que esto provoca un daño colateral: quitamos $3$ veces a $\mathbb{P}(A \cap B \cap C)$, porque $A \cap B$, $A \cap C$ y $B \cap C$ contienen a $A \cap B \cap C$. Pero en $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$ también lo contabilizamos $3$ veces. Así que estamos omitiendo $\mathbb{P}(A \cap B \cap C)$, razón por la que se le suma $\mathbb{P}(A \cap B \cap C)$ a la expresión.

Generalización del P.I.E.

El principio de inclusión-exclusión puede generalizarse para cuando se tienen $n \in \mathbb{N}^{+}$ eventos. Esto lo pondremos como un teorema, aunque omitiremos su demostración.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Entonces para cualquier $n \in \mathbb{N}^{+}$ y cualesquiera eventos $A_{1}$, $A_{2}$, …, $A_{n} \in \mathscr{F}$, se cumple que

\begin{align*}
\mathbb{P}{\left( \bigcup_{i=1}^{n} A_{i} \right)} = \sum_{i=1}^{n}\mathbb{P}(A_{i}) − \sum_{i < j} \mathbb{P}(A_{i} \cap A_{j}) + \sum_{i < j < k} \mathbb{P}(A_{i} \cap A_{j} \cap A_{k}) + \cdots + (-1)^{n+1} \mathbb{P}{\left( \bigcap_{i=1}^{n} A_{i} \right)},
\end{align*}

que puede escribirse de forma cerrada como sigue:

\begin{align*}
\mathbb{P}{\left( \bigcup_{i=1}^{n} A_{i} \right)} = \sum_{k=1}^{n}{\left[ (-1)^{k+1} \sum_{\substack{I \subseteq \{1, \ldots, n\} \\ |I| = k}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} \right]}.
\end{align*}


La segunda fórmula se ve un poco fea, pero en realidad no es tan horrible. Observa que se trata de una «suma de sumas». Es decir, para cada $k \in \{1, \ldots, n\}$, el $k$-ésimo término de esa suma es una suma. Lo más complicado está en cada una de estas sumas: están indicadas por $I$, que se refiere a que el índice es un subconjunto de $\{1, \ldots, n\}$. Lo importante de este índice es que $|I| = k$, es decir, hay un término por cada subconjunto de $\{1, \ldots, n\}$ de cardinalidad $k$. Además, cada uno de estos términos es la probabilidad de la intersección sobre todos los $A_{j}$ para los cuales $j \in I$.

Ejemplo. Obtengamos la expresión para $3$ eventos a partir de la segunda fórmula. Sean $A_{1}$, $A_{2}$ y $A_{3}$ eventos. Entonces

\begin{align*}
\mathbb{P}{\left( \bigcup_{i=1}^{3} A_{i} \right)} = \sum_{k=1}^{3}{\left[ (-1)^{k+1} \sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = k}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} \right]}.
\end{align*}

La suma de afuera cuenta con $3$ términos, porque es la suma de $1$ a $3$. Cada uno de sus términos es una suma, en la que hay que sustituir los respectivos valores de $k$. Así que nos queda:

\begin{align*} \sum_{k=1}^{3}\left[ (-1)^{k+1} \sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = k}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} \right] =&\, (-1)^{1+1}\sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = 1}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} \\ & + (-1)^{2+1}\sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = 2}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} \\ & + (-1)^{3+1}\sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = 3}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)}. \end{align*}

Veamos el primer término. Este corresponde a la suma sobre todos los $I \subseteq \{1,2,3\}$ tales que $|I| = 1$. Los subconjuntos de cardinalidad $1$ de $\{1,2,3\}$ son $3$: $\{1\}$, $\{2\}$ y $\{3\}$, por lo que hay un término en esa suma por cada uno de ellos. Es decir,

\[ (-1)^{1+1}\sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = 1}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} = (-1)^{2} {\left[ \mathbb{P}{\left( \bigcap_{j \in \{1\}} A_{j} \right)} + \mathbb{P}{\left( \bigcap_{j \in \{2\}} A_{j} \right)} + \mathbb{P}{\left( \bigcap_{j \in \{3\}} A_{j} \right)} \right]}, \]

y observa que las intersecciones en cada término son simplemente $A_{1}$, $A_{2}$ y $A_{3}$, porque la intersección es únicamente sobre $\{1\}$, $\{2\}$ y $\{3\}$, respectivamente. Así,

\[ (-1)^{1+1}\sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = 1}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} = (-1)^{2} {\left[ \mathbb{P}\left(A_{1}\right) + \mathbb{P}{\left(A_{2} \right)} + \mathbb{P}{\left(A_{3} \right)} \right]} = \mathbb{P}\left(A_{1}\right) + \mathbb{P}{\left(A_{2} \right)} + \mathbb{P}{\left(A_{3} \right)}. \]

Para el segundo término, el índice $I$ son todos los subconjuntos de $\{ 1, 2, 3\}$ de cardinalidad $2$, que nuevamente son $3$: $\{ 1, 2 \}$, $\{1,3\}$ y $\{2,3\}$. Por lo tanto,

\[ (-1)^{2+1}\sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = 2}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} = (-1)^{3} {\left[ \mathbb{P}{\left( \bigcap_{j \in \{1,2\}} A_{j} \right)} + \mathbb{P}{\left( \bigcap_{j \in \{1,3\}} A_{j} \right)} + \mathbb{P}{\left( \bigcap_{j \in \{2,3\}} A_{j} \right)} \right]}. \]

Ahora, cada una de las intersecciones en la expresión anterior queda como sigue:

\begin{align*} \bigcap_{j \in \{1,2\}} A_{j} &= A_{1} \cap A_{2}, \\ \bigcap_{j \in \{1,3\}} A_{j} &= A_{1} \cap A_{3}, \\ \bigcap_{j \in \{2,3\}} A_{j} &= A_{2} \cap A_{3}, \end{align*}

por lo que

\begin{align*} (-1)^{2+1}\sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = 2}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} &= (-1)^{3} {\left[ \mathbb{P}{\left(A_{1} \cap A_{2}\right)} + \mathbb{P}{\left(A_{1} \cap A_{3}\right)} + \mathbb{P}{\left(A_{2} \cap A_{3}\right)} \right]} \\ &= − {\left[ \mathbb{P}{\left(A_{1} \cap A_{2}\right)} + \mathbb{P}{\left(A_{1} \cap A_{3}\right)} + \mathbb{P}{\left(A_{2} \cap A_{3}\right)} \right]}. \end{align*}

Finalmente, para el último término, el índice corre por todos los subconjuntos de $\{1,2,3\}$ de cardinalidad $3$, y sólamente hay uno de estos: $\{1,2,3\}$. Por ello, se tiene que

\begin{align*} (-1)^{3+1}\sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = 3}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} &= (-1)^{4}{\left[ \mathbb{P}{\left( \bigcap_{j \in \{1,2,3\}} A_{j}\right)} \right]} \\ &= \mathbb{P}{\left(A_{1} \cap A_{2} \cap A_{3}\right)}, \end{align*}

por lo que podemos concluir que

\begin{align*} \sum_{k=1}^{3}\left[ (-1)^{k+1} \sum_{\substack{I \subseteq \{1, \ldots, 3\} \\ |I| = k}} \mathbb{P}{\left( \bigcap_{j \in I} A_{j} \right)} \right] =&\, \mathbb{P}\left(A_{1}\right) + \mathbb{P}{\left(A_{2} \right)} + \mathbb{P}{\left(A_{3} \right)} \\ &\, − {\left[ \mathbb{P}{\left(A_{1} \cap A_{2}\right)} + \mathbb{P}{\left(A_{1} \cap A_{3}\right)} + \mathbb{P}{\left(A_{2} \cap A_{3}\right)} \right]} \\ &\, + \mathbb{P}{\left(A_{1} \cap A_{2} \cap A_{3}\right)}, \end{align*}

que es justamente la expresión que habíamos obtenido previamente.


Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  • Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sean $A$, $B$, $C$ y $D$ eventos. Obtén una fórmula para obtener $\mathbb{P}(A \cup B \cup C \cup D)$. Para ello, te proponemos dos caminos:
    • Sugerencia 1. Sigue un camino similar al que seguimos para obtener el P.I.E. para $3$ eventos. Es decir, aplica los P.I.E. que ya tienes (para $2$ y para $3$ eventos) de manera conveniente. Como pista, aplica el P.I.E. para $3$ eventos a $(A \cup B)$, $C$ y $D$.
    • Sugerencia 2. Utiliza cualquiera de las fórmulas del último teorema de esta entrada para $n = 4$ y haz el desarrollo correctamente.
  • Intenta demostrar el último teorema de esta entrada. Esto puede hacerse por inducción sobre $n$, el número de elementos en la familia finita de eventos.
    • Sugerencia. Utiliza inducción fuerte. Es decir, primero observa que la igualdad es cierta para $1$. Luego, demuestra que para cualquier $n$, si la igualdad es verdadera para cada $k \in \{1,\ldots, n\}$, entonces es cierta para $n+1$. En este paso será necesario que uses la de $2$ eventos y la de $n$ eventos para proceder.

Más adelante…

En esta entrada vimos dos propiedades muy importantes de una medida de probabilidad: la regla de complementación y el principio de inclusión-exclusión. La primera será de mucha utilidad cuando veamos algunos ejercicios de conteo, en donde buscaremos calcular la probabilidad de eventos que parecen muy complicados en principio, pero que esta regla facilitará el cálculo. Por otro lado, el principio de inclusión-exclusión es una herramienta un poco complicada, pero que permite el cálculo de la probabilidad de la unión de cualesquiera $n$ eventos, sin importar si son ajenos o no.

En la siguiente entrada veremos algunas propiedades más de una medida de probabilidad. Una vez que terminemos con las propiedades que tiene cualquier medida de probabilidad, centraremos nuestra atención en nuestros primeros ejemplos concretos de medida de probabilidad, cuya relevancia histórica los hace destacables.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Ecuaciones autónomas, soluciones de equilibrio, línea fase y esbozo de soluciones

Por Eduardo Vera Rosales

Introducción

En la entrada anterior desarrollamos un par de técnicas geométricas para conocer las soluciones de una ecuación diferencial de primer orden de la forma $\frac{dy}{dt}=f(t,y)$. En esta ocasión nos enfocaremos en una familia de ecuaciones en particular, que tienen la forma $\frac{dy}{dt}=f(y)$, las cuales llamaremos ecuaciones autónomas. Para conocer sus soluciones de manera geométrica, haremos uso de sus soluciones de equilibrio y su línea fase. Por supuesto definiremos estos conceptos y mediante herramientas de cálculo diferencial podremos hacer un esbozo de las soluciones a dicha ecuación diferencial.

Vamos a comenzar.

Esbozo de las soluciones a una ecuación autónoma mediante el trazo de la línea fase y sus soluciones de equilibrio

En este video definimos a las ecuaciones diferenciales autónomas de primer orden y sus soluciones de equilibrio. Posteriormente, dibujamos la línea fase asociada a la ecuación y con ayuda de esta hacemos un esbozo de las soluciones a la ecuación en el plano $t-y$.

Clasificación de las soluciones de equilibrio

Una vez que conocemos cómo dibujar las soluciones de una ecuación autónoma a partir de su línea fase, clasificamos sus soluciones de equilibrio en tres tipos, según el comportamiento de soluciones cercanas en el plano $t-y$.

Finalizamos con un teorema que nos permitirá conocer el tipo de solución de equilibrio de una ecuación autónoma, mediante el signo de la derivada de la función $f(y)$ evaluada en la solución de equilibrio.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra las soluciones de equilibrio y dibuja la línea fase de la ecuación $\frac{dy}{dt}=y^{3}-y^{2}$.
  • Considera la ecuación autónoma $\frac{dy}{dt}=\frac{1}{1-y}$. Encuentra sus soluciones de equilibrio (si las tiene) y dibuja la línea fase. Con la información obtenida, analiza cuál es el comportamiento de las soluciones a la ecuación. ¿Cómo crees que se ven las soluciones en el plano $t-y$?
  • ¿Cómo dibujarías las soluciones a la ecuación $\frac{dy}{dt}=f(y)$ si $f$ tiene la siguiente gráfica? Hint: Recuerda los criterios de los signos de las derivadas de primer orden en un punto que nos ayudan a ver cuándo la función es creciente o decreciente en dicho punto.
Ecuaciones autónomas
Gráfica de $f$. Elaboración propia.
  • Da ejemplos donde $\frac{dy}{dt}=f(y)$, $y_{0}$ es solución de equilibrio de la ecuación diferencial, $f'(y_{0})=0$ y $y_{0}$ sea atractor, repulsor o nodo.
  • Clasifica las soluciones de equilibrio del tercer ejercicio.

Más adelante

Ahora que hemos visto varias técnicas para encontrar las soluciones a una ecuación de primer orden, al menos de manera geométrica, nos enfocaremos en la parte analítica de las soluciones.

En el próximo video nos enfocaremos en las ecuaciones lineales homogéneas, y la técnica para resolverlas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Probabilidad I: Interpretación de las Operaciones con Eventos

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior introdujimos finalmente lo que es una medida de probabilidad. Vimos las propiedades que determinan si una función dada es una medida de probabilidad. Sin embargo, antes de continuar con sus propiedades, hagamos una pausa. Para ser exactos, veamos la interpretación de las operaciones con conjuntos en este contexto.

Con frecuencia te enfrentarás con problemas concretos que requerirán que interpretes bien las operaciones entre eventos. En particular, los problemas de conteo son muy importantes en la probabilidad, y suelen requerir de estas habilidades. Por ello, es importante que tengas clara la interpretación de las operaciones con conjuntos.

Complementación

Para empezar, hay que saber interpretar la complementación. Para hacerlo, sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y $A$ un evento. Recuerda que el complemento de un conjunto $A$ con respecto a $\Omega$ son todos los elementos de $\Omega$ que no son elementos de $A$. Esto es,

\begin{align*}
A^{\mathsf{c}} = \{ \omega \in \Omega \mid \omega \notin A \}.
\end{align*}

Esta es la definición matemática del complemento. Sin embargo, ¿cómo la interpretamos en el contexto la probabilidad? Para hacerlo, recuerda que un evento $A$ es un subconjunto de $\Omega$. En consecuencia, $A$ tiene algunos de los elementos de $\Omega$. Es decir, los elementos de $A$ son algunos de los posibles resultados del fenómeno aleatorio.

Por ello, cuando obtenemos la probabilidad de $A$, esto es, $\mathbb{P}(A)$, este número indica «la probabilidad de que ocurra $A$». Por el contrario, el evento $A^{\mathsf{c}}$ incluye todos los elementos de $\Omega$ que no son elementos de $A$. En principio, podríamos decir que $\mathbb{P}(A^{\mathsf{c}})$ es «la probabilidad de que ocurra $A^{\mathsf{c}}$». Sin embargo, una interpretación útil en nuestro contexto es que $\mathbb{P}(A^{\mathsf{c}})$ expresa «la probabilidad de que no ocurra $A$».

Esta dualidad es muy importante, porque puedes encontrarte con problemas en los que te piden la probabilidad de que no ocurra algo. Ante esta situación, lo que debes de hacer es pensar en el complemento del evento en cuestión.

Ejemplo. Sea $\Omega = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$ y $\mathscr{F} = \mathscr{P}(\Omega)$ un σ-álgebra sobre $\Omega$; y supón que se eligirá uno de estos números al azar. Supongamos que nos interesa el evento en el que «el resultado no es un múltiplo de $3$». Primero, debemos de identificar el evento «el resultado es un múltiplo de $3$». Este sería el evento cuyos elementos son todos los resultados que son múltiplo de $3$. Sea $A$ ese evento. Entonces, matemáticamente, $A$ sería el conjunto

\[ A = \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 3k \}. \]

En particular, en este ejemplo basta con revisar los elementos de $\Omega$ que satisfacen esta propiedad. Más precisamente, $A$ sería el conjunto

\[ A = \{ 3, 6, 9 \}. \]

Ahora, el evento que nos interesa es que «el resultado no es un múltiplo de $3$», así que el evento que corresponde sería $A^{\mathsf{c}}$. Es decir, la solución a este ejemplo sería

\[ A^{\mathsf{c}} = \{ 1, 2, 4, 5, 7, 8, 10 \}, \]

el evento cuyos elementos son todos los resultados que no son múltiplos de $3$.


Unión de eventos

En ocasiones puede interesarnos el evento en el que el resultado entra en al menos una de varias posibilidades. Por ejemplo, si dados $A$, $B$ eventos, ¿cuál es el evento que concentra la posibilidad de que ocurra $A$ u ocurra $B$? Este sería $A \cup B$, pues recuerda que

\[ A \cup B = \{ \omega \in \Omega \mid \omega \in A \lor \omega \in B \}. \]

Como $A \cup B$ está definida por el conectivo lógico «ó», se entiende que los elementos de $A \cup B$ satisfacen al menos una de dos posibilidades: ser elemento de $A$, o ser elemento de $B$. Esto es importante, porque entonces, en el contexto de la probabilidad, $\mathbb{P}(A \cup B)$ expresa «la probabilidad de que ocurra $A$ u ocurra $B$». En otras palabras, «la probabilidad de que ocurra al menos uno de dos casos posibles: que ocurra $A$, o que ocurra $B$».

Es muy importante que recuerdes que el «ó» en lógica es inclusivo, es decir, que si el resultado es tal que $A$ y $B$ ocurren, se considera que ocurrió $A$ ó $B$. Además, esta misma interpretación se extiende a cuando tienes $n$ eventos, $\bigcup_{i = 1}^{n} A_{n}$ sería el evento en el que ocurre al menos uno de los $A_{i}$.

Ejemplo. Nuevamente, sea $\Omega = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$ y $\mathscr{F} = \mathscr{P}(\Omega)$ un σ-álgebra sobre $\Omega$; y supón que se eligirá uno de estos números al azar. Supongamos que nos interesa el evento «el resultado es un número par o el resultado es un múltiplo de $5$». Para verlo, tenemos que identificar los eventos que lo conforman. Estos son dos: «el resultado es un número par» y «el resultado es un múltiplo de $5$». Es decir, son dos eventos $A$, $B$, que expresados matemáticamente son

\begin{align*}
A &= \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 2k \}, \\
B &= \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 5k \}.
\end{align*}

Explícitamente, en este ejemplo, estos eventos son

\begin{align*}
A &= \{2,4,6,8,10\}, \\
B &= \{5,10\},
\end{align*}

por lo que el evento que buscamos en este ejemplo es $A \cup B$, que sería

\begin{align*}
A \cup B &= \{2,4,5,6,8,10\}.
\end{align*}

Ciertamente, los elementos de $A \cup B$ son todos los elementos de $\Omega$ que son pares o son múltiplos de $5$.


En ocasiones, es bueno que sepas partir de la definición matemática, seas capaz de interpretarla, y obtengas cuál es el resultado de una operación con conjuntos. Por ejemplo, sean

\begin{align*}
C &= \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 2k + 1 \}, \\
D &= \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 3k \}.
\end{align*}

La interpretación de $C$ es que es el evento en el que «el resultado es impar», y $D$ es el evento en el que «el resultado es múltiplo de $3$».

¿Qué interpretación tendría el evento $C \cup D$? Basta con conectar las expresiones que obtuvimos de interpretar a $C$ y a $D$. Así $C \cup D$ es el evento en el que «el resultado es impar o el resultado es múltiplo de $3$».


Intersección de eventos

También puede resultar interesante el evento en el que múltiples posibilidades se satisfacen a la vez. Por ejemplo, dados $A$, $B$ eventos, ¿cuál es el evento que representa que ocurran $A$ y $B$ a la vez? La respuesta es $A \cap B$. Recuerda que

\[ A \cap B = \{ \omega \in \Omega \mid \omega \in A \land \omega \in B \}. \]

En el caso de $A \cap B$, esta operación está definida por el conectivo lógico «y», así que los elementos de $A \cap B$ satisfacen dos condiciones: son elementos de $A$ y son elementos de $B$. Ambas deben de ser verdaderas para ser elemento de $A \cap B$. Por ello, en el contexto de la probabilidad, $\mathbb{P}(A \cap B)$ expresa «la probabilidad de que ocurra $A$ y ocurra $B$». En otras palabras, expresa «la probabilidad de que se satisfagan dos condiciones: que ocurra $A$ y que ocurra $B$».

Esta misma idea se extiende a más conjuntos. Por ejemplo, si tienes $n$ conjuntos, entonces $\bigcap_{i=1}^{n} A_{i}$ es el evento en el que ocurren todos los $A_{i}$.

Ejemplo. Veamos ahora un ejemplo menos formal. Con frecuencia te econtrarás con ejercicios de este tipo. Sea $P$ el conjunto cuyos elementos son los habitantes de la colonia donde vives. Supón que escogeremos dos personas distintas de $P$ al azar. Primero, observa que el espacio muestral de este fenómeno aleatorio sería

\[ \Omega = \{ (x,y) \in P\times P \mid x \neq y \}, \]

son todos los pares ordenados de elementos de $P$ en los que las coordenadas son distintas. Esto obedece a que el experimento aleatorio consiste en seleccionar dos personas distintas de $P$. Bien, ahora piensa en los siguientes eventos que nos podrían interesar:

  • $H$ es el evento en el que «las dos personas escogidas son hombres«.
  • $E$ es el evento en el que «las dos personas escogidas tienen la misma edad«.
  • $V$ es el evento en el que «las dos personas escogidas son vecinas«.

Aquí hicimos una elección conveniente de letras que ayudan a identificar lo que significa cada evento. Por ejemplo, utilizamos $H$ para el evento en el que ambas personas son hombres porque la primera letra de la palabra «hombres» es ‘h’.

Ahora, veamos algunas operaciones entre los eventos anteriores.

  • Primero, veamos qué evento es $H \cap E$. Este es el evento en el que se satisfacen $H$ y $E$ a la vez. Por ello, $H \cap E$ sería el evento en el que «las dos personas escogidas son hombres y tienen la misma edad«.
  • $H^{\mathsf{c}}$, el complemento de $H$, es aquel evento en donde $H$ no se cumple. Es decir, $H^{\mathsf{c}}$ es el evento en el que «las dos personas escogidas no son ambas hombres«. En otras palabras, es el evento en el que al menos una de las dos personas elegidas es mujer, porque esto asegura que no son ambas hombres.
  • $H^{\mathsf{c}} \cup V$ es el evento en el que ocurre al menos una de dos posibilidades: no ocurre $H$, u ocurre $V$. Es decir, es el evento en el que «las dos personas escogidas cumplen al menos una de dos condiciones: al menos una de ellas es mujer, o son vecinas«.
  • $H^{\mathsf{c}} \cap V^{\mathsf{c}}$ es el evento en el que cumple que no ocurre $H$ y no ocurre $V$. Esto es, sería el evento en el que «las dos personas escogidas satisfacen dos condiciones: al menos una de ellas es mujer, y no son vecinas«.
  • $E \cap H^{\mathsf{c}}$ es el evento en el que ocurre $E$, pero no ocurre $H$. Por tanto, sería el evento en el que «las dos personas escogidas tienen la misma edad y al menos una de ellas es mujer«.

Para acabar el contenido de esta entrada, presentaremos la interpretación de dos operaciones con eventos que son un poco más especializadas, pero que es bueno tenerlas en cuenta.

Diferencia de eventos

La diferencia de eventos es muy similar a la intersección de eventos, pero también entra en juego el complemento. Dados $A$ y $B$ eventos, puede interesarnos aquel evento en el que ocurre $A$ y no ocurre $B$. Es decir, sí tomamos en cuenta los elementos de $A$, pero queremos que no se tomen en cuenta los de $B$. Esto podemos hacerlo a través de una intersección:

\[ A \cap B^{\mathsf{c}} = \{ \omega \in \Omega \mid \omega \in A \land \omega \notin B \}. \]

Como suponemos que $A$ y $B$ son eventos de un cierto espacio muestral $\Omega$, se cumple que $A \subseteq \Omega$ y $B \subseteq \Omega$. Por ello, el complemento es relativo a $\Omega$, y se tiene que

\[ A \cap B^{\mathsf{c}} = A \smallsetminus B, \]

así que $A \smallsetminus B$ es precisamente aquel evento en el que ocurre $A$ y no ocurre $B$. En consecuencia, $\mathbb{P}(A \smallsetminus B)$ expresa «la probabilidad de que ocurra $A$ y no ocurra $B$».

Diferencia simétrica de eventos

Hay una última operación entre eventos que consideramos importante que sepas interpretar. Esta es la diferencia simétrica de dos eventos. Dados $A$ y $B$ eventos, nos podría interesar aquel evento en el que ocurre $A$ u ocurre $B$, pero no ocurren ambos a la vez. En otras palabras, podría interesarnos el evento en el que ocurre exclusivamente $A$, u ocurre exclusivamente $B$. Este evento sería la diferencia simétrica de $A$ y $B$:

\[ A \triangle B = \{ \omega \in \Omega \mid (\omega \in A \land \omega \notin B) \lor (\omega \in B \land \omega \notin A) \}. \]

Hay varias maneras de escribir a $A \triangle B$, las siguientes son las más tradicionales:

\begin{align*}
A \triangle B &= (A \cup B) \smallsetminus (A \cap B), \\
A \triangle B &= (A \smallsetminus B) \cup (A \smallsetminus B).
\end{align*}

Por si te interesa saber más al respecto, el conectivo lógico que determina a $A \triangle B$ es el «o exclusivo«, frecuentemente denotado por $\mathsf{XOR}$, que se deriva del término en inglés «exclusive or«. Así, $A \triangle B$ es el evento en el que «ocurre $A$ u ocurre $B$, pero no ocurren $A$ y $B$ a la vez». En consecuencia, $\mathbb{P}(A \triangle B)$ expresa «la probabilidad de que ocurra $A$ u ocurra $B$ pero no ocurran $A$ y $B$ a la vez».

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

Retomando el ejemplo en el que $P$ es el conjunto de habitantes de la colonia donde vives, y nuevamente suponiendo que se seleccionarán dos personas distintas al azar, con

\[ \Omega = \{ (x,y) \in P \times P \mid x \neq y \}, \]

considera los siguientes eventos:

  • $M$ el evento en el que las dos personas elegidas son mujeres.
  • $T$ el evento en el que las dos personas elegidas tienen trabajo.
  • $A$ el evento en el que las dos personas elegidas tienen al menos un automóvil.

Determina el significado de los siguientes eventos:

  • $M^{\mathsf{c}}$.
  • $M \cap T$.
  • $A \smallsetminus T$.
  • $M^{\mathsf{c}} \cap A^{\mathsf{c}}$.
  • $T \triangle M$.
  • $M \cap T \cap A$.
  • $A \cup (M^{\mathsf{c}} \triangle T)$.

Más adelante…

En la siguiente entrada retomaremos el rumbo que tomamos en la entrada anterior, ya que varias propiedades interesantes de una medida de probabilidad involucran operaciones con eventos. La interpretación de las operaciones con eventos es una herramienta muy útil que te ayudará en la resolución de problemas, pero no es estrictamente necesaria. La probabilidad de eventos que son el resultado de realizar operaciones con eventos puede obtenerse sin necesidad de estas interpretaciones. Sin embargo, sí resulta de utilidad para que puedas plantear correctamente ciertos problemas en los que los eventos no están definidos explícitamente.

Entradas relacionadas

Geometría Moderna I: Desigualdad del triángulo y lugar geométrico

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión estudiaremos una propiedad muy importante de los triángulos, la desigualdad del triángulo que básicamente nos dice que la distancia mas corta entre dos puntos es el segmento de recta que los une, también veremos lo que es un lugar geométrico y mostraremos un par de ejemplos importantes.

Desigualdad del triángulo

Proposición 1. En todo triángulo al mayor de los lados se opone el mayor de los ángulos.

Demostración. Sea $\triangle ABC$ tal que $AB > AC$, debemos mostrar que $\angle C > \angle B$.

Figura 1

Como $AB > AC$, podemos construir un punto $D \in AB$ tal que $AD = AC$, ya que $\triangle ADC$ es isósceles, por la proposición de la entrada anterior, se cumple $\angle CDA = \angle ACD$, de aquí se sigue que:

$\begin{equation} \angle C = \angle ACB > \angle ACD = \angle DCA. \end{equation}$

Como $\angle ADC$ es un ángulo exterior de $\triangle DBC$, entonces $\angle ADC$ es mayor que los ángulos internos de $\triangle DBC$, no adyacentes a él, en particular

$\begin{equation} \angle ADC > CBD = \angle B. \end{equation}$

De $(1)$ y $(2)$ se sigue que $\angle C > \angle B$.

$\blacksquare$

Corolario. En todo triángulo el ángulo mayor es opuesto al lado mayor.

Demostración. Sea $\triangle ABC$ tal que $\angle A > \angle B$, por demostrar que $BC > AC$. Supongamos lo contrario.

Figura 2

Caso 1. Si $BC = AC$, entonces $\triangle ABC$ es isósceles por lo que $\angle A = \angle B$, lo que es una contradicción a nuestra hipótesis.

Caso2. Si $BC < AC$, entonces por la proposición anterior $\angle B > \angle A$, esto nuevamente contradice la hipótesis.

Por lo tanto, no queda otra opción más que $\angle A > \angle B$.

$\blacksquare$

Proposición 2. Si dos lados de un triángulo son iguales a dos lados de un segundo triángulo, pero el ángulo comprendido entre el primer par de lados es mayor que el ángulo formado por los lados del segundo triangulo, entonces el lado restante del primer triángulo será mayor al tercer lado del segundo triangulo.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $\angle A > \angle A’$, por demostrar que $BC > B’C’$.

Figura 3

Sobre $A’B’$ y tomando como vértice $A’$ construimos un ángulo igual a $\angle A$, y construimos $D$ tal que $A’D = AC$, entonces por criterio LAL, $\triangle ABC \cong \triangle A’B’D$ por lo que $B’D = BC$.

Notemos que $\triangle C’A’D$ es isósceles, entonces $\angle DC’A = \angle A’DC’$.

Ahora en $\triangle DC’B’$ tenemos $\angle DC’B’ = \angle A’C’B’ + \angle DC’A$,
$\Rightarrow \angle DC’B’ > \angle DC’A = \angle A’DC’$.

Pero $\angle A’DC’ = \angle A’DB’ + \angle B’DC’$,
$\Rightarrow \angle A’DC’ > \angle B’DC’$.

Por transitividad, $\angle DC’B’ > \angle B’DC’$.

Aplicando el corolario obtenemos $B’D > B’C’$, pero $B’D = BC$,
$\Rightarrow BC > B’C’$.

$\blacksquare$

Teorema 1, desigualdad del triángulo. Para todo triangulo se cumple que la suma de cualesquiera dos de sus lados es mayor al lado restante.

Demostración. Sea $\triangle ABC$, sobre la recta que pasa por $B$ y $C$, construimos un punto $D$ tal que $CD = AC$.

Figura 4

Como $\triangle ACD$ es isósceles, $\angle CAD = \angle ADC$, entonces en $\triangle ABD$ tenemos $\angle BAD > \angle CAD = \angle ADC = \angle ADB$, por el corolario anterior $BD > AB$.

Pero $BD = BC + CD = BC + AC$, por lo tanto, $AC + BC > AB$.

Las otras desigualdades, $AB + BC > AC$ y $AB + AC > BC$, se muestran de manera similar.

$\blacksquare$

El reciproco de este teorema también es cierto y lo mostramos a continuación.

Construcción de un triángulo y un ángulo

Teorema 2. Si $a$, $b$ y $c$ son tres números positivos tales que $a + b > c$, $a + c > b$ y $b + c > a$, entonces es posible construir un triángulo de lados $a$, $b$ y $c$.

Demostración. Construyamos un segmento $BC$ de longitud $a$, trazamos una circunferencia con centro en $B$ y radio $c$ $(B, c)$, trazamos otra circunferencia con centro en $C$ y radio $b$ $(C, b)$.

$(B, c)$ y $(C, b)$ se intersecan en dos puntos, sea $A$ uno de estos puntos. $AB = c$ por ser radio de $(B, c)$, $AC = b$ por ser radio de $(C, b)$ y $BC = a$ por construcción.

Figura 5

Notemos que si $(B, c)$ y $(C, b)$ se intersecaran en un solo punto entonces la intersección estaría sobre $BC$ o su extensión, y en tal caso se tendría alguna de las siguientes igualdades
$a = b + c$, $b = a + c$ o $c = a + b$, figura 6.

Figura 6

Y si $(B, c) \cap (C, b) = \varnothing$, entonces alguna de las cantidades seria mayor que la suma de las otras dos, $a > b + c$, $b > a + c$ o $c > a + b$, figura 7, lo que sería una contradicción a nuestras hipótesis.

Figura 7

Por lo tanto, $\triangle ABC$ es el triángulo buscado.

$\blacksquare$

Problema. Sobre una recta dada construir un ángulo igual a un ángulo dado.

Solución. Sea $\angle AOB$ el ángulo dado y $l$ la recta dada.

Con centro en $O$ y radio arbitrario $r > 0$ trazamos una circunferencia $(O, r)$ que corte a $OA$ en $C$ y a $OB$ en $D$.

Figura 8

Tomamos $O’ \in l$ y construimos una circunferencia con centro en $O’$ y radio $r$, $(O’, r)$, tomamos una de las intersecciones de $l$ con $(O’, r)$, digamos $D’$, trazamos otra circunferencia con centro en $D’$ y radio $CD$, $(D’, CD)$, sea $C’$ una de las intersecciones de $(O’, r)$ con $(D´, CD)$, entonces por criterio LLL $\triangle COD \cong \triangle C’O’D’$

Por lo tanto, $\angle AOB = \angle C’O’D’$.

$\blacksquare$

Lugar geométrico

Un lugar geométrico es un conjunto de puntos que cumplen un conjunto de condiciones dadas. Para probar que una figura geométrica es un lugar geométrico por lo general la prueba se divide en dos partes.

  • Probar que todos los puntos que satisfacen las condiciones pertenecen a la figura.
  • Probar que todos los puntos que pertenecen a la figura satisfacen las condiciones.

Teorema 3. El lugar geométrico de los puntos que equidistan a dos puntos dados, es la mediatriz del segmento que une los puntos dados.

Demostración. Sean $AB$ un segmento dado, $M$ el punto medio y $m$ la mediatriz de $AB$ respectivamente.

Figura 9

Primero vemos que los puntos en la mediatriz de $AB$  equidistan de $A$ y $B$.

Sea $P \in m$, por definición de mediatriz, $m \cap AB = M$ y $l \perp AB$.

Entonces por criterio LAL (lado, ángulo, lado), $\triangle PMA \cong \triangle PMB$, en consecuencia, $PA = PB$.

$\blacksquare$

Ahora veamos que todos los puntos que equidistan de $A$ y $B$, son los puntos en la mediatriz $m$ de $AB$.

Sea $P$ un punto que satisface las condiciones dadas, entonces $PA = PB$ y así $\triangle APB$ es isósceles, en la entrada anterior vimos que la mediatriz de un triángulo isósceles, pasa por el vértice que comparten los lados iguales, por lo tanto, $P \in m$.

$\blacksquare$

Definición. Definimos la distancia de un punto $P$ a una recta $l$ como la distancia entre $P$ y el pie de la perpendicular trazada desde $P$ a $l$.

Teorema 4. El lugar geométrico de los puntos que equidistan a dos rectas que se intersecan son las bisectrices de los ángulos formados por las rectas.

Demostración. Sean $l_{1}$ y $l_{2}$, dos rectas que se intersecan en $O$, consideremos $b_{1}$ la bisectriz de uno de los ángulos formados por $l_{1}$ y $l_{2}$, digamos $\alpha$, y sea $b_{2}$ la bisectriz del ángulo suplementario a $\alpha$.

Primero veamos que todos los puntos en la bisectriz de $\alpha$ equidistan a $l_{1}$ y $l_{2}$.

Figura 10

Sea $P \in b_{1}$, y sean $A$ y $B$ las intersecciones de las perpendiculares trazadas desde $P$ a $l_{1}$ y $l_{2}$ respectivamente.

Como $b_{1}$ es bisectriz, $\angle AOP = \angle POB$, además $\angle PAO = \angle OBP = \dfrac{\pi}{2}$, como la suma de los ángulos internos de todo triángulo es constante entonces $\angle OPA = \angle BPO$.

Entonces en los triángulos $\triangle PAO$ y $\triangle PBO$, $\angle AOP = \angle POB$, $\angle OPA = \angle BPO$ y $OP$ es un lado común.

Por criterio LAL, $\triangle PAO \cong \triangle PBO$, por lo tanto $PA = PB$, así la distancia de $P$ a $l_{1}$ y a $l_{2}$ es la misma.

De manera análoga podemos ver que los puntos en $b_{2}$ son equidistantes a $l_{1}$ y $l_{2}$.

$\blacksquare$

Ahora mostremos que todos los puntos que son equidistantes a $l_{1}$ y $l_{2}$ pertenecen a $b_{1}$ o $b_{2}$.

Sea $P$ un punto que satisface que $PA = PB$, donde $A$ y $B$ son los pies de las perpendiculares trazadas desde $P$ a $l_{1}$ y $l_{2}$ respectivamente.

Figura 11

Entonces $\triangle PAO$ y $\triangle PBO$ son triángulos rectángulos donde la hipotenusa es la misma, y por hipótesis tienen un cateto igual, $PA = PB$, por criterio hipotenusa – cateto $\triangle PAO \cong \triangle PBO$, en particular $\angle AOP =\angle POB$.

Notemos que las dos rectas dividen al plano en cuatro regiones distintas y en cada región podemos hacer el mismo procedimiento, pero dos rectas que se intersecan solo tienen dos bisectrices distintas.

Por lo tanto si $PA = PB$, entonces $P \in b_{1}$ o $P \in b_{2}$.

$\blacksquare$

Más adelante…

En al siguiente entrada estudiaremos a los paralelogramos y sus propiedades.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $BC > B’C’$, muestra que $\angle A > \angle A’$.
  2. Sea $\square ABCD$ un cuadrado y $O$ un punto en el plano muestra que $OA < OB + OC + OD$.
  3. Sean $\triangle ABC$ y $A’$ un punto en el interior del triángulo, muestra que $AB + AC > A’B + A’C$ y que $\angle BA’C > \angle BAC$.
  4. En un poblado situado junto a un rio, cuyo borde es totalmente recto, hay un incendio en un punto $A$, la estación de bomberos se encuentra en un punto $B$ del mismo lado del río donde se dio el incendio, los bomberos necesitan pasar primero por el río para abastecerse de agua. ¿Qué punto $P$ en el borde del río hace que el trayecto $BP + PA$ sea mínimo?
  5. Muestra que si dos circunferencias se intersecan en un solo punto entonces el punto pertenece al segmento que une los centros o a su extensión.
  6. $i)$ Dados una recta y un punto en ella construye la perpendicular a la recta por el punto dado.
    $ii)$ Dados una recta y un punto fuera de ella construye la paralela a la recta por el punto dado.
    $iii)$ Dados una recta y un punto fuera de ella construye la perpendicular a la recta por el punto dado.
  7. $i)$ Dados una recta y un numero $a > 0$ encuentra el el lugar geométrico de los puntos cuya distancia a la recta es $a$.
    $ii)$ ¿Cuál es el lugar geométrico de los puntos cuya distancia a una circunferencia dada $(O, r)$ es una constante dada $b > 0$?

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 9-12, 44-54.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 16-18.
  • Geometría interactiva
  • Geometry Help

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»