Geometría Analítica I: Rotaciones y traslaciones

Por Paola Lizeth Rojas Salazar

Introducción

En este apartado, vamos a continuar con el estudio de las isometrías que se empezaron a analizar en la unidad anterior, las rotaciones y traslaciones.

Encontrando un punto fijo

Recuerda que ya definimos la rotación de un ángulo $\theta$ con centro en $c$ ($\rho_{\theta,c}$), en función de la traslación de $c$ al origen $\tau_c$ y la rotación de $\theta$ en el origen $\rho_\theta$, como: $\rho_{\theta,c}=\tau_c\circ \rho_\theta \circ \tau_{-c}$. Usando matrices, esta expresión se convierte en:

\begin{equation}\rho_{\theta,c}(x)= R_\theta (x-c)+c=R_\theta x+(c-R_\theta c)\end{equation}

Observa que esta expresión es de la forma $Ax+b$ con $b$ constante, por lo que $\rho_{\theta,c} \in Iso^+ (2).

Por otro lado, si el problema se invierte y ahora queremos ver que una función $f(x)=Ax+b \in Iso^+ (2)$ es la rotación de una función en algún centro, debemos encontrar un punto fijo $c$ para el que $f(c)=c$. Es decir:

\begin{equation}c=Ac+b\end{equation}

\begin{equation}c-Ac=b\end{equation}

Esto quiere decir, que debemos encontrar una solución a la ecuación $x-Ax=b$, que se puede reescribir como:

\begin{equation}(I-A)x=b\end{equation}

Por lo que has visto en los capítulos anteriores, esperamos que, al ver esta expresión, hayas recordado que este sistema tiene solución única si y solo si su determinante es distinto de cero, donde su determinante es:

\begin{equation}det(I-R_\theta)=det\begin{pmatrix} 1-\cos(\theta) & \sin(\theta) \\
-\sin(\theta) & 1-\cos(\theta)\end{pmatrix}\end{equation}

Donde puedes comprobar que $det(I-R_\theta)=2(1-\cos(\theta))$.

Lo anterior implica que, si $\theta\neq 0$, entonces $det(I-R_\theta)\neq 0)$, lo que resulta en una solución única para el sistema resultante que es $A=R_\theta$ el punto fijo que estábamos buscando. Finalmente, podemos concluir que $f$ es una rotación.

Centro de rotación para composición de rotaciones

Lo anterior implica el siguiente corolario:

Corolario A: La composición de rotaciones es una nueva rotación.

La nueva pregunta que surge es, ¿cuál es el centro de rotación de la composición de rotaciones? Las siguientes líneas, las dedicaremos a encontrar este nuevo centro de rotación.

Considera $\rho_{\alpha,a}$ y $\rho_{\beta,b}$ las rotaciones de ángulos $\alpha$ y $beta$ y centros en $a$ y $b$ respectivamente. La composición de estas dos rotaciones tiene un ángulo $\alpha + \beta$, pero su centro depende del orden de composición.

Para encontrar el centro de rotación, de forma geométrica, para $\rho_{\beta,b} \circ \rho_{\alpha,a}$, se trazan las líneas que van de $a$ a $b$, después, midiendo los ángulos a partir de esta recta, la línea que pasa por $a$ con ángulo $-\frac{\alpha}{2}$ y la que pasa por $b$ con ángulo $\frac{\beta}{2}$. La intersección de las últimas dos líneas es el nuevo centro de rotación $c$.

Observa que, para la composición $\rho_{\alpha,a} \circ \rho_{\beta,b}$, su nuevo centro de rotación es el reflejado de $c$ respecto de la línea que pasa por $a$ y $b$.

Tarea moral

  1. Verifica que, efectivamente, se cumple que $det(I-R_\theta)=2(1-\cos(\theta))$.
  2. Demuestra el Corolario A.
  3. Como veremos más delante, las homotecias, son transformaciones de la forma $f(x)=kx+b$ donde $k\neq 0$ se conoce como el factor de expansión. Demuestra que las homotecias con $k\neq 1$ tienen un punto fijo (este punto fijo se llama centro de expansión).

Más adelante…

En la siguiente entrada de esta unidad, hablaremos sobre otro tipo de isometrías que ya estudiamos en la unidad anterior, las reflexiones.

Geometría Analítica I: Producto de matrices

Por Paola Berenice García Ramírez

Introducción

En la entrada anterior definimos a un vector y a una matriz de una función lineal, podemos proceder a definir su producto. En esta entrada primero veremos cómo se realiza el producto de una matriz con un vector. Después trataremos la fuerte relación entre la composición de funciones y el producto de matrices. Con dicha relación, por último definiremos el producto de matrices cualesquiera.

Producto de una matriz con un vector

Si tenemos un matriz $A$ de $m\times n$, sabemos que una forma de ver a nuestra matriz es como un conjunto ordenado de $n$ vectores en $\mathbb{R}^n$ y entonces se escribe $A=(u_1, u_2, \cdots, u_n)$, con $u_{i} \in \mathbb{R}^n$, donde $i=1,2,\cdots,n$. También sabemos que cada vector al que haremos referencia tiene la notación $x=(x_1, x_2, \cdots, x_n )^T$.

Vamos a definir con estos conceptos al producto de una matriz $A$ por un vector $x$:

Definición. El producto de una matriz $A$ de dimensión $m\times n$ de la forma

\begin{equation*}
A = (u_1,u_2, \cdots, u_n),
\end{equation*}

por un vector de la forma

\[ x=(x_1, x_2, \cdots, x_n )^T = \left(\begin{array}{c}
x_1\\
x_2\\
\vdots\\
x_n
\end{array} \right);\]

se define por

\[ Ax = (u_1, u_2, \cdots, u_n )\left(\begin{array}{c}
x_1\\
x_2\\
\vdots\\
x_n
\end{array} \right) = x_1 u_1 + x_2 u_2 + \cdots + x_n u_n. \]

Veamos un ejemplo que nos apoye con la definición:

Ejemplo. Sean la matriz $A$ y el vector $x$ como sigue

\[ A = \left(\begin{array}{ccc}
4&7&-1\\
2&-3&1\\
5&4&-2
\end{array} \right), \hspace{0.5cm} y \hspace{0.5cm} x=(x,y,z)^T , \]

entonces el producto de la matriz $A$ con el vector $x$ será:

\[ Ax = \left(\begin{array}{ccc}
4&7&-1\\
2&-3&1\\
5&4&-2
\end{array} \right) \left(\begin{array}{c}
x\\
y\\
z
\end{array} \right) = x \left(\begin{array}{c}
4\\
2\\
5
\end{array} \right) + y \left(\begin{array}{c}
7\\
-3\\
4
\end{array} \right) + z \left(\begin{array}{c}
-1\\
1\\
-2
\end{array} \right) = \left(\begin{array}{c}
4x+7y-z\\
2x-3y+z\\
5x+4y-2z
\end{array} \right).\]

Ahora, para comprender mejor la definición del producto de matrices, que es el tema principal de esta entrada; es mejor hablar de su origen, el cual proviene de los sistemas lineales. Arthur Cayley (1821-1895) fue un matemático británico que analizaba los sistemas con dos ecuaciones y dos incógnitas:

\begin{align*}
ax + by &= x’ \\
cx + dy &= y’
\end{align*}

como transformación del plano donde a cada punto $(x,y)$ le corresponde el punto $(x’,y’)$.

A la función de $\mathbb{R}^2$ en $\mathbb{R}^2$ donde

\[ p(x) = \left(\begin{array}{c}
ax + by\\
cx + dy
\end{array} \right), \]

se le asocia la matriz

\[ \left(\begin{array}{cc}
a & b\\
c & d
\end{array} \right), \]

que es quien transforma el plano, moviendo cada punto $(x,y)$ a la posición $(x’,y’)$.

Ahora vamos a considerar otra matriz

\[ \left(\begin{array}{cc}
e & f\\
g & h
\end{array} \right), \]

quien también transformará al plano, pero el punto $(x’,y’)$ se moverá a la posición $(x´´,y´´)$ mediante el sistema:

\begin{align*}
ex’ + fy’ &= x´´ \\
gx’ + hy’ &= y´´.
\end{align*}

Si lo que deseamos es que las dos transformaciones se ejecuten una detrás de la otra, es decir, que el punto $(x,y)$ vaya a la posición $(x´´,y´´)$; entonces para la primera ecuación se tendrá:

\begin{align*}
x´´ &= ex’ + fy’\\
&= e(ax+by) + f(cx+dy)\\
&= (ae+cf)x +(be+df)y,
\end{align*}

y para la segunda ecuación tenemos:

\begin{align*}
y´´ &= gx’ + hy’\\
&= g(ax+by) + h(cx+dy)\\
&= (ag+ch)x +(bg+dh)y.
\end{align*}

En consecuencia, la composición de las dos transformaciones tiene por sistema a:

\begin{align*}
(ae+cf)x +(be+df)y &= x´´\\
(ag+ch)x +(bg+dh)y &= y´´.
\end{align*}

De hecho las definiciones de Cayley se generalizaron a cualquier dimensión. Con esta motivación vamos a definir el producto de matrices.

Multiplicación de matrices

Definición. Sean $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ y $g: \mathbb{R}^m \longrightarrow \mathbb{R}^k$ dos funciones lineales, la composición $g \circ f: \mathbb{R}^n \longrightarrow \mathbb{R}^k$ también será lineal. Sean las matrices $A$ de tamaño $m\times n$ y $B$ de tamaño $k\times m$ que corresponden a $f$ y a $g$ respectivamente. Definimos al producto de matrices $BA$ como la matriz $k\times n$ que corresponde a la función lineal $g \circ f$.

Entonces $BA$ es la única matriz de $k\times n$ que cumple:

\begin{equation*}
(g\circ f)(x) = (BA) x, \hspace{0.25cm} \text{para todo} \hspace{0.25cm} x \in \mathbb{R}^n .
\end{equation*}

Para comprender la definición, recordemos que la matriz $A$ con tamaño $m\times n$ está asociada a la función lineal $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ y la matriz $B$ con tamaño $k\times m$ está asociada a la función lineal $g: \mathbb{R}^m \longrightarrow \mathbb{R}^k$. La conversión se da por la convención existente en el orden en que se realiza la composición de funciones (hacia atrás).

La definición no nos indica cómo realizar la multiplicación de matrices, para lo cual conviene que recordemos primeramente que las columnas de una matriz son las imágenes de la base canónica bajo la función asociada. Entonces si $A=(u_1, u_2, \cdots, u_n )$ donde $u_i = f(e_i ) \in \mathbb{R}^m$, entonces $(g \circ f)(e_i) =g(f(e_i)) = g(u_i) = Bu_i$. Por tanto

\begin{equation*}
BA = B (u_1,u_2, \cdots, u_n) = (Bu_1, Bu_2, \cdots, Bu_n).
\end{equation*}

Ahora, para obtener las columnas de la nueva matriz, usaremos la multiplicación de $B$ por los vectores columna de $A$, que es la multiplicación que ya definimos en la primer parte de esta entrada.

Expresaremos cada una de las entradas de la matriz $BA$, pero nos conviene ver a la matriz $B$ como una columna de vectores renglón, obteniendo

\[ BA = \left(\begin{array}{c}
w_{1}^{T}\\
w_{2}^{T}\\
\vdots\\
w_{k}^{T}
\end{array} \right) \left(\begin{array}{c}
u_1, u_2, \cdots, u_n
\end{array} \right) = \left(\begin{array}{cccc}
w_1 \cdot u_1 & w_1 \cdot u_2 & \cdots & w_1 \cdot u_n\\
w_2 \cdot u_1 & w_2 \cdot u_2 & \cdots & w_2 \cdot u_n\\
\vdots& \vdots & \ddots &\vdots\\
w_k \cdot u_1 & w_k \cdot u_2 & \cdots & w_k \cdot u_n
\end{array} \right), \]

Con esta fórmula podemos ver porqué es importante que el número de filas de $B$ (los transpuestos de los vectores $w_i$) debe ser el mismo número de columnas de $A$ (los vectores $u_j$) y comprender la mecánica para obtener las entradas de una matriz $k \times n$ a partir de una matriz $B$ con tamaño $k \times m$ y una matriz $A$ con tamaño $m \times n$.

Ejemplo. Sean

\[ B = \left(\begin{array}{ccc}
2&-1&0\\
1&3&1
\end{array} \right), \hspace{0.5cm} y \hspace{0.5cm} A= \left(\begin{array}{cccc}
1&0&2&4\\
-1&-2&1&0\\
3&5&6&1
\end{array} \right), \]

El producto $BA$ está bien definido porque $B$ es de tamaño $3\times 4$ y $A$ es de tamaño $2\times 3$, por tanto $BA$ es una matriz de $2\times 4$. Las filas de $B$ serán $w_1$ y $w_2$ y las columnas de $A$ serán $u_1, u_2, u_3$ y $u_4$, es decir:

Por tanto, $BA$ es la matriz:

\[ BA = \left(\begin{array}{cccc}
3&2&3&8\\
1&-1&11&5
\end{array} \right). \]

Ejemplo. Tomemos las matrices $A$ y $B$ del ejemplo anterior, observemos que no podemos realizar el producto $AB$, ya que el número de columnas de $B$ es $4$ y el número de filas de $A$ es $2$ y éstos números no coinciden.

En conclusión, el producto de matrices no es conmutativo, de hecho, aunque existan ambos $AB$ y $BA$, éstos no tienen porqué coincidir.

Ejemplo. Sean \[ A = \left(\begin{array}{cc}
7&0\\
-1&0
\end{array} \right), \hspace{0.5cm} y \hspace{0.5cm} B= \left(\begin{array}{cc}
0&2\\
0&-5
\end{array} \right), \]

podemos calcular $AB$ y $BA$, obtenemos

\[ AB = \left(\begin{array}{cc}
0&14\\
0&-2
\end{array} \right), \hspace{0.5cm} y \hspace{0.5cm} BA= \left(\begin{array}{cc}
-2&0\\
5&0
\end{array} \right), \]

y vemos que $AB \neq BA.$

Tarea moral

  1. Aunque $A$ y $B$ no sean las matrices cero (cuyas entradas son todas cero), su producto sí puede serlo. Den un ejemplo de 2 matrices tales que $AB=0$, pero $A\neq 0$ y $B \neq 0$, donde $0$ es la matriz cero.
  2. Demuestra que si $A, B, C$ son matrices $2\times 2$, entonces $A(B+C) = AB +AC$ y $(A+B)C= AC +BC$.
  3. Demuestra que si $A,B, C$ son matrices de $3\times 3$, entonces $A(BC) = (AB)C$, es decir que el producto de matrices es asociativo. Por tanto, podemos escribir al producto simplemente como $ABC$.
  4. Sean

\[ A = \left(\begin{array}{ccc}
3&-1&4\\
2&5&-2\\
1&3&2
\end{array} \right), \hspace{0.5cm} B= \left(\begin{array}{cc}
1&3\\
-1&4\\
5&2
\end{array} \right), \hspace{0.5cm} C= \left(\begin{array}{cccc}
1&3&-1&2\\
-2&4&1&5\\
5&2&-3&1
\end{array} \right), \]

Realizar el producto de matrices $AB, BC, AC$ y justificar en caso de que no pueda efectuarse alguno de los productos.

Más adelante

En la primera parte de la unidad 3 vimos distintos tipos de transformación de funciones. Para la segunda parte definimos matrices de tamaño $m\times n$, matrices asociadas a funciones lineales y en esta entrada vimos la operación del producto de matrices.

A continuación vamos a ver algunas de las familias de matrices más representativas que están asociadas a funciones. Nos serán familiares dichas funciones porque las trabajamos en la primera parte de esta Unidad 3.

Enlaces relacionados

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Ecuaciones Diferenciales I – Videos: Método de valores y vectores propios para sistemas lineales homogéneos con coeficientes constantes. Valores propios distintos

Por Eduardo Vera Rosales

Introducción

En la entrada anterior dimos las definiciones elementales y necesarias para diagonalizar una matriz de coeficientes constantes. Vimos los conceptos de valores y vectores propios y el polinomio característico, todo esto para poder encontrar la matriz $\textbf{e}^{t\textbf{A}}$. Sabemos que $\textbf{e}^{t\textbf{A}}$ es una matriz fundamental de soluciones al sistema lineal homogéneo $\dot{\textbf{X}}=\textbf{A}\textbf{X}$, por lo que sus columnas son soluciones linealmente independientes a dicho sistema. Así, de paso encontramos la solución general al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$.

Ahora vamos a olvidarnos un poco de $\textbf{e}^{t\textbf{A}}$, y vamos a resolver $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ pero de una manera ligeramente distinta. Lo que haremos será suponer que una solución a tal sistema es de la forma $\textbf{X}(t)=e^{\lambda t}\textbf{v}$ para cierto vector constante $\textbf{v}$. Resultará que $\textbf{X}(t)$ será solución al sistema si y sólo si $\textbf{A}\textbf{v}=\lambda\textbf{v}$. Es decir, si y sólo si $\textbf{v}$ es un vector propio de la matriz $\textbf{A}$ del sistema, y $\lambda$ es el valor propio asociado a $\textbf{v}$.

El método de valores y vectores propios que desarrollamos para diagonalizar una matriz en la entrada anterior, nos servirá de la misma manera para hallar la solución general al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$, al menos si $\textbf{A}$ es diagonalizable, pues ya sabemos cómo encontrar los valores y vectores propios de $\textbf{A}$, y al tener $n$ valores propios con sus respectivos vectores propios, entonces seremos capaces de encontrar $n$ soluciones linealmente independientes al sistema y formas la solución general a este.

Una vez establecido cómo debe verse la solución general al sistema, finalizaremos la entrada resolviendo un par de ejemplos de sistemas donde la matriz $\textbf{A}$ es diagonalizable y las raíces del polinomio característico igualado a cero son todas reales y distintas.

La solución general al sistema lineal homogéneo con coeficientes constantes

Hallamos la solución general al sistema lineal homogéneo $\dot{\textbf{X}}=\textbf{A}\textbf{X}$, suponiendo que $\textbf{A}$ es una matriz diagonalizable.

Método de valores y vectores propios. Raíces reales distintas del polinomio característico

Mediante un par de ejemplos revisamos el caso cuando $\textbf{A}$ es diagonalizable y las raíces del polinomio característico son todas reales y distintas. Además en el segundo ejemplo, verificamos que $$\textbf{e}^{t\textbf{A}}=\textbf{X}_{f}(t)\textbf{X}_f^{-1}{0}$$ donde $\textbf{X}_{f}(t)$ es una matriz fundamental de soluciones al sistema. La matriz del segundo ejemplo fue diagonalizada en el siguiente video de la entrada anterior, y calculamos $\textbf{e}^{t\textbf{A}}$. (Compara los resultados obtenidos).

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Resuelve los siguientes sistemas y problemas de condición inicial. Encuentra $\textbf{e}^{t\textbf{A}}$ en cada caso:

  • $\dot{\textbf{X}}=\begin{pmatrix} 1 & 1\\ 4 & -2\end{pmatrix}\textbf{X}$.
  • $\dot{\textbf{X}}=\begin{pmatrix} 1 & 4\\ 3 & 2\end{pmatrix}\textbf{X} \, \, \, \, \, ; \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1\\ 10\end{pmatrix}$.
  • $\dot{\textbf{X}}=\begin{pmatrix} 1 & -1 & 4\\ 3 & 2 & -1 \\ 2 & 1 & -1\end{pmatrix}\textbf{X}$.
  • $\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 & 0\\ 2 & 0 & 2 \\ 0 & 1 & 0\end{pmatrix}\textbf{X} \, \, \, \, \, ; \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1\\ 0 \\ 0\end{pmatrix}$.

Más adelante

Una vez que hemos logrado escribir la solución general al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$, cuando $\textbf{A}$ es diagonalizable, continuaremos revisando los posibles casos que se presentan con las raíces del polinomio característico. En particular, en la siguiente entrada revisaremos el caso cuando se presentan raíces complejas, es decir, cuando aparecen valores propios complejos de la matriz $\textbf{A}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Analítica I: Matrices y funciones lineales

Por Paola Berenice García Ramírez

Introducción

En la entrada anterior vimos funciones lineales, un concepto fundamental y que sin él no podríamos definir formalmente al conjunto de las matrices en $\mathbb{R}^n$. Requerimos ver cómo los conceptos de función lineal y el de matriz se entrelazan; para comprender porqué a menudo se trabaja más con matrices asociadas a una función lineal cuando hablamos de transformaciones.

Matrices

Previo a la definición de nuestro interés en esta sección debemos recordarles quiénes son lo vectores canónicos de $\mathbb{R}^n$, ya que vamos a trabajar con ellos en esta entrada. Los vectores canónicos son aquellos formados por sólo una entrada igual a 1 y el resto de entradas son todas cero. Se denotan por $e_i$, donde $i=\{1,2,\cdots,n\}$ y el subíndice $i$ nos indica la posición de la entrada con 1.

Ejemplo. Si nos encontramos en $\mathbb{R}^3$, sus vectores canónicos son:

\begin{align*}
e_{1}&=(1,0,0),& e_{2}&=(0,1,0),& e_{3}&=(0,0,1).
\end{align*}

A continuación tomaremos una función lineal $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, donde $f(e_{1})=(4,3)$ y $f(e_{2})=(-1,2)$. Entonces $f$ se escribe como:

\begin{align*}
f(x,y) &= x(4,3) + y(-1,2)\\
&= (4x – y, 3x+2).\\
\end{align*}

Vemos que hay una clara desventaja en la forma en que representamos a $f$, porque podemos confundirnos al ordenar y separar comas. Si ahora consideramos a los vectores como columnas en lugar de filas, el reordenamiento será de la siguiente manera:

\[ f \left(\begin{array}{c}
x\\
y
\end{array} \right) = x \left(\begin{array}{c}
4\\
3
\end{array} \right) + y \left(\begin{array}{c}
-1\\
2
\end{array} \right) = \left(\begin{array}{c}
4x-y\\
3x+2y
\end{array} \right)\]

con lo cual, incluso ya no ocupamos las comas y el orden es más fácil. En consecuencia debemos definir esta notación.

Definición 1. Una matriz de orden o dimensión de $m \times n$ es una tabla con elementos con $m$ filas y $n$ columnas. Usualmente las matrices se representan con letras mayúsculas como $A, B, \cdots, etc$.

Definición 2. Un elemento o entrada de la matriz se designa mediante $a_{ij}$, donde el primer subíndice $i$ indica la fila en que se encuentra el elemento, mientras que el segundo subíndice $j$ es la columna en que lo encontramos.

Entonces una matriz de $m\times n$ es de la forma:

\[ A = \left(\begin{array}{cccc}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\ddots&\vdots\\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{array} \right).\]

Ejemplo. Como ejemplos de matrices tenemos a

\[ B= \left(\begin{array}{ccc}
2&3&4\\
6&-5&3\\
\end{array} \right), \hspace{1.5cm} C= \left(\begin{array}{ccc}
1&4&6\\
2&3&11\\
-7&4&8
\end{array} \right),\]

donde la matriz $B$ es de dimensión $2\times 3$, ya que tiene 2 filas y 3 columnas; mientras que $C$ es de dimensión $3\times 3$, con 3 filas y 3 columnas.

Deseamos que conozcan otra forma de definir a una matriz $A$ que nos será muy útil. A una matriz $A$ podemos verla como un conjunto ordenado de $n$ vectores en $\mathbb{R}^n$; esos vectores serán sus columnas, y entonces puede escribirse como:

\begin{equation*}
A = (u_1,u_2, \cdots, u_n),
\end{equation*}

donde

\[ u_i = \left(\begin{array}{c}
a_{1i}\\
a_{2i}\\
\vdots\\
a_{mi}
\end{array} \right) \in \mathbb{R}^m, \]

con $i=1,2,\cdots,n$.

Como escribiremos a los vectores en $\mathbb{R}^n$ como vectores columna y no como filas, entonces debemos tener otra notación que justifique dicho cambio.

Transpuesta de una matriz

Definición 3. La transpuesta de una matriz $A$ de dimensión $m \times n$ es una matriz $B$ de dimensión $n \times m$, que obtenemos después de intercambiar filas y columnas. De manera que los elementos cumplen

\begin{equation*}
b_{ij} = a_{ji},
\end{equation*}

donde $i=1,2,\cdots,m$ y $j=1,2,\cdots,n$. En general, se le denota a la transpuesta de $A$ por $A^T$.

Ejemplo. Vamos a escribir de nuevo las matrices del ejemplo anterior con sus respectivas transpuestas. Para la matriz $B$

\[ B= \left(\begin{array}{ccc}
2&3&4\\
6&-5&3\\
\end{array} \right),\]

su transpuesta $B^T$ es

\[ B^T = \left(\begin{array}{cc}
2&6\\
3&-5\\
4&3
\end{array} \right). \]

Y para la matriz $C$

\[ C= \left(\begin{array}{ccc}
1&4&6\\
2&3&11\\
-7&4&8
\end{array} \right),\]

su transpuesta $C^T$ es

\[C^T = \left(\begin{array}{ccc}
1&2&-7\\
4&3&4\\
6&11&8
\end{array} \right).\]

También nos falta definir otro concepto que nos será de utilidad con la notación que estamos construyendo.

Vectores columna

Definición 4. Un vector columna de orden $m$ es una ordenación de elementos en $m$ filas y que tiene una columna:

\[ a = \left(\begin{array}{c}
a_{1}\\
a_{2}\\
\vdots\\
a_{m}
\end{array} \right) \in \mathbb{R}^m, \]

Un vector fila de orden $n$ es una ordenación de elementos e $n$ columnas y que tiene una fila:

\begin{equation*}
c = (c_1,c_2, \cdots, c_n).
\end{equation*}

A este tipo de vectores como vemos, se les designa por una letra minúscula y de hecho la transpuesta de un vector fila es un vector columna y viceversa.

Entonces los vectores fila son los transpuestos de los vectores columna denotándolos por $x^T = (x_1,x_2, \cdots, x_n)$ o bien $x = (x_1,x_2, \cdots, x_n)^T$. Entonces, la notación que hasta ahora hemos presentado, la podemos ver reflejada con el siguiente ejemplo.

Ejemplo. Si tenemos que para $\mathbb{R}^2$ existen los dos vectores canónicos $e_1 = (1,0)$ y $e_2 = (0,1)$ y queremos representar los vectores como vectores columna, procedemos a escribir la notación de transpuesta previamente; es decir $e_1 = (1,0)^T$ y $e_2 = (0,1)^T$. Con ello podemos trabajar ahora los vectores como columnas:

\[ e_1= \left(\begin{array}{c}
1\\
0
\end{array} \right), \hspace{0.5cm} y \hspace{0.5cm} e_2 = \left(\begin{array}{c}
0\\
1
\end{array} \right).\]

Ahora tenemos las herramientas con las que podemos enlazar los conceptos de matriz con el de una función lineal; así que veamos a ver una definición muy importante para ello.

Matriz de una función lineal

Para continuar debemos observar que una matriz de tamaño $m\times n$ contiene la información de una función lineal de $\mathbb{R}^n$ en $\mathbb{R}^m$, invirtiendo el orden debido a la convención que existe debido al orden en que se realiza la composición de funciones.

Definición 5. A la matriz $A$ se le asocia la función lineal $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ que manda al vector canónico $e_i \in \mathbb{R}^n$ en su i-ésima columna, es decir, $f(e_i) = u_i$, para $i=,2,\cdots,n$.

Ejemplo. Si recordamos a la función del inicio de esta entrada de $\mathbb{R}^2$ en $\mathbb{R}^2$ donde

\[ f(x) = \left(\begin{array}{c}
4x-y\\
3x+2y
\end{array} \right),\]

bueno pues a la función lineal de $\mathbb{R}^2$ en $\mathbb{R}^2$ se le asocia la matriz

\[ f(x) = \left(\begin{array}{cc}
4&-1\\
3&2
\end{array} \right).\]

Observemos bien cómo la variable $x$ está asociada a la primer columna y la variable $y$ a la segunda columna.

Tarea moral

  1. Para el primer ejercicio vamos a dar una definición:

Definición. La suma de dos matrices $A$, $B$, ambas de dimensión $m \times n$, se llama matriz suma de $A$ y $B$ y se denota $C=A+B$ a la matriz $C$ de dimensión $m \times n$ tal que

\begin{equation*}
a_{ij} = a_{ij} + b_{ij}, \hspace{0.3cm} i=1,2,\cdots,m; \hspace{0.2cm} j=1,2,\cdots,n.
\end{equation*}

Calcular la suma de $A+B$, $B+C$ y $A+C$ con las matrices:

\[ A = \left(\begin{array}{cc}
3&8\\
4&-2
\end{array} \right), \hspace{1.5cm} B= \left(\begin{array}{cc}
1&-1\\
3&-2
\end{array} \right), \hspace{1.5cm} C= \left(\begin{array}{cc}
2&-5\\
6&4
\end{array} \right).\]

2. De las siguientes matrices , calcular sus transpuestas:

\[ D = \left(\begin{array}{cc}
1&3\\
5&7\\
9&11\\
-1&4
\end{array} \right), \hspace{1.5cm} B= \left(\begin{array}{c}
-1\\
5\\
3\\
2
\end{array} \right), \hspace{1.5cm} C= \left(\begin{array}{ccc}
1&3&-5\\
4&7&-9
\end{array} \right). \]

3. De la siguiente función $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por:

\[ g(x) = \left(\begin{array}{c}
6x-8y\\
-2x+81y
\end{array} \right),\]

¿Cuál es la matriz asociada a la función lineal?.

Más adelante

Ahora que definimos a un vector y a una matriz de una función lineal, podemos proceder a definir su producto. En la siguiente entrada primero veremos cómo se realiza el producto de una matriz con un vector y después definir el producto de matrices cualesquiera. Además se darán cuenta de la fuerte relación que hay entre la composición de funciones y el producto de funciones.

Enlaces relacionados

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Cálculo Diferencial e Integral I: La derivada

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente se revisó el concepto de continuidad, característica de la cual emanaban diversas propiedades útiles tal como el teorema del valor intermedio. En esta ocasión, daremos inicio con la séptima unidad que estará enfocada al aspecto teórico de uno de los conceptos más conocidos dentro de las matemáticas: la derivada.

El objetivo de esta entrada es entender este nuevo concepto para que posteriormente podamos analizar las propiedades y aplicaciones que posee.

Interpretación geométrica

Comenzaremos estudiando la interpretación geométrica para construir la definición formal. Pensemos en la siguiente función y notemos los dos puntos marcados.

Considerando que el punto gris está dado por $P = (x, f(x))$ y el punto negro por $P_0 = (x_0, f(x_0))$, podríamos obtener fácilmente la pendiente de la recta que pasa por ambos puntos.

$$m = \frac{f(x)-f(x_0)}{x-x_0}. \tag{1}$$

¿Qué sucede si dejamos a $P_0$ como un punto fijo y «movemos» el punto $P$ de tal forma que estos puntos comienzan a estar cada vez más cerca? (En la gráfica, el «movimiento» de $P$ se plasma mediante los puntos $P_1$, $P_2$, y $P_3$)

Si tales puntos están cada vez están más cerca, el concepto de límite entra en juego, pues estaríamos buscando $P \to P_0$. Así, podríamos calcular la pendiente de la recta tangente en el punto $P_0$. De esta forma, el límite deseado es el siguiente:

$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}.$$

La derivada

Definición. La función $f$ es derivable en $x_0$ si el siguiente límite existe

$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}.$$

En este caso, denotaremos al límite anterior como $f'(x_0)$ y le llamaremos derivada de $f$ en $x_0.$

También es común encontrar la siguiente definición equivalente de la derivada.

Definición. La función $f$ es derivable en $x_0$ si el siguiente límite existe

$$\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}.$$

Ahora que conocemos la definición de derivada, es momento de ponerla en práctica y revisar algunas funciones que sean derivables.

Ejemplo 1. Prueba que la función $f(x) = c$, con $c \in \RR$, es derivable para cualquier $x_0 \in \mathbb{R}.$

Demostración

Sea $x_0 \in \RR$. Veremos que $$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$ sí existe.

Notemos que si $x \neq x_0$, entonces

\begin{align*}
\frac{f(x)-f(x_0)}{x-x_0} & = \frac{c-c}{x-x_0} \\
& = \frac{0}{x-x_0} \\
& = 0.
\end{align*}

Por lo anterior, se sigue que

$$ \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} = 0.$$

Por lo tanto, $f$ es derivable en $\mathbb{R}$ y $f'(x) = 0$.

$\square$

Ejemplo 2. Prueba que la función $f(x) = ax+b$ es derivable para cualquier $x_0 \in \mathbb{R}.$

Demostración

Sea $x_0 \in \RR$. Bastará probar que el límite $$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$ sí existe.

Para ello, primero veamos que si $x \neq x_0$, entonces

\begin{align*}
\frac{f(x)-f(x_0)}{x-x_0} & = \frac{ax+b – (ax_0+b)}{x-x_0} \\
& = \frac{ax-ax_0}{x-x_0} \\
& = \frac{a(x-x_0)}{x-x_0} \\
& = a.
\end{align*}

Por lo anterior, se sigue que

$$ \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} = a.$$

Por lo tanto, $f$ es derivable en $\mathbb{R}$ y $f'(x) = a$.

$\square$

Continuemos con un segundo ejemplo sencillo para acostumbrarnos a este nuevo concepto.

Ejemplo 3. Prueba que la función $f(x) = x^2$ es derivable para cualquier $x \in \mathbb{R}.$

Demostración.

Sea $x_0 \in \RR.$
Procederemos a calcular el límite directamente.

\begin{align*}
\lim_{x \to x_0} \frac{ f(x)-f(x_0) }{ x-x_0 } & = \lim_{x \to x_0} \frac{x^2 – x_0^2}{x-x_0} \\
& = \lim_{x \to x_0} \frac{ (x-x_0)(x+x_0) }{ x-x_0 } \\
& = \lim_{x \to x_0} x+x_0 \\
& = 2x_0.
\end{align*}

Por lo tanto, $f$ es derivable para cualquier $x \in \RR$ y $f'(x) = 2x$.

$\square$

Ejemplo 4. Prueba que la función $f(x) = \sqrt{x}$ es derivable para cualquier $x_0 > 0.$

Demostración

Sea $x_0 > 0$. Para esta demostración, usaremos la segunda definición de límite.

Notemos que si $h \neq 0$, entonces

\begin{align*}
\frac{f(x_0+h)-f(x_0)}{h} & = \frac{\sqrt{x_0+h}-\sqrt{x_0}}{h} \\
& = \frac{\sqrt{x_0+h}-\sqrt{x_0}}{h} \cdot \frac{\sqrt{x_0+h}+\sqrt{x_0}}{\sqrt{x_0+h}+\sqrt{x_0}} \\
& = \frac{x_0+h-x_0}{h \left( \sqrt{x_0+h}+\sqrt{x_0} \right)} \\
& = \frac{h}{h \left( \sqrt{x_0+h}+\sqrt{x_0} \right)} \\
& = \frac{1}{ \sqrt{x_0+h}+\sqrt{x_0} }.
\end{align*}

Por lo anterior, se sigue que

$$ \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{x-x_0} = \frac{1}{2 \sqrt{x_0}}.$$

Por lo tanto, $f$ es derivable para cualquier $x > 0$ y $f'(x) = \frac{1}{2 \sqrt{x}}$.

$\square$

Es momento de revisar una función que no sea derivable. Para este propósito, emplearemos la función valor absoluto, la cual hemos revisado anteriormente y será conveniente que tengas presente su gráfica, pues este tipo de funciones que generan un «pico» en su gráfica, no son derivables en tal punto.

Ejemplo 5. Sea $f: \RR \to \RR$, $f(x) = |x|$. Prueba que $f$ no es derivable en $x_0 = 0.$

Demostración.

Notemos que $$\lim_{x \to x_0} \frac{|x|-0}{x-0} = \lim_{x \to x_0} \frac{|x|}{x}.$$

Consideremos las sucesiones $\{a_n\}$, $\{b_n\}$ donde $a_n = \frac{1}{n}$ y $b_n = -\frac{1}{n}$. Tenemos que $a_n$, $b_n \in \RR$ para todo $n \in \mathbb{N}$. Además, $a_n$, $b_n \neq 0$ para todo $n \in \mathbb{N}$ y $$\lim_{n \to \infty} a_n = 0 = \lim_{n \to \infty} b_n.$$

Pero se tiene que

\begin{align*}
\lim_{n \to \infty} \frac{|a_n|}{a_n} & = \lim_{n \to \infty} \frac{|\frac{1}{n}|}{\frac{1}{n}} \\
& = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n}} \\
& = 1.
\end{align*}

Además
\begin{align*}
\lim_{n \to \infty} \frac{|b_n|}{b_n} & = \lim_{n \to \infty} \frac{|-\frac{1}{n}|}{-\frac{1}{n}} \\
& = \lim_{n \to \infty} \frac{\frac{1}{n}}{-\frac{1}{n}} \\
& = -1.
\end{align*}

De lo que se concluye que el límite $$\lim_{x \to x_0} \frac{|x|-0}{x-0}$$ no existe.

Por tanto, $f$ no es derivable en $x_0= 0$.

$\square$

Intuitivamente, podemos notar que si tratáramos de encontrar una «recta tangente» en $x_0 = 0$ moviéndonos por la derecha, será distinta a la «recta tangente» a generada por la izquierda. Esto hace que el límite no exista, sin embargo, podemos ser menos restrictivos en la definición.

Derivadas laterales

De forma complementaria, podemos definir la derivada en términos de la forma en que $x \to x_0$, es decir, a través de los límites laterales. Así, tenemos las siguientes definiciones.

Definición.

  1. La función $f$ es derivable por la derecha en $x_0$ si el siguiente límite existe

    $$\lim_{x \to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}.$$

    En este caso, denotaremos al límite anterior como $f'(x_0^+)$ y le llamaremos derivada por la derecha de $f$ en $x_0$.
  2. La función $f$ es derivable por la izquierda en $x_0$ si el siguiente límite existe

    $$\lim_{x \to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}.$$

    En este caso, denotaremos al límite anterior como $f'(x_0^-)$ y le llamaremos derivada por la derecha de $f$ en $x_0$.

Más adelante…

En la siguiente entrada revisaremos la relación existente entre la derivabilidad y la continuidad. Además, revisaremos algunas propiedades que nos permitirán obtener la derivada de una función con mayor facilidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Da un ejemplo de función que no sea derivable en un punto $x_0$.
  • Prueba que la función $f: \RR \to \RR$ definida por $f(x) = ax^2+bx+c$ es derivable en todo $\RR$.
  • Prueba que la función $f: \RR \to \RR$ definida por $f(x) = x^3-8$ es derivable en todo $\RR$.
  • Demuestra que $f(x) = |x|$ es derivable para todo $x \neq 0$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»