Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna II: Puntos autocorrespondientes y regla geométrica de la falsa posición

Por Armando Arzola Pérez

Introducción

Se seguirá viendo resultados y problemas relacionados con la razón cruzada, en esta entrada se abordará los Puntos autocorrespondientes y la regla geométrica de la falsa posición.

Puntos Autocorrespondientes

Sean $A,B,C$ y $A’,B’,C’$ dos conjuntos de puntos en una misma línea recta, por ende para un punto cualquiera $D$ en la recta le corresponde un punto $D’$ que nos dará como resultado $\{ ABCD \}=\{ A’B’C’D’ \}$.

Problema. El problema cae en la siguiente incógnita ¿Existirá un punto $D$ que se corresponda al mismo?, de tal forma que $\{ ABCD \}=\{ A’B’C’D \}$.

Demostraremos que puede haber uno, dos o ningún punto, a este punto existente se le llamará punto autocorrespondiente con respecto a las dos razones cruzadas.

Solución. Trácese cualquier circunferencia en el plano y tómese un punto $X$ en esta, y únanse los puntos $A,B,C,A’,B’,C’$ a $X$, y las intersecciones con la circunferencia y estas rectas se denotarán como $A_1, B_1, C_1, A_1′, B_1′, C_1’$.

Puntos autocorrespondientes 1

Notese que tenemos un hexagono inscrito con lados $A_1C_1’$, $A_1B_1’$, $C_1A_1’$, $B_1C_1’$, $B_1A_1’$, $B_1’C_1$, y la existencia del punto $D$ depende de que este hexágono cumpla el Teorema de Pascal.
El Teorema de Pascal dice que «Los puntos de intersección de los lados opuestos de un hexágono inscrito en una circunferencia son colineales». Es de esta forma que la intersección de $A_1B_1’$ y $A_1’B_1$ se cortan en $P$, $B_1’C_1$ y $B_1C_1’$ en $Q$, $A_1C_1’$ y $A_1’C_1$ en $R$, de esta forma se tiene la recta $PQ$ la cual corta a la circunferencia en $D_1$ y $E_1$.

Puntos autocorrespondientes 2

Ahora las rectas $XD_1$ y $XE_1$ cortarán la recta de los haces en los puntos $D$ y $E$ correspondientemente, estos son los dos puntos buscados. Sea $S$ la intersección de $PQ$ con $A_1A_1’$.

Puntos autocorrespondientes 3

Entonces se tienen las siguientes igualdades:

$\{ ABCD \}=X\{ A_1B_1C_1D_1\}$

por propiedad 1 de razón cruzada de la circunferencia se tiene:

$X\{ A_1B_1C_1D_1\}=A_1’\{ A_1B_1C_1D_1\}$

Por razón cruzada se tiene:

$A_1’\{ A_1B_1C_1D_1\}=\{SPRD_1\}= A_1\{ A_1’B_1’C_1’D_1 \}$

Por razón cruzada por la circunferencia:

$A_1\{ A_1’B_1’C_1’D_1 \} = X\{ A_1’B_1’C_1’D_1\} = \{ A’B’C’D \}$

Por lo tanto, $\{ ABCD \}=\{ A’B’C’D \}$ y es equivalente para $E$.

$\square$

Ahora, si $PQ$ es tangente a la circunferencia, solo existirá un punto autocorrespondiente, y si la recta $PQ$ no corta a la circunferencia, entonces no existe ningún punto autocorrespondiente.

Regla geométrica de la falsa posición

Esta regla viene del siguiente problema:

Problema. Construir un triángulo el cual sus lados pasan por los vértices de un triángulo dado y cuyos vértices se encuentran en los lados de otro triángulo dado.

Solución. El triángulo a encontrar debe tener sus lados, los cuales deben pasar por los vértices del triángulo $PQR$, y sus vértices en los lados del triángulo $ABC$.

Falsa posición 1

Sea un punto $D$ en $QR$, trácese $DA$ que corte a $PR$ en $E$, $EB$ que corte $PQ$ en $F$, y $FC$ que corte a $QR$ en $D’$, si $D$ y $D’$ son el mismo ya tendríamos el triángulo buscado. Por lo cual se vuelve a hacer lo mismo para $D_1$ obteniendo $D_1’$ y $D_2$ obteniendo $D_2’$, si estos son puntos iguales ya lo tendríamos resuelto, pero no es así, por ende se construirán los puntos autocorrespondientes a partir de $D,D_1,D_2,D’,D_1′,D_2’$.
Si estos puntos $M$ y $N$ existen, y pasamos por uno de ellos, en este caso $M$ para construir el triángulo buscado, nos daríamos cuenta de que regresamos a $M$ y estaría solucionado, pero como menciones estos triángulos existen si existen los puntos autocorrespondientes.

Falsa posición 2

$\square$

Más adelante…

Se verán tres teoremas importantes respecto al tema de Razón Cruzada, los cuales son Teoremas de Pascal, Brianchon y Pappus.

Entradas relacionadas

Geometría Moderna II: Razón Cruzada por la Circunferencia

Por Armando Arzola Pérez

Introducción

Como ya se vio, la razón cruzada tiene varias propiedades, desde seis tipos de razón cruzada hasta la construcción del cuarto elemento, pero falta analizar su relación con la circunferencia.

Propiedades de razón cruzada por la circunferencia

Se abordarán 3 propiedades en relación con una circunferencia dada.

Propiedad. Sean cuatro puntos en una circunferencia (con cíclicos) cualesquiera $A,B,C,D$, si unimos estos puntos a dos puntos $O$ y $O’$ que están en la misma circunferencia, entonces los haces $O\{ABCD\}$ y $O’\{ABCD\}$ tienen iguales razones cruzadas.

Razón cruzada por la circunferencia propiedad 1

Demostración. Las razones cruzadas son:

$O\{ABCD\}=\frac{sen(AOC)/sen(COB)}{sen(AOD)/sen(DOB)}=k$ y

$O’\{ABCD\}=\frac{sen(AO’C)/sen(CO’B)}{sen(AO’D)/sen(DO’B)}=k’$.

Notemos la igualdad de ángulos correspondientes de los dos haces $\angle{AOC}=\angle{AO’C}$, $\angle{COB}=\angle{CO’B}$, $\angle{DOB}=180-\angle{DO’B}$ y $\angle{AOD}=180-\angle{AO’D}$.

Por lo cual los ángulos formados serán iguales o suplementarios, por ello los senos de los ángulos serán iguales.

$\frac{sen(AOC)/sen(COB)}{sen(AOD)/sen(DOB)}=\frac{sen(AO’C)/sen(CO’B)}{sen(AO’D)/sen(DO’B)}$

$\Rightarrow O\{ABCD\}=k=k’=O’\{ABCD\}.$

$\square$

Propiedad. Sea $C(O,r)$ una circunferencia en la cual se tienen cuatro puntos fijos $A,B,C,D$ por los cuales pasan tangentes por cada uno de estos y cortan la tangente en un punto variable $X$, entonces la razón cruzada de los cuatro puntos de intersección es una constante.

Es decir, $\{A’B’C’D’\}$ es constante independientemente de $X$.

Razón cruzada por la circunferencia propiedad 2

Demostración. Se tiene por teorema visto de razón que $\{A’B’C’D’\}=O\{A’B’C’D’\}$, entonces:

$O\{A’B’C’D’\}=\frac{sen(A’OC’)}{sen(C’OB’)}/\frac{sen(A’OD’)}{sen(D’OB’)}$

Ahora, como los lados correspondientes de los ángulos $C’OB’$ y $CXB$ son perpendiculares, entonces los senos de estos ángulos son iguales, esto ocurre de igual manera para los otros ángulos de los haces $O\{A’B’C’D’\}$ y $X\{ABCD\}$.

$\Rightarrow \frac{sen(A’OC’)}{sen(C’OB’)}/\frac{sen(A’OD’)}{sen(D’OB’)} = \frac{sen(AXC)}{sen(CXB)}/\frac{sen(AXD)}{sen(DXB)} $
$\Rightarrow O\{A’B’C’D’\} =X\{ABCD\}$

Observemos que esto ocurre para cualquier $X’$ entonces $X\{ABCD\}=X’\{ABCD\}$, y por ende se tiene $\{A’B’C’D’\}=O\{A’B’C’D’\}=X’\{ABCD\}$.
Por lo tanto, $\{A’B’C’D’\}=cte$ independientemente de $X$.

$\square$

Propiedad. Sea un haz el cual tiene su vértice fuera de una circunferencia $C(O,r)$ y la cual sus cuatro líneas cortan a la circunferencia en los pares de puntos $A,A’$, $B,B’$, $C,C’$ y $D,D’$. Si se tienen dos puntos distintos $E$ y $E’$ sobre la circunferencia, entonces las razones cruzadas de los haces $E\{ABCD\}$ y $E’\{A’B’C’D’\}$ son iguales.

Razón cruzada por la circunferencia propiedad 3

Demostración. Unamos los puntos $A,B,C,D$ a $A’$ y $A’,B’,C’,D’$ a $A$, esto nos dará las intersecciones de $AB’$ y $A’B$ en un punto $X$, $AC’$ y $A’C$ en un punto $y$, $AD’$ y $A’D$ en un punto $Z$, los cuales están en la polar del vértice $O$ del haz dado, por lo cual se tiene por propiedad 1 de razón cruzada en la circunferencia:

$E’\{ABCD\}=E’\{A’B’C’D’\}=A\{A’B’C’D’\}$

Por propiedad de razón cruzada:

$A\{A’B’C’D’\}=\{wxyz\}=A’\{wxyz\}=A’\{ABCD\}$

Y por propiedad 1 de razón cruzada en la circunferencia:

$A’\{ABCD\}=E\{ABCD\}$

Por lo tanto, $E’\{A’B’C’D’\}=E\{ABCD\}$ .

$\square$

Más adelante…

Ahora se abordará el tema de la regla de la falsa proposición y los puntos autocorrespondientes, esto relacionado con la razón cruzada.

Entradas relacionadas

Cálculo Diferencial e Integral II: Funciones integrables con finitas discontinuidades

Por Moisés Morales Déciga

Introducción

Hasta ahora, hemos hablado de funciones integrables en un intervalo cerrado, en términos de ciertas sumas superiores e inferiores. Vimos en la entrada de Propiedades de la integral que si una función es monótona o continua, entonces su integral siempre está definida. Ahora veremos qué sucede con las funciones que tienen discontinuidades. En esta entrada trataremos a las funciones que finitas discontinuidades. En la siguiente hablaremos de funciones con una infinidad de discontinuidades.

Breve repaso de integrabilidad

Recordemos que para determinar si una función acotada $f:\mathbb{R}\to \mathbb{R}$ es integrable en cierto intervalo $[a,b]$, debemos calcular ciertas sumas superiores e inferiores con respecto a una partición. Esto es tomar algunos puntos $x_0<\ldots<x_n$ en $[a,b]$, con $x_0=a$ y $x_n=b$. Escribimos $$P=\{ x_0, x_1, … , x_n \},$$

y decimos que $P$ genera los siguientes intervalos a los que llamamos celdas

$$[x_0,x_1],[x_1,x_2],…,[x_{n-1},x_n].$$

A $[x_{k-1},x_{k}]$ le llamamos la $k$-ésima celda de $P$, cuya longitud es $\Delta x_{k}=x_k-x_{k-1}$. Si $m_k$ es el ínfimo de los valores de $f$ en la $k$-ésima celda y $M_k$ es su supremo, entonces podemos definir respectivamente la suma inferior y superior como $$\underline{S}(f,P)=\sum_{k=1}^n m_k\Delta x_k \quad \text{y} \quad \overline{S}(f,P)=\sum_{k=1}^n M_k\Delta x_k.$$

La función $f$ es integrable cuando el ínfimo de las sumas superiores (tomado sobre todas las particiones) coindice con el supremos de las sumas inferiores. Vimos que esto es equivalente a pedir que para todo $\epsilon$ haya una partición en la que la suma superior y la inferior difieran menos que $\epsilon$ (a lo que llamamos el criterio de Riemann). Probamos varias otras propiedades de esta definición, pero una que será muy importante para esta entrada es la siguiente.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Usaremos esta proposición en las siguientes secciones, pero necesitamos una versión un poco más versátil.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada y $n$ un entero positivo. Sea $P=\{x_0,\ldots,x_n\}$ una partición de $[a,b]$. Si la integral $$\int \limits_{a}^{b} f(x) \ dx$$ existe, entonces todas las integrales $$\int_{x_{k-1}}^{x_k} f(x)\, dx$$ para $k=1,\ldots,n$ existen. Y viceversa, si estas $n$ integrales existen, entonces la primera también. Cuando todas estas integrales existen, entonces $$\int \limits_{a}^{b} f(x) \ dx = \sum_{k=1} ^n \int_{x_{k-1}}^{x_k} f(x)\, dx.$$

La demostración de esta proposición no es difícil, pues se sigue de la proposición anterior y de una prueba inductiva. Por ello, la encontrarás como parte de los ejercicios.

Funciones escalonadas

Hablaremos de la integrabilidad de funciones escalonadas, para lo cual necesitaremos la siguiente definición.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es escalonada en el intervalo $[a,b]$, si existe una partición $P=\{ x_0, x_1, … , x_n\}$ del intervalo $[a,b]$, tal que $f$ es constante en cada subintervalo abierto de $P$. Es decir, para cada $k=1, 2, …, n$ existe un número real $s_k$ tal que:

$$f(x)=s_k, \quad \text{si} \quad x_{k-1} < x < x_k.$$

A las funciones escalonadas también se les conoce como funciones constantes a trozos.

Ejemplo. En algunos sistemas postales se deben poner estampillas en una carta para poderse enviar. La cantidad de estampillas que hay que poner está determinada por el peso de la carta. Supongamos que una estampilla cuesta $5$ pesos y que hay que poner una estampilla por cada $20g$ (o fracción) que pese la carta, hasta un máximo de $100g$.

Si el peso de la carta en gramos está en el intervalo $[0,20]$, entonces tienes que pagar $5$ pesos. Si está en el intervalo $(20,40]$, pagarás 10 pesos y así sucesivamente hasta que llegue a 100 gramos. Gráficamente, el costo de envío tendría el siguiente comportamiento (puedes dar clic en la imagen para verla a mayor escala).

Observa que en efecto parece ser que hay «escalones». Esta función es escalonada pues al dar la partición $P=\{0,20,40,60,80,100\}$, tenemos que la función es constante en cada intervalo abierto definido por la partición.

Si quisiéramos calcular la integral de esta función, ¿qué podríamos hacer? Podemos utilizar la proposición de separar la integral en intervalos que enunciamos arriba, usando la misma partición $P$. Como la función es constante en cada intervalo dado, entonces su integral existe. Así, la integral en todo el intervalo $[0,100]$ existirá y será la suma de las integrales en cada intervalo. Tendrás que encontrar el valor exacto como uno de los ejercicios.

$\triangle$

Integral para funciones escalonadas

Las funciones escalonadas en un cierto intervalo siempre son integrables, como lo afirma el siguiente resultado.

Teorema. Sea $f:\mathbb{R} \to \mathbb{R}$ una función. Si $f$ es escalonada en un intervalo $[a,b]$, entonces es integrable en $[a,b]$. Además, si la partición que muestra que es escalonada es $P=\{x_0,\ldots,x_n\}$, y para $x$ en el intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$) se cumple que $f(x)=s_k$, entonces se tiene que $$\int_a^b f(x)\, dx = \sum_{k=1}^n s_k (x_k-x_{k-1}).$$

El teorema nos dice entonces que el valor de la integral es la suma de los productos del valor $s_k$ (constante), por la longitud del $k$-ésimo intervalo. Esto tiene mucho sentido geométrico: cada uno de estos productos es el área de un rectángulo correspondiente a un «escalón». El teorema nos dice que el área buscada es la suma de las áreas de estos escalones.

Demostración. La demostración es consecuencia de la proposición para partir integrales en intervalos. Notemos que como $f$ es constante en cada intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$), entonces es integrable en dicho intervalo. En efecto, fijemos una $k\in \{1,\ldots,n\}$ y tomemos $Q=\{y_0,\ldots,y_m\}$ una partición de $[x_{k-1},x_k]$. En en este intervalo cualquier suma superior (o inferior) se hace tomando como supremo (o ínfimo) al valor constante $s_k$, de modo que:

\begin{align*}
\overline{S}(f,Q)&=\sum_{i=1}^m M_i \Delta y_i\\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k(x_k-x_{k-1}),\\
\underline{S}(f,Q)&= \sum_{i=1}^m m_i \Delta y_i \\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k (x_k – x_{k-1}).
\end{align*}

Así, el ínfimo de las particiones superiores y el supremo de las inferiores es $c_k(x_k-x_{k-1})$, por lo que la integral existe en cada intervalo $[x_{k-1},x_k]$ y es igual a $c_k (x_k – x_{k-1})$. Usando la proposición que enunciamos en la sección de recordatorio sobre partir la integral por intervalos, obtenemos

$$\int_a^b f(x)\, dx = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)\, dx =\sum_{k=1}^n s_k (x_k-x_{k-1}),$$

como queríamos.

$\square$

Funciones continuas a trozos

Las funciones escalonadas son muy sencillas, pero las ideas que hemos discutido respaldan una cierta intuición de que para la integrabilidad «si la función se comporta bien en cada uno de una cantidad finita de intervalos, entonces se comporta bien en todo el intervalo». Esa idea se repite a continuación.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$. Diremos que $f$ es continua a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Pareciera que estamos pidiendo continuidad en todo el intervalo $[a,b]$. Sin embargo, hay algunas excepciones. Por la manera en la que está escrita la definición, la función $f$ no necesariamente es continua en los puntos $x_1,x_2,\ldots,x_{n-1}$.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es continua a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Demostración. Nos gustaría usar la proposición de separación de la integral por intervalos. Para ello, tomemos la partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$. Si $f$ fuera continua en cada intervalo cerrado $[x_{k-1},x_k]$, podríamos usar un resultado anterior para ver que es integrable en cada uno de estos intervalos, pero aquí tenemos una hipótesis un poco más débil, pues la continuidad es sólo en el abierto.

De cualquier manera, se puede ver que $f$ es integrable en cada intervalo cerrado $[x_{k-1},x_k]$. Para ello, fijemos $k$ y tomemos $\epsilon>0$. Como $f$ es acotada, tiene supremo $M$ e ínfimo $m$ en $[a,b]$. Si $M=m$, entonces $f$ es constante y no hay nada que hacer. Así, supongamos $M\neq m$ y tomemos una $\delta>0$ tal que $2\delta(M-m)< \frac{\epsilon}{2}$, y tal que $\delta<\frac{x_k-x_{k-1}}{2}$. La segunda condición nos dice que $[x_{k-1}+\delta,x_k-\delta]$ es no vacío. Como $f$ es continua en este intervalo cerrado, es integrable ahí. Por el criterio de Riemann, hay una partición $Q=\{y_1,\ldots,y_{l-1}\}$ de dicho intervalo tal que $$\overline{S}(f,Q)-\underline{S}(f,Q)<\frac{\epsilon}{2}.$$

Si a esta partición agregamos los puntos $y_0=x_{k-1}$ y $y_l=x_k$, entonces obtenemos una partición $Q’=\{y_0,\ldots,y_l\}$ la cual su primera y última celda tienen longitud $\delta$ y cumple

\begin{align*}
\overline{S}(f,Q’)-\underline{S}(f,Q’)&=(\overline{S}(f,Q)-\underline{S}(f,Q))+(M_1-m_1)\Delta y_1 + (M_l-m_l)\Delta y_l\\
&<\frac{\epsilon}{2}+ (M-m)\delta + (M-m)\delta\\
&=\frac{\epsilon}{2}+ 2(M-m)\delta\\
&<\frac{\epsilon}{2}+\frac{\epsilon}{2}\\
&=\epsilon.
\end{align*}

Así, hemos encontrado una partición $Q’$ de $[x_{k-1},x_k]$ donde las sumas superior e inferior difieren en menos de $\epsilon$. Por el criterio de Riemann, $f$ es integrable en ese intervalo, para cada $k=1,\ldots,n$. Concluimos la demostración usando nuevamente la proposición de separación de la integral en intervalos.

$\square$

Ejemplo. La siguiente función $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$

es integrable en el intervalo $[0,4.5]$. Tendrás que calcular su integral en los ejercicios.

$\triangle$

Funciones monótonas a trozos

Para esta discusión de funciones monótonas, vale la pena que tengas presente las definiciones de funciones crecientes y decrecientes, que puedes consultar en la entrada correspondiente del curso de Cálculo Diferencial e Integral I.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es monótona a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es monótona en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Podemos pensar cómo sería la gráfica de una función así. Tendría que estar formada por un número finito de trozos monótonos. Un ejemplo de ello son las funciones escalonadas (son por ejemplo, no crecientes a trozos). Un ejemplo un poco más interesante sería el de la siguiente figura.

Monótona por trozos

Como te imaginarás, las funciones monótonas a trozos también son integrables.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es monótona a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Una vez más, la demostración usa la proposición de separación de la integral por intervalos. Pero nuevamente nos enfrentamos con una dificultad. Lo que hemos demostrado anteriormente es que si una función es monónona en un intervalo $[x_{k-1},x_k]$, entonces es integrable en dicho intervalo. ¿Pero si sólo tenemos monotonía en $(x_{k-1},x_k)$? Para atender esta dificultad, se tiene que hacer una adaptación similar a lo que hicimos en la demostración para funciones continuas a trozos. Los detalles quedan como parte de la tarea moral.

Más adelante…

En esta entrada analizamos funciones con una cantidad finita de discontinuidades. También hablamos de las funciones monótonas a trozos, que podrían tener una infinidad de discontinuidades, pero también ser integrables. En la siguiente entrada veremos qué hacer con la integrabilidad cuando tenemos una cantidad infinita de discontinuidades.

Tarea moral

  1. Calcula el valor de la integral de la función escalonada del servicio postal, con la partición dada.
  2. Integra la siguiente función: $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$
  1. Integra la siguiente función. Puedes usar fórmulas de integración que conozcas de cursos preuniversitarios, sin embargo, toma en cuenta que tu respuesta será un poco informal hasta que mostremos de dónde salen dichas fórmulas. $$ f(x)= \left\{ \begin{array}{lcc}             \sqrt x &   si  & 0 \leq x \leq 2 \\             \\ ln(x) &  si & 2 < x < 3 \\             \\ -\frac{x^2}{16} -x +5 &  si  & 3 \leq x \leq 4             \end{array}   \right. $$
  1. Demuestra por inducción la proposición de separación de la integral en intervalos que quedó pendiente en la sección de «Breve repaso de integrabilidad». Asegúrate de demostrar la ida y la vuelta.
  2. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones acotadas.
    • Muestra que si $f$ y $g$ son funciones escalonadas en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones escalonadas en $[a,b]$. Sugerencia. Usa como partición un refinamiento común a las particiones $P$ y $Q$ que muestran que $f$ y $g$ son escalonadas, respectivamente.
    • Muestra que si $f$ y $g$ son funciones continuas por trozos en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones continuas por trozos en $[a,b]$.
    • Si $f$ y $g$ son funciones monótonas por trozos en un intervalo $[a,b]$, ¿será que $f+g$ y $fg$ también lo son? ¿Bajo qué condiciones de la monotonía sí sucede esto?
  3. Da un ejemplo de una función que sea monótona por trozos, pero que no sea continua por trozos.
  4. Demuestra la proposición de que las funciones monónotas a trozos son integrables.

Entradas relacionadas

Álgebra Superior I: El espacio vectorial $\mathbb{R}^n$

Por Eduardo García Caballero

Introducción

En la entrada anterior introdujimos conceptos relacionados a los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$. Hablamos de vectores, combinaciones lineales, espacio generado, independencia lineal y bases. Ahora haremos lo análogo en dimensiones más altas, para lo cual hablaremos de $\mathbb{R}^n$.

La idea es sencilla, queremos extender lo que ya hicimos para vectores con $5$ o $100$ entradas. Sin embargo, visualizar estos espacios y entender su geometría ya no será tan sencillo. Es por esta razón que principalmente nos enfocaremos a generalizar las propiedades algebraicas que hemos discutido. Esta resultará una manera muy poderosa de estudiar los espacios vectoriales, pues nos permitirá generalizar sin mucha dificultad los conceptos aprendidos en la entrada anterior al espacio $\mathbb{R}^n$ para cualquier número natural $n$.

Definición del espacio vectorial $\mathbb{R}^n$

En la entrada anterior vimos cuáles son propiedades que debe cumplir una colección de objetos, en conjunto con una operación de suma y otra de producto escalar, para poder considerarse un espacio vectorial. Como ya vimos, tanto $\mathbb{R}^2$ y $\mathbb{R}^3$ son espacios vectoriales. Podemos definir a $\mathbb{R}^n$ y a sus operaciones como sigue.

Definición. El conjunto $\mathbb{R}^n$ consiste de todas las $n$-adas ordenadas $u=(u_1,u_2,\ldots,u_n)$ en donde cada $u_i$ es un número real, para $i=1,\ldots,n$. A $u_i$ le llamamos la $i$-ésima entrada de $u$. Para dos elementos de $\mathbb{R}^n$, digamos

\begin{align*}
u&=(u_1,u_2,\ldots,u_n)\\
v&=(v_1,v_2,\ldots,v_n),
\end{align*}

definimos la suma $u+v$ como la $n$-áda cuya $i$-ésima entrada es $u_i+v_i$ (decimos que sumamos entrada a entrada). En símbolos, $$u+v=(u_1+v_1,u_2+v_2,\ldots,u_n+v_n).$$

Además, si tomamos un real $r$, definimos el producto escalar de $r$ con $u$ como la $n$-ada cuya $i$-ésima entrada es $r u_i$, es decir, $ru=(ru_1,ru_2,\ldots,ru_n).$

El conjunto $\mathbb{R}^n$ con esta suma y producto escalar cumple ser un espacio vectorial. A continuación probaremos sólo algunas de las propiedades, ¿puedes completar el resto?

1. La suma es asociativa:
\begin{align*}
(u+v)+w
&= ((u_1,u_2,\ldots,u_n) + (v_1,v_2,\ldots,v_n)) + (w_1,w_2,\ldots,w_n) \\
&= (u_1+v_1,u_2+v_2,\ldots,u_n+v_n) + (w_1,w_2,\ldots,w_n) \\
&= ((u_1+v_1)+w_1,(u_2+v_2)+w_2,\ldots,(u_n+v_n)+w_n) \\
&= (u_1+(v_1+w_1),u_2+(v_2+w_2),\ldots,u_n+(v_n+w_n)) \\
&= (u_1,u_2,\ldots,u_n) + (v_1+w_1,v_2+w_2,\ldots,v_n+w_n) \\
&= (u_1,u_2,\ldots,u_n) + ((v_1,v_2,\ldots,v_n) + (w_1,w_2,\ldots,w_n)) \\
&= u + (v+w).
\end{align*}

La cuarta igualdad usa el paso clave de que en $\mathbb{R}$ sí sabemos que la suma es asociativa.

2. La suma es conmutativa:
\[
u+v = v+w.
\]

¡Intenta demostrarlo!

3. Existe un elemento neutro para la suma, que es el elemento de $\mathbb{R}^n$ en donde todas las entradas son iguales al neutro aditivo $0$ de $\mathbb{R}$:
\begin{align*}
u+0
&= (u_1,u_2,\ldots,u_n) + (0,0,\ldots,0) \\
&= (u_1+0,u_2+0,\ldots,u_n+0) \\
&= (u_1,u_2,\ldots,u_n) \\
&= u.
\end{align*}

Para demostrar esta propiedad, necesitaras usar que en $\mathbb{R}$ cada $u_i$ tiene inverso aditivo.

4. Para cada $n$-tupla existe un elemento inverso:
\[
u + (-u) = 0.
\]

5. La suma escalar se distribuye bajo el producto escalar:
\begin{align*}
(r+s)u
&= (r+s)(u_1,u_2,\ldots,u_n) \\
&= ((r+s)u_1,(r+s)u_2,\ldots,(r+s)u_n) \\
&= (ru_1 + su_1, ru_2 + su_2, \ldots, r_n + su_n) \\
&= (ru_1,ru_2,\ldots,ru_n) + (su_1,su_2,\ldots,su_n) \\
&= r(u_1,u_2,\ldots,u_n) + s(u_1,u_2,\ldots,u_n) \\
&= ru + su.
\end{align*}

Una vez más, se está usando una propiedad de $\mathbb{R}$ para concluir una propiedad análoga en $\mathbb{R}^n$. En este caso, se está usando fuertemente que hay una propiedad de distributividad en $\mathbb{R}$.

6. La suma de $n$-tuplas de distribuye bajo el producto de escalares:
\[
r(u+v) = ru + rv.
\]

7. El producto escalar es compatible con el producto de $\mathbb{R}$:
\begin{align*}
(rs)u
&= (rs)(u_1,u_2,\ldots,u_n) \\
&= ((rs)u_1,(rs)u_2,\ldots,(rs)u_n) \\
&= (r(su_1),r(su_2),\ldots,r(su_n)) \\
&= r(su_1, su_2, \ldots, su_n) \\
&= r(s(u_1,u_2,\ldots,u_n)) \\
&= r(su).
\end{align*}

8. El neutro multiplicativo $1$ de $\mathbb{R}$ funciona como neutro para el producto escalar:
\[
1u = u.
\]

De este modo, podemos trabajar con el espacio vectorial $\mathbb{R}^n$ para explorar sus propiedades. La gran ventaja es que lo que demostremos para $\mathbb{R}^n$ en general lo podremos usar para cualquier valor particular de $n$. y poder emplearlas cuando trabajemos con algún número $n$ en particular.

Combinaciones lineales y espacio generado

Al igual que hicimos con $\mathbb{R}^2$ y $\mathbb{R}^3$ podemos definir los conceptos de combinación lineal y espacio generado para el espacio vectorial $\mathbb{R}^n$.

Definición. En $\mathbb{R}^n$, diremos que un vector $u$ es combinación lineal de los vectores $v_1,\ldots,v_k$ si y sólo si existen números reales $r_1,\ldots,r_n$ en $\mathbb{R}$ tales que
\[
u = r_1v_1 + r_2v_2 + \cdots + r_kv_k.
\]

Ejemplo. En $\mathbb{R}^5$, el vector $(3,4,-2,5,5)$ es combinación lineal de los vectores $(2,1,2,0,3)$, $(0,1,-1,3,0)$ y $(1,-1,5,-2,1)$, pues
\[
(3,4,-2,5,5) = 2(2,1,2,0,3) + 1(0,1,-1,3,0) + -1(1,-1,5,-2,1).
\]

$\triangle$

La noción de combinación lineal nos permite hablar de todas las posibles combinaciones lineales, así como en $\mathbb{R}^2$ y $\mathbb{R}^3$.

Definición. Dado un conjunto de vectores $v_1,\ldots,v_n$ en $\mathbb{R}^n$, podemos definir el espacio generado por estos vectores como el conjunto de todas las posibles combinaciones lineales de $v_1,\ldots,v_n$ en $\mathbb{R}^n$.

Es este caso, ya no podremos visualizar geométricamente el espacio generado (aunque con un poco de imaginación, quizás puedas generalizar lo que ya hicimos en dimensiones anteriores: ¿cómo se vería un plano en $\mathbb{R}^4$?, ¿cómo se vería un sub-$\mathbb{R}^3$ de $\mathbb{R}^4$?). De cualquier manera, sí podemos seguir respondiendo preguntas del espacio generado a través de sistemas de ecuaciones.

Ejemplo. ¿El espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$ y $(1,0,2,1)$ es $\mathbb{R}^4$?

Para ver si $\mathbb{R}^4$ es el espacio generado por los vectores propuestos, debemos asegurarnos de que cada vector en $\mathbb{R}^4$ se pueda expresar como combinación lineal de estos. Entonces, seleccionamos un vector $(a,b,c,d)$ arbitrario en $\mathbb{R}^4$, y debemos ver si existen escalares $q$, $r$, $s$ y $t$ tales que
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d);
\]
esto es,
\[
(q,q,q,0) + (0,3r,r,2r) + (2s,3s,s,0) + (t,0,2t,t) = (a,b,c,d),
\]
que equivale a
\[
(q+2s+t, q+3r+3s, q+r+s+2t, 2r+t)=(a,b,c,d),
\]
lo cual a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
q & +{} & & +{} & 2s & +{} & t & = a \\
q & +{} & 3r & +{} & 3s & & & = b \\
q & +{} & r & +{} & s & +{} & 2t & = c \\
& & 2r & & & +{} & t & = d,
\end{alignedat}
\right.
\]
el cual podemos representar como
\[
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}.
\]
Además, podemos observar que la matriz en el lado izquierdo tiene determinante distinto de $0$ (para verificar esto, tendrás que calcularlo), lo que nos indica que es invertible, y la igualdad anterior equivale a
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
o bien,
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
-3 & 1 & 3 & -3 \\
-1/2 & 1/4 & 1/4 & 0 \\
3/2 & -1/4 & -5/4 & 1 \\
1 & -1/2 & -1/2 & 1
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
de donde tenemos la solución para $q,r,s,t$ siguiente:
\[
\left\{
\begin{alignedat}{4}
q & = & -3a & +{} & b & +{} & 3c & -{} & 3d \\
r & = & -\tfrac{1}{2}a & +{} & \tfrac{1}{4}b & +{} & \tfrac{1}{4}c & & \\
s & = & \tfrac{3}{2}a & -{} & \tfrac{1}{4}b & -{} & \tfrac{5}{4}c & +{} & d \\
t & = & a & -{} & \tfrac{1}{2}b & -{} & \tfrac{1}{2}c & +{} & d.
\end{alignedat}
\right.
\]
Este sistema nos da una fórmula para los escalares $q$, $r$, $s$ y $t$ en función del valor de las entradas del vector $(a,b,c,d)$, y estos escalares satisfacen
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d).
\]
Como esto se cumple para un vector arbitrario $(a,b,c,d)$ en $\mathbb{R}^4$, entonces se cumple para todos los vectores de $\mathbb{R}^4$; es decir, ¡$\mathbb{R}^4$ es el espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$, $(1,0,2,1)$!

$\triangle$

Nuestra técnica de resolver sistemas de ecuaciones mediante la inversa de la matriz asociada ha resultado muy útil. Hemos tenido un poco de suerte en que la matriz sea invertible. Si no lo fuera, no podríamos haber hecho el procedimiento descrito en el ejemplo. ¿Será que si la matriz no es invertible, entonces el sistema no se podrá resolver? La respuesta es compleja: a veces sí, a veces no. En ese caso hay que entender el sistema de ecuaciones con otro método, como reducción gaussiana.

Independencia lineal

Cuando exploramos las propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$, observamos que hay ocasiones en las que el espacio generado por un conjunto de vectores es «más chico» de lo que se esperaría de la cantidad de vectores: por ejemplo, dos vectores en $\mathbb{R}^2$ generan una línea (y no todo $\mathbb{R}^2$) cuando estos dos se encuentran alineados con el origen. Cuando tres vectores en $\mathbb{R}^3$ no están alineados, pero se encuentran sobre el mismo plano por el origen, su espacio generado es dicho plano (y no todo $\mathbb{R}^3$).

Aunque el el espacio vectorial $\mathbb{R}^n$ no podamos visualizarlo de manera inmediata, podemos mantener la intuición de que un conjunto de vectores «genera todo lo que puede generar» o «genera algo más chico». Para identificar en qué situación nos encontramos, recurrimos a la siguiente definición.

Definición. Dado un conjunto de $k$ vectores $v_1, v_2, \ldots, v_k$ en $\mathbb{R}^n$ distintos de 0, diremos son linealmente independientes si la única forma de escribir al vector 0 como combinación lineal de ellos es cuando todos los coeficientes de la combinación lineal son igual al escalar 0; es decir, si tenemos que
\[
r_1v_1 + r_2v_2 + \cdots + r_kv_k = 0,
\]
entonces forzosamente $r_1 = r_2 = \cdots = r_n = 0$.

Teniendo esta definición en consideración, se puede mostrar que si un conjunto de vectores es linealmente independiente, entonces ninguno de los vectores se puede escribir como combinación lineal de los otros. De hecho, es únicamente en este caso cuando cuando el espacio generado por los vectores es «todo lo que se puede generar».

La justificación de por qué sucede esto es similar a la que vimos en la entrada anterior: como el primer vector es no genera una línea. Como el segundo vector no se puede escribir como combinación lineal del primero, entonces queda fuera de esta línea y ambos generan un plano. Como el tercer vector no se puede escribir como combinación lineal de los primeros dos, entonces queda fuera del plano, y entre los tres generan un espacio «más grande» («de dimensión $3$»). A partir de este punto, quizá no podamos visualizar inmediatamente la forma geométrica del espacio generado, pero como sabemos que los vectores son linealmente independientes, entonces el cuarto vector no se puede escribir como combinación lineal de los primeros tres. Por ello, queda fuera del espacio generado por los primeros tres, y el espacio generado por los cuatro es aún «más grande» («de dimensión $4$»); y así sucesivamente, para tantos vectores linealmente independientes como tengamos.

Una herramienta que podemos emplear para determinar cuándo un conjunto de vectores es linealmente independiente son nuevamente los sistemas de ecuaciones. Para esto veamos el siguiente ejemplo.

Ejemplo. ¿Son los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ linealmente independientes en $\mathbb{R}^4$?

Supongamos que para ciertos escalares $a$, $b$, $c$ y $d$, se cumple que
\[
a(1,5,1,-2) + b(3,-3,0,-1) + c(-2,0,4,1) + d(0,1,-1,0) = (0,0,0,0).
\]
Esto es equivalente a decir que
\[
(a,5a,a,-2a) + (3b,-3b,0,-b) + (-2c,0,4c,c) + (0,d,-d,0) = (0,0,0,0)
\]
que equivale a
\[
(a+3b-2c, 5a-3b+d,a+4c-d,-2a-b+c) = (0,0,0,0),
\]
y a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
a & +{} & 3b & -{} & 2c & & & = 0 \\
5a & -{} & 3b & & & +{} & d & = 0 \\
a & & & +{} & 4c & -{} & d & = 0 \\
-2a & -{} & b & +{} & c & & & = 0
\end{alignedat}
\right.
\]
el cual podemos representar de la forma
\[
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
y, como notamos que la matriz del lado izquierdo de la ecuación tiene determinante distinto de 0 (¿puedes verificarlo?), entonces es invertible, de modo que
\[
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
es decir,
\[
a = b = c = d = 0,
\]
lo que nos indica, basándonos en la definición, que los vectores anteriores son linealmente independientes.

$\triangle$

El ejemplo anterior nos da una idea de lo que debe cumplir un conjunto linealmente independiente de $n$ vectores en $\mathbb{R}^n$. En general, podemos mostrar que un conjunto de $n$ vectores $v_1 = (v_{11}, v_{12}, \ldots, v_{1n})$, $v_2 = (v_{21}, v_{22}, \ldots, v_{2n})$, $\ldots$, $v_n = (v_{n1}, v_{n2}, \ldots, v_{nn})$ es linealmente independiente si y sólo si la matriz
\[
\begin{pmatrix}
v_{11} & v_{21} & \cdots & v_{n1} \\
v_{12} & v_{22} & \cdots & v_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{1n} & v_{2n} & \cdots & v_{nn}
\end{pmatrix},
\]
formada por los vectores escritos como columna, es invertible. Esto ya platicamos que está relacionado con que su determinante sea distinto de 0. Pero no en todas las situaciones tendremos tantos vectores como entradas y entonces tendremos que estudiar el sistema de ecuaciones lineales con otras técnicas, como reducción gaussiana.

Ejemplo. ¿Serán los vectores $(1,2,3,4,5)$, $(6,7,8,9,10)$ y $(11,12,13,14,15)$ de $\mathbb{R}^5$ linealmente independientes? Tal y como lo hemos hecho arriba, podemos preguntarnos si hay reales $a,b,c$ tales que $$a(1,2,3,4,5)+b(6,7,8,9,10)+c(11,12,13,14,15)=(0,0,0,0,0),$$ y que no sean todos ellos cero. Tras plantear el sistema como sistema de ecuaciones y luego en forma matricial, lo que se busca es ver si el sistema $\begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $ tiene alguna solución no trivial. Esto puede entenderse aplicando reducción gaussiana a $A$, que muestra que toda solución al sistema anterior es solución al sistema $\begin{pmatrix} 1 & 0 & -1\\0 & 1 & 2\\0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$ lo cual nos lleva a que el sistema original es equivalente al sistema $$\left\{ \begin{array} \,a – c &= 0\\ b + 2c &= 0\end{array}.\right.$$

De aquí, podemos tomar a $c$ como cualquier valor, digamos $1$, de donde $a=1$ y $b=-2$ es solución. En resumen, hemos detectado que $$(1,2,3,4,5)-2(6,7,8,9,10)+(11,12,13,14,15)=(0,0,0,0,0),$$ que es una combinación lineal de los vectores donde no todos los coeficientes son cero. Por ello, no son linealmente intependientes.

Puedes intentar «imaginar» esto como que son vectores en $\mathbb{R}^5$ (un espacio de «dimensión $5$»), pero no generan dentro de él algo de dimensión $3$, sino algo de dimensión menor. Como $(1,2,3,4,5)$ y $(6,7,8,9,10)$ sí son linealmente independientes (¡demuéstralo!), entonces los tres vectores en realidad generan sólo un plano mediante sus combinaciones lineales.

$\square$

Bases

De manera similar a lo que observamos en la entrada anterior, hay ocasiones en las que un conjunto de vectores no tiene como espacio generado a todo $\mathbb{R}^n$. Por otra parte, hay ocasiones en las que el conjunto de vectores sí genera a todo $\mathbb{R}^n$, pero lo hace de manera «redundante», en el sentido de que, aunque su espacio generado sí es todo $\mathbb{R}^n$, podríamos quitar a algún vector del conjunto y el espacio generado sería el mismo. La siguiente definición se enfoca en los conjuntos en los que no pasa mal ninguna de estas cosas. Es decir, los vectores generan exactamente al espacio: cada vector se genera por una y sólo una combinación lineal de ellos.

Definición. Diremos que un conjunto de vectores $v_1, v_2, \ldots, v_k$ es base del esapacio vectorial $\mathbb{R}^n$ si el conjunto de vectores es linealmente independiente y el espacio generado por estos es exactamente $\mathbb{R}^n$.

Ejemplo. Al igual que en $\mathbb{R}^2$ y $\mathbb{R}^3$, la «base canónica» es el primer ejemplo que seguramente se nos viene a la mente. La base canónica en $\mathbb{R}^n$ consiste en los $n$ vectores $\mathrm{e}_1 = (1,0,0,\cdots,0)$, $\mathrm{e}_2 = (0,1,0,\cdots,0)$, $\mathrm{e}_3 = (0,0,1,\ldots,0)$, $\ldots$, $\mathrm{e}_n = (0,0,0,\cdots,1)$. Es claro que cualquier vector $u = (u_1,u_2,\cdots,u_n)$ es combinación lineal de $\mathrm{e}_1,\ldots,\mathrm{e}_n$ pues podemos expresarlo como
\begin{align*}
u
&= (u_1,u_2,\cdots,u_n) \\
&= (u_1,0,\cdots,0) + (0,u_2,\cdots,0) + \cdots (0,0,\cdots,u_n) \\
&= u_1(1,0,\cdots,0) + u_2(0,1,\cdots,0) + \cdots + u_n(0,0,\cdots,1) \\
&= u_1\mathrm{e}_1 + u_2\mathrm{e}_2 + \cdots + u_n\mathrm{e}_n.
\end{align*}
Además, los vectores $\mathrm{e}_1,\ldots,\mathrm{e}_n$ son linealmente independientes (¿puedes ver por qué?). De este modo, verificamos que la «base canónica» es, en efecto, una base.

$\triangle$

Ejemplo. Más arriba verificamos que los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ son linealmente independientes. Además, vimos que la matriz formada por estos es invertible. De este modo, verificamos que estos vectores forman una base para $\mathbb{R}^4$.

$\triangle$

Más adelante…

A lo largo de esta unidad nos hemos enfocado en estudiar a vectores, matrices, ecuaciones lineales y espacios vectroriales. En las últimas entradas, vimos que hay ocho condiciones que se deben cumplir para que un conjunto de objetos matemáticos (junto con una operación de suma y una de producto escalar) sean considerados espacio vectorial. Todos los ejemplos de espacio vectorial que vimos son de la forma $\mathbb{R}^n$, sin embargo, puede surgir la pregunta, ¿existen espacios vectoriales que no sean de esta forma?

De hecho, si has estado prestando atención en la formalidad de los resultados, hay muchos resultados que han quedado pendientes:

  • ¿Por qué el determinante no depende de la fila o columna en la que se expanda?
  • Si tenemos matrices de $n\times n$, ¿por qué son invertibles si y sólo si el determinate es cero?
  • En matrices de $n\times n$, ¿por qué el determinante es multiplicativo?
  • ¿Cómo se formaliza el proceso de reducción gaussiana y para qué más sirve?
  • ¿Será que podemos tener muchos vectores linealmente independientes en $\mathbb{R}^n$? ¿Será posible tener un conjunto generador de menos de $n$ vectores para $\mathbb{R}^n$? ¿Por qué?

Estas dudas no se resuelven en el curso de Álgebra Superior 2, que sigue a este. Sin embargo, en el curso de Álgebra Lineal I sí se resuelven varias de estas dudas.

Además, podrás ver que hay otros tipos de objetos matemáticos distintos a las listas ordenadas y que también forman un espacio vectorial; algunos con los cuales ya hemos trabajado, como lo son las matrices, y otros que se comportan de manera muy poco usual, como son los espacios con dimensión infinita. Asimismo, con las herramientas que hemos desarrollado hasta ahora, podremos aprender nuevos conceptos como transformaciones lineales, eigenvectores y eigenvalores; estos nos permitirán comprender de manera más íntima los espacios vectoriales, y podremos relacionarlos unos con otros.

Tarea moral

  1. Verifica lo siguiente:
    • $(1,1,1,1)$, $(2,2,2,2)$, $(1,1,2,2)$, $(2,2,1,1)$ no es un conjunto linealmente independiente de $\mathbb{R}^4$.
    • $(1,2,3,4)$, $(2,3,4,1)$, $(3,4,1,2)$, $(4,1,2,3)$ es un conjunto generador de $\mathbb{R}^4$.
    • $(1,1,1,1,1),(1,1,1,1,0),(1,1,1,0,0),(1,1,0,0,0),(1,0,0,0,0)$ es una base de $\mathbb{R}^5$.
  2. Demuestra las siguientes dos cosas:
    • Sea $S$ un conjunto generador de $\mathbb{R}^n$ y $T\supseteq S$. Entonces $T$ es conjunto generador de $\mathbb{R}^n$.
    • Sea $T$ un conjunto linealmente independiente de $\mathbb{R}^n$ y $S\subseteq T$. Entonces $S$ es un conjunto linealmente independiente de $\mathbb{R}^n$.
  3. Sean $v_1,v_2,v_3,\ldots,v_k$ vectores linealmente independientes de $\mathbb{R}^n$. Demuestra que $v_1, v_1+v_2, v_1+v_2+v_3,\ldots,v_1+v_2+v_3+\ldots+v_k$ son también vectores linealmente independientes de $\mathbb{R}^n$. ¿Es esto un si y sólo si?
  4. En vista de lo que hemos platicado para matrices de $2\times 2$, $3\times 3$, $\mathbb{R}^2$ y $\mathbb{R}^3$, ¿cómo definirías el producto matriz-vector $AX$ donde $A$ es una matriz de $m\times n$ y $X$ un vector en $\mathbb{R}^n$?
  5. Demuestra que la definición de base tal y como está en la entrada en efecto permite no sólo escribir a cada vector $v$ del espacio como combinación lineal de los elementos de una base $v_1,\ldots,v_n$, sino que también implica que dicha expresión será única.

Entradas relacionadas

Álgebra Moderna I: Producto directo externo

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Esta entrada es el inicio de la última unidad del curso de Álgebra Moderna I, uno de los temas centrales que estudiaremos en esta unidad es el Teorema Fundamental de los Grupos Abelianos Finitos. Como es costumbre, para poder sumergirnos en el teorema, primero tenemos que construir algunos cimientos.

Seguramente a lo largo de tu estudio de las matemáticas te has encontrado con la notación $\r^2 = \r \times \r$ y otras similares. $\r^2$ se usa para denotar al plano cartesiano y rápidamente entendemos que sus elementos tienen la forma de pares ordenados $(x, y)$ donde $x,y\in \r$. Esto mismo sucede con potencias mayores, como por ejemplo $(x,y,z)\in \r^3 = \r \times \r \times \r$ y $(x_1,\dots,x_n)\in \r^n = \r\times\cdots\times\r$ ($n$ veces).

De la misma manera, podríamos hacer $\z \times \r$ y obtener objetos de la forma $(z, r)$ donde $z$ es un entero y $r$ un real. Es decir, podemos usar a la operación $\times$ entre dos grupos completamente distintos. Pero más allá de poder, ¿esto es algo que podamos estudiar? En pocas palabras, sí, resulta que la operación $\times$ es una manera práctica de construir grupos más grandes a partir de otros grupos.

Hablemos del producto de grupos

Comencemos definiendo formalmente al producto de grupos.

Definición. Sean $(G_1, *_1), \cdots, (G_n, *_n)$ grupos. El producto directo externo de $G_1, \dots, G_n$ es
\begin{align*}
G_1\times\cdots\times G_n = \{(g_1,\dots,g_n)\;|\; g_i\in G \; \forall i \in \{1,\dots,n\}\}
\end{align*}
con la operación
\begin{align*}
(g_1,\dots,g_n) * (h_1,\dots,h_n) = (g_1*_1h_1, \dots, g_n*_nh_n).
\end{align*}

Observación. $G_1\times\cdots\times G_n$ es un grupo con neutro $(e_{G_1},\dots, e_{G_n})$ y $(g_1^{-1},\dots, g^{-1}_n)$ es el inverso de cada $(g_1,\dots,g_n)\in G_1\times\cdots\times G_n$.

Ejemplo 1. Consideremos $G = S_3\times\z_2 \times D_{2(4)}.$
Un elemento es $((1\;2\;3), \,\bar{1}, \,a^2b)$.
Dados $(\alpha, \bar{a}, f), (\beta,\bar{b}, g)\in G$ se tiene que
\begin{align*}
(\alpha, \,\bar{a}, \,f)*(\beta,\,\bar{b}, \,g) = (\alpha\circ\beta, \,\bar{a}+\bar{b}, \,f\circ g).
\end{align*}

Ejemplo 2. Tomemos el producto $\z_2\times\z_2 = \{(\bar{0}, \bar{0}), (\bar{0},\bar{1}), (\bar{1}, \bar{0}), (\bar{1}, \bar{1})\}$.
Observemos que $o(\bar{0}, \bar{0}) = 1$, $o(\bar{0}, \bar{1}) = o(\bar{1}, \bar{0}) = o(\bar{1}, \bar{1}) = 2.$
La suma de dos elementos en $\{(\bar{0}, \bar{1}), (\bar{1}, \bar{0}), (\bar{1}, \bar{1})\}$ nos da el tercero. Entonces, $\z_2\times\z_2$ es isomorfo al grupo de Klein.

Ejemplo 3. Por último, tomemos $\z_2\times\z_3 = \{(\bar{0}, \bar{0}), (\bar{0}, \bar{1}), (\bar{0}, \bar{2}), (\bar{1}, \bar{0}), (\bar{1}, \bar{1}), (\bar{1}, \bar{2})\}$.
Observemos que $o(\bar{1}, \bar{1}) = 6.$
Tenemos que $\z_2\times\z_3 = \left< (\bar{1}, \bar{1}) \right>$ y así $\z_2\times\z_3 \cong \z_6$.

Dos funciones naturales

Definición. Sean $G_1,\dots, G_n $ grupos, $G = G_1\times\cdots\times G_n$. Para cada $i\in\{1,\dots,n\}$ definimos la inclusión natural
\begin{align*}
\text{inc}_i : G_i\to G \text{ como } \text{inc}_i(g_i) = (e_{G_1},\dots,g_i, \dots, e_{G_n}),
\end{align*}
donde $g_i$ está en la $i$-ésima posición.

Definición. Sean $G_1,\dots, G_n $ grupos, $G = G_1\times\cdots\times G_n$. Para cada $i\in\{1,\dots,n\}$ definimos la proyección natural
\begin{align*}
\pi_i : G\to G_i \text{ con } \pi_i(g_1,\dots,g_n) = g_i.
\end{align*}

Observación 1 . $\text{inc}_i$ es un monomorfismo.

Observación 2 . $\pi_i$ es un epimorfismo.

Notación. $G_i^* = \text{inc}_i\lceil G_i\rceil = \{e_{G_1}\}\times \cdots \times G_i \times\cdots\{e_{G_n}\}.$

Observación 3. Para $G = G_1\times\cdots\times G_n$, los siguientes incisos son ciertos:

  1. $G_i\cong G_i^*$,
  2. $G_i^* \unlhd G$ y
  3. $G/G_i^* \cong G_1\times \cdots \times G_{i-1}\times G_{i+1} \times\cdots G_n.$

Demostración.
$\text{inc}_i$ es un monomorfismo y si restringimos a su imagen $G_i^*$ obtenemos un epimorfismo, dando un isomorfismo de $G_i$ a $G_i^*$.

Ahora $\varphi: G \to G_1\times \cdots \times G_{i-1}\times G_{i+1} \times \cdots \times G_n$ con $\varphi(g_1,\dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1},\dots, g_n)$ es un epimorfismo y $\text{Núc }\varphi = G_i^*$, probando con ello que $G_i^* \unlhd G$. Además, por el 1er teorema de isomorfía
\begin{align*}
G/G_i^* \cong G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times\cdots G_n.
\end{align*}

$\blacksquare$

Observación 4. Sean $i\neq j$, $x\in G_i^*$, $y\in G_j^*$. Entonces $x*_ny = y*_nx$.

¿Y si ahora recuperamos $G$ a partir de los $G_i^*$?

En la entrada Producto de subgrupos y clases laterales, definimos el producto de dos subgrupos. Generalicemos esta idea para una cantidad finita de subgrupos:

Definición. Sea $G$ un grupo. Dados $H_1,\dots,H_n$ subgrupos de $G$, el producto de $H_1,\dots, H_n$ es
\begin{align*}
\prod_{i = i}^n H_i = H_1\cdots H_n = \{h_1h_2\cdots h_n\;|\; h_i \in H_i ;\forall i\in \{1,\dots,n\} \}.
\end{align*}

Observemos que para realizar el producto de $h_1h_2\cdots h_n$ sólo usamos la operación del grupo $G$ porque todas las $H_i$ son subgrupos de $G$. Sin embargo, como estudiamos en la entrada Producto de subgrupos y clases laterales, el conjunto $ H_1\cdots H_n$ no necesariamente es un subgrupo ya que la operación no siempre es cerrada. En la siguiente entrada agregaremos condiciones a los subgrupos $H_i$ para que $ H_1\cdots H_n$ sí sea un subgrupo de $G$.

Relacionemos ahora el producto directo externo con el producto de los subgrupos $G_i^*$ antes definidos:

Proposición. Sean $G_1,\dots, G_n$ grupos, $G = G_1\times\cdots\times G_n.$

  1. $G_i^* \unlhd G \quad \forall i\in\{1,\dots,n\}$.
  2. $\displaystyle G_i^* \cap \left( \prod_{j\neq i} G_j^*\right) = \{e_G\} \text{ para toda }i\in\{1,\dots,n\}$.
  3. $\displaystyle G = \prod_{i = 1}^n G_i^*$.

Demostración.
Sean $G_1,\dots, G_n$ grupos, $G = G_1\times\cdots\times G_n$.

  1. Por la observación 3: $G_i^* \unlhd G$, para toda $i\in\{1,\dots, n\}$.
  2. La contención $\displaystyle \{e_G\} \subseteq G_i^* \cap \left( \prod_{j\neq i} G_j^*\right) $, donde $e_G = (e_{G_1},\dots, e_{G_n})$, es clara. Así que probaremos la otra.
    Sea $\displaystyle g = (g_{1}, \dots, g_n) \in G_i^* \cap \left(\prod_{j\neq i}G_j^*\right)$.
    Como $g\in G_i^* = \{e_{G_1}\}\times\cdots\times G_i\times \cdots \times \{e_{G_n}\}$, entonces la $j$-ésima entrada de $g $ es $g_j = e_{G_j}$ para toda $j\neq i$.
    Como $\displaystyle g \in \prod_{j\neq i} G_j^*$, $g = h_1 \cdots h_{i-1}\,h_{i+1} \cdots h_n$ con $h_j \in G_j^*$ para toda $j\neq i$.
    Dado que cada $h_j \in G_j^*$ y $j\neq i$, la entrada $i$ de cada $h_j$ es $e_{G_i}$, por lo tanto la entrada $i$ de $g$ es $e_{G_i}$.
    Por lo tanto $g = (e_{G_1},\dots, e_{G_n}) = e_G$.
  3. Como $G_i^*\subseteq G$ para toda $i \in \{1,\dots,n\}$, entonces $\displaystyle \prod_{i = 1}^n G_i \subseteq G.$
    Ahora, si $g\in G$,
    \begin{align*}
    g = (g_1,\dots, g_n) = (g_1,e_{G_2},\dots, e_{G_n})(e_{G_1}, g_2,e_{G_3},\dots,e_{G_n}) \cdots (e_{G1},\dots, e_{G_{n-1}}, g_n).
    \end{align*}
    Entonces $\displaystyle g\in \prod_{i = 1}^n G_i^*.$
    Por lo tanto $\displaystyle G = \prod_{i= 1}^n G_i^*$.

$\blacksquare$

Lo anterior muestra que un producto directo externo es un producto de subgrupos normales que cumple el inciso 2 de la proposición.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra las observaciones 1, 2 y 4:
    • $\text{inc}_i$ es un monomorfismo.
    • $\pi_i$ es un epimorfismo.
    • Sean $i\neq j$, $x\in G_i^*$, $y\in G_j^*$. Entonces $x*_ny = y*_nx$.
  2. Sean $G_1, \dots, G_n$ grupos finitos, demuestra que el orden de su producto directo externo es $|G_1||G_2|\dots |G_n|.$
  3. Prueba que el centro de un producto externo es el producto externo de los centros, esto es: $$Z(G_1\times G_2 \times \dots \times G_n) = Z(G_1) \times Z(G_2) \times \dots \times Z(G_n).$$ Deduce que el producto directo externo de grupos abelianos es abeliano.
  4. Sea $G = A_1 \times A_2 \dots \times A_n$ y para cada $i\in\{1,\dots,n\}$ sea $B_i \unlhd A_i$. Prueba que $B_1 \times B_2 \times \dots \times B_n \unlhd G$ y que $$(A_1 \times A_2 \dots \times A_n) / (B_1 \times B_2 \times \dots \times B_n) \cong (A_1/B_1) \times (A_2/B_2) \times \dots \times (A_n/B_n).$$
  5. Sean $A$ y $B$ dos grupos finitos y sea $p$ un primo.
    • Prueba que cualquier $p$-subgrupo de Sylow de $A\times B$ es de la forma $P\times Q$, donde $P$ es un $p$-subgrupo de Sylow de $A$ y $Q$ es un $p$-subgrupo de Sylow de $B$.
    • Prueba que además, la cantidad de $p$-subgrupos de Sylow de $A\times B$ es igual a la cantidad de $p$-subgrupos de Sylow de $A$ por la cantidad de $p$-subgrupos de Sylow de $B$, es decir: $$r_p(A\times B) = r_p(A)r_p(B).$$
    • Generaliza este resultado para el producto directo externo de una cantidad finita de grupos, es decir, para $A_1 \times A_2 \times \dots \times A_n$ determina que sus $p$-subgrupos de Sylow son el producto directo externo de $p$-subgrupos de Sylow de sus factores.

Más adelante…

La última proposición es prácticamente la conclusión de esta entrada, porque iniciamos definiendo a $G$ como el producto de grupos externos a él y terminamos describiendo a $G$ como producto de subgrupos específicos de él mismo. ¿Habrá alguna manera de generalizar esto, es decir, cuándo un grupo $G$ se podrá expresar como un producto de subgrupos específicos de él mismo? Esta pregunta nos lleva a la definición del producto directo interno que se dará en la siguiente entrada.

Entradas relacionadas