Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna II: Razón Cruzada por la Circunferencia

Por Armando Arzola Pérez

Introducción

Como ya se vio, la razón cruzada tiene varias propiedades, desde seis tipos de razón cruzada hasta la construcción del cuarto elemento, pero falta analizar su relación con la circunferencia.

Propiedades de razón cruzada por la circunferencia

Se abordarán 3 propiedades en relación con una circunferencia dada.

Propiedad 1. Sean cuatro puntos en una circunferencia (con cíclicos) cualesquiera $A,B,C,D$, si unimos estos puntos a dos puntos $O$ y $O’$ que están en la misma circunferencia, entonces los haces $O\{ABCD\}$ y $O’\{ABCD\}$ tienen iguales razones cruzadas.

Razón cruzada por la circunferencia propiedad 1

Demostración. Las razones cruzadas son:

$O\{ABCD\}=\frac{sen(AOC)/sen(COB)}{sen(AOD)/sen(DOB)}=k$ y

$O’\{ABCD\}=\frac{sen(AO’C)/sen(CO’B)}{sen(AO’D)/sen(DO’B)}=k’$.

Notemos la igualdad de ángulos correspondientes de los dos haces $\angle{AOC}=\angle{AO’C}$, $\angle{COB}=\angle{CO’B}$, $\angle{DOB}=180-\angle{DO’B}$ y $\angle{AOD}=180-\angle{AO’D}$.

Por lo cual los ángulos formados serán iguales o suplementarios, por ello los senos de los ángulos serán iguales.

$\frac{sen(AOC)/sen(COB)}{sen(AOD)/sen(DOB)}=\frac{sen(AO’C)/sen(CO’B)}{sen(AO’D)/sen(DO’B)}$

$\Rightarrow O\{ABCD\}=k=k’=O’\{ABCD\}$

$\square$

Propiedad 2. Sea $C(O,r)$ una circunferencia en la cual se tienen cuatro puntos fijos $A,B,C,D$ por los cuales pasan tangentes por cada uno de estos y cortan la tangente en un punto variable $X$, entonces la razón cruzada de los cuatro puntos de intersección es una constante.

Es decir, $\{A’B’C’D’\}$ es constante independientemente de $X$.

Razón cruzada por la circunferencia propiedad 2

Demostración. Se tiene por teorema visto de razón que $\{A’B’C’D’\}=O\{A’B’C’D’\}$, entonces:

$O\{A’B’C’D’\}=\frac{sen(A’OC’)}{sen(C’OB’)}/\frac{sen(A’OD’)}{sen(D’OB’)}$

Ahora, como los lados correspondientes de los ángulos $C’OB’$ y $CXB$ son perpendiculares, entonces los senos de estos ángulos son iguales, esto ocurre de igual manera para los otros ángulos de los haces $O\{A’B’C’D’\}$ y $X\{ABCD\}$.

$\Rightarrow \frac{sen(A’OC’)}{sen(C’OB’)}/\frac{sen(A’OD’)}{sen(D’OB’)} = \frac{sen(AXC)}{sen(CXB)}/\frac{sen(AXD)}{sen(DXB)} $
$\Rightarrow O\{A’B’C’D’\} =X\{ABCD\}$

Observemos que esto ocurre para cualquier $X’$ entonces $X\{ABCD\}=X’\{ABCD\}$, y por ende se tiene $\{A’B’C’D’\}=O\{A’B’C’D’\}=X’\{ABCD\}$.
Por lo tanto, $\{A’B’C’D’\}=cte$ independientemente de $X$.

$\square$

Propiedad 3. Sea un haz el cual tiene su vértice fuera de una circunferencia $C(O,r)$ y la cual sus cuatro líneas cortan a la circunferencia en los pares de puntos $A,A’$, $B,B’$, $C,C’$ y $D,D’$. Si se tienen dos puntos distintos $E$ y $E’$ sobre la circunferencia, entonces las razones cruzadas de los haces $E\{ABCD\}$ y $E’\{A’B’C’D’\}$ son iguales.

Razón cruzada por la circunferencia propiedad 3

Demostración. Unamos los puntos $A,B,C,D$ a $A’$ y $A’,B’,C’,D’$ a $A$, esto nos dará las intersecciones de $AB’$ y $A’B$ en un punto $X$, $AC’$ y $A’C$ en un punto $y$, $AD’$ y $A’D$ en un punto $Z$, los cuales están en la polar del vértice $O$ del haz dado, por lo cual se tiene por propiedad 1 de razón cruzada en la circunferencia:

$E’\{ABCD\}=E’\{A’B’C’D’\}=A\{A’B’C’D’\}$

Por propiedad de razón cruzada:

$A\{A’B’C’D’\}=\{wxyz\}=A’\{wxyz\}=A’\{ABCD\}$

Y por propiedad 1 de razón cruzada en la circunferencia:

$A’\{ABCD\}=E\{ABCD\}$

Por lo tanto, $E’\{A’B’C’D’\}=E\{ABCD\}$ .

$\square$

Más adelante…

Ahora se abordará el tema de la regla de la falsa proposición.

Entradas relacionadas

Cálculo Diferencial e Integral II: Funciones integrables con finitas discontinuidades

Por Moisés Morales Déciga

Introducción

Hasta ahora, hemos hablado de funciones integrables en un intervalo cerrado, en términos de ciertas sumas superiores e inferiores. Vimos en la entrada de Propiedades de la integral que si una función es monótona o continua, entonces su integral siempre está definida. Ahora veremos qué sucede con las funciones que tienen discontinuidades. En esta entrada trataremos a las funciones que finitas discontinuidades. En la siguiente hablaremos de funciones con una infinidad de discontinuidades.

Breve repaso de integrabilidad

Recordemos que para determinar si una función acotada $f:\mathbb{R}\to \mathbb{R}$ es integrable en cierto intervalo $[a,b]$, debemos calcular ciertas sumas superiores e inferiores con respecto a una partición. Esto es tomar algunos puntos $x_0<\ldots<x_n$ en $[a,b]$, con $x_0=a$ y $x_n=b$. Escribimos $$P=\{ x_0, x_1, … , x_n \},$$

y decimos que $P$ genera los siguientes intervalos a los que llamamos celdas

$$[x_0,x_1],[x_1,x_2],…,[x_{n-1},x_n].$$

A $[x_{k-1},x_{k}]$ le llamamos la $k$-ésima celda de $P$, cuya longitud es $\Delta x_{k}=x_k-x_{k-1}$. Si $m_k$ es el ínfimo de los valores de $f$ en la $k$-ésima celda y $M_k$ es su supremo, entonces podemos definir respectivamente la suma inferior y superior como $$\underline{S}(f,P)=\sum_{k=1}^n m_k\Delta x_k \quad \text{y} \quad \overline{S}(f,P)=\sum_{k=1}^n M_k\Delta x_k.$$

La función $f$ es integrable cuando el ínfimo de las sumas superiores (tomado sobre todas las particiones) coindice con el supremos de las sumas inferiores. Vimos que esto es equivalente a pedir que para todo $\epsilon$ haya una partición en la que la suma superior y la inferior difieran menos que $\epsilon$ (a lo que llamamos el criterio de Riemann). Probamos varias otras propiedades de esta definición, pero una que será muy importante para esta entrada es la siguiente.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Usaremos esta proposición en las siguientes secciones, pero necesitamos una versión un poco más versátil.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada y $n$ un entero positivo. Sea $P=\{x_0,\ldots,x_n\}$ una partición de $[a,b]$. Si la integral $$\int \limits_{a}^{b} f(x) \ dx$$ existe, entonces todas las integrales $$\int_{x_{k-1}}^{x_k} f(x)\, dx$$ para $k=1,\ldots,n$ existen. Y viceversa, si estas $n$ integrales existen, entonces la primera también. Cuando todas estas integrales existen, entonces $$\int \limits_{a}^{b} f(x) \ dx = \sum_{k=1} ^n \int_{x_{k-1}}^{x_k} f(x)\, dx.$$

La demostración de esta proposición no es difícil, pues se sigue de la proposición anterior y de una prueba inductiva. Por ello, la encontrarás como parte de los ejercicios.

Funciones escalonadas

Hablaremos de la integrabilidad de funciones escalonadas, para lo cual necesitaremos la siguiente definición.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es escalonada en el intervalo $[a,b]$, si existe una partición $P=\{ x_0, x_1, … , x_n\}$ del intervalo $[a,b]$, tal que $f$ es constante en cada subintervalo abierto de $P$. Es decir, para cada $k=1, 2, …, n$ existe un número real $s_k$ tal que:

$$f(x)=s_k, \quad \text{si} \quad x_{k-1} < x < x_k.$$

A las funciones escalonadas también se les conoce como funciones constantes a trozos.

Ejemplo. En algunos sistemas postales se deben poner estampillas en una carta para poderse enviar. La cantidad de estampillas que hay que poner está determinada por el peso de la carta. Supongamos que una estampilla cuesta $5$ pesos y que hay que poner una estampilla por cada $20g$ (o fracción) que pese la carta, hasta un máximo de $100g$.

Si el peso de la carta en gramos está en el intervalo $[0,20]$, entonces tienes que pagar $5$ pesos. Si está en el intervalo $(20,40]$, pagarás 10 pesos y así sucesivamente hasta que llegue a 100 gramos. Gráficamente, el costo de envío tendría el siguiente comportamiento (puedes dar clic en la imagen para verla a mayor escala).

Observa que en efecto parece ser que hay «escalones». Esta función es escalonada pues al dar la partición $P=\{0,20,40,60,80,100\}$, tenemos que la función es constante en cada intervalo abierto definido por la partición.

Si quisiéramos calcular la integral de esta función, ¿qué podríamos hacer? Podemos utilizar la proposición de separar la integral en intervalos que enunciamos arriba, usando la misma partición $P$. Como la función es constante en cada intervalo dado, entonces su integral existe. Así, la integral en todo el intervalo $[0,100]$ existirá y será la suma de las integrales en cada intervalo. Tendrás que encontrar el valor exacto como uno de los ejercicios.

$\triangle$

Integral para funciones escalonadas

Las funciones escalonadas en un cierto intervalo siempre son integrables, como lo afirma el siguiente resultado.

Teorema. Sea $f:\mathbb{R} \to \mathbb{R}$ una función. Si $f$ es escalonada en un intervalo $[a,b]$, entonces es integrable en $[a,b]$. Además, si la partición que muestra que es escalonada es $P=\{x_0,\ldots,x_n\}$, y para $x$ en el intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$) se cumple que $f(x)=s_k$, entonces se tiene que $$\int_a^b f(x)\, dx = \sum_{k=1}^n s_k (x_k-x_{k-1}).$$

El teorema nos dice entonces que el valor de la integral es la suma de los productos del valor $s_k$ (constante), por la longitud del $k$-ésimo intervalo. Esto tiene mucho sentido geométrico: cada uno de estos productos es el área de un rectángulo correspondiente a un «escalón». El teorema nos dice que el área buscada es la suma de las áreas de estos escalones.

Demostración. La demostración es consecuencia de la proposición para partir integrales en intervalos. Notemos que como $f$ es constante en cada intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$), entonces es integrable en dicho intervalo. En efecto, fijemos una $k\in \{1,\ldots,n\}$ y tomemos $Q=\{y_0,\ldots,y_m\}$ una partición de $[x_{k-1},x_k]$. En en este intervalo cualquier suma superior (o inferior) se hace tomando como supremo (o ínfimo) al valor constante $s_k$, de modo que:

\begin{align*}
\overline{S}(f,Q)&=\sum_{i=1}^m M_i \Delta y_i\\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k(x_k-x_{k-1}),\\
\underline{S}(f,Q)&= \sum_{i=1}^m m_i \Delta y_i \\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k (x_k – x_{k-1}).
\end{align*}

Así, el ínfimo de las particiones superiores y el supremo de las inferiores es $c_k(x_k-x_{k-1})$, por lo que la integral existe en cada intervalo $[x_{k-1},x_k]$ y es igual a $c_k (x_k – x_{k-1})$. Usando la proposición que enunciamos en la sección de recordatorio sobre partir la integral por intervalos, obtenemos

$$\int_a^b f(x)\, dx = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)\, dx =\sum_{k=1}^n s_k (x_k-x_{k-1}),$$

como queríamos.

$\square$

Funciones continuas a trozos

Las funciones escalonadas son muy sencillas, pero las ideas que hemos discutido respaldan una cierta intuición de que para la integrabilidad «si la función se comporta bien en cada uno de una cantidad finita de intervalos, entonces se comporta bien en todo el intervalo». Esa idea se repite a continuación.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$. Diremos que $f$ es continua a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Pareciera que estamos pidiendo continuidad en todo el intervalo $[a,b]$. Sin embargo, hay algunas excepciones. Por la manera en la que está escrita la definición, la función $f$ no necesariamente es continua en los puntos $x_1,x_2,\ldots,x_{n-1}$.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es continua a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Demostración. Nos gustaría usar la proposición de separación de la integral por intervalos. Para ello, tomemos la partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$. Si $f$ fuera continua en cada intervalo cerrado $[x_{k-1},x_k]$, podríamos usar un resultado anterior para ver que es integrable en cada uno de estos intervalos, pero aquí tenemos una hipótesis un poco más débil, pues la continuidad es sólo en el abierto.

De cualquier manera, se puede ver que $f$ es integrable en cada intervalo cerrado $[x_{k-1},x_k]$. Para ello, fijemos $k$ y tomemos $\epsilon>0$. Como $f$ es acotada, tiene supremo $M$ e ínfimo $m$ en $[a,b]$. Si $M=m$, entonces $f$ es constante y no hay nada que hacer. Así, supongamos $M\neq m$ y tomemos una $\delta>0$ tal que $2\delta(M-m)< \frac{\epsilon}{2}$, y tal que $\delta<\frac{x_k-x_{k-1}}{2}$. La segunda condición nos dice que $[x_{k-1}+\delta,x_k-\delta]$ es no vacío. Como $f$ es continua en este intervalo cerrado, es integrable ahí. Por el criterio de Riemann, hay una partición $Q=\{y_1,\ldots,y_{l-1}\}$ de dicho intervalo tal que $$\overline{S}(f,Q)-\underline{S}(f,Q)<\frac{\epsilon}{2}.$$

Si a esta partición agregamos los puntos $y_0=x_{k-1}$ y $y_l=x_k$, entonces obtenemos una partición $Q’=\{y_0,\ldots,y_l\}$ la cual su primera y última celda tienen longitud $\delta$ y cumple

\begin{align*}
\overline{S}(f,Q’)-\underline{S}(f,Q’)&=(\overline{S}(f,Q)-\underline{S}(f,Q))+(M_1-m_1)\Delta y_1 + (M_l-m_l)\Delta y_l\\
&<\frac{\epsilon}{2}+ (M-m)\delta + (M-m)\delta\\
&=\frac{\epsilon}{2}+ 2(M-m)\delta\\
&<\frac{\epsilon}{2}+\frac{\epsilon}{2}\\
&=\epsilon.
\end{align*}

Así, hemos encontrado una partición $Q’$ de $[x_{k-1},x_k]$ donde las sumas superior e inferior difieren en menos de $\epsilon$. Por el criterio de Riemann, $f$ es integrable en ese intervalo, para cada $k=1,\ldots,n$. Concluimos la demostración usando nuevamente la proposición de separación de la integral en intervalos.

$\square$

Ejemplo. La siguiente función $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$

es integrable en el intervalo $[0,4.5]$. Tendrás que calcular su integral en los ejercicios.

$\triangle$

Funciones monótonas a trozos

Para esta discusión de funciones monótonas, vale la pena que tengas presente las definiciones de funciones crecientes y decrecientes, que puedes consultar en la entrada correspondiente del curso de Cálculo Diferencial e Integral I.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es monótona a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es monótona en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Podemos pensar cómo sería la gráfica de una función así. Tendría que estar formada por un número finito de trozos monótonos. Un ejemplo de ello son las funciones escalonadas (son por ejemplo, no crecientes a trozos). Un ejemplo un poco más interesante sería el de la siguiente figura.

Monótona por trozos

Como te imaginarás, las funciones monótonas a trozos también son integrables.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es monótona a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Una vez más, la demostración usa la proposición de separación de la integral por intervalos. Pero nuevamente nos enfrentamos con una dificultad. Lo que hemos demostrado anteriormente es que si una función es monónona en un intervalo $[x_{k-1},x_k]$, entonces es integrable en dicho intervalo. ¿Pero si sólo tenemos monotonía en $(x_{k-1},x_k)$? Para atender esta dificultad, se tiene que hacer una adaptación similar a lo que hicimos en la demostración para funciones continuas a trozos. Los detalles quedan como parte de la tarea moral.

Más adelante…

En esta entrada analizamos funciones con una cantidad finita de discontinuidades. También hablamos de las funciones monótonas a trozos, que podrían tener una infinidad de discontinuidades, pero también ser integrables. En la siguiente entrada veremos qué hacer con la integrabilidad cuando tenemos una cantidad infinita de discontinuidades.

Tarea moral

  1. Calcula el valor de la integral de la función escalonada del servicio postal, con la partición dada.
  2. Integra la siguiente función: $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$
  1. Integra la siguiente función. Puedes usar fórmulas de integración que conozcas de cursos preuniversitarios, sin embargo, toma en cuenta que tu respuesta será un poco informal hasta que mostremos de dónde salen dichas fórmulas. $$ f(x)= \left\{ \begin{array}{lcc}             \sqrt x &   si  & 0 \leq x \leq 2 \\             \\ ln(x) &  si & 2 < x < 3 \\             \\ -\frac{x^2}{16} -x +5 &  si  & 3 \leq x \leq 4             \end{array}   \right. $$
  1. Demuestra por inducción la proposición de separación de la integral en intervalos que quedó pendiente en la sección de «Breve repaso de integrabilidad». Asegúrate de demostrar la ida y la vuelta.
  2. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones acotadas.
    • Muestra que si $f$ y $g$ son funciones escalonadas en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones escalonadas en $[a,b]$. Sugerencia. Usa como partición un refinamiento común a las particiones $P$ y $Q$ que muestran que $f$ y $g$ son escalonadas, respectivamente.
    • Muestra que si $f$ y $g$ son funciones continuas por trozos en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones continuas por trozos en $[a,b]$.
    • Si $f$ y $g$ son funciones monótonas por trozos en un intervalo $[a,b]$, ¿será que $f+g$ y $fg$ también lo son? ¿Bajo qué condiciones de la monotonía sí sucede esto?
  3. Da un ejemplo de una función que sea monótona por trozos, pero que no sea continua por trozos.
  4. Demuestra la proposición de que las funciones monónotas a trozos son integrables.

Entradas relacionadas

1.10. BASE DE ESPACIOS VECTORIALES: obtención a partir de un conjunto linealmente independiente o generador

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

De cualquier subconjunto finito de nuestro espacio, podemos obtener un generador o un l.i. y cuando lo obtengamos podremos reducirlo o completarlo para obtener una base.

Teorema: Sea $V$ un $K$ – espacio vectorial de dimensión finita.
a) Todo conjunto generador finito o es una base o se puede reducir a una base.
b) Todo conjunto linealmente independiente o es una base o se puede completar a una base.

Demostración:

a) En la demostración de la proposición que se encuentra en la entrada anterior tomamos un conjunto generador finito $S$ de un espacio vectorial arbitrario y o bien es base o es linealmente dependiente y en ese caso recursivamente tomamos subconjuntos propios de $S$ hasta que uno de esos subconjuntos fuera base. Este método prueba que podemos reducir cualquier conjunto generador de $V$ para obtener una base.

b) Sea $S\subseteq V$ un conjunto l.i.
Ya sabemos que $S$ es finito por ser un subconjunto l.i. de un espacio $V$ de dimensión finita (ver la observación en la entrada anterior).

Caso 1. Si $\langle S \rangle = V$, entonces $S$ es base de $V$ por definición.

Caso 2. Si $\langle S \rangle \subsetneq V$, entonces existe $v_1\in V$ tal que $v_1\notin \langle S \rangle$. Por lo tanto, $ S \cup \{ v_1 \}$ es l.i.

Subaso 1. Si $\langle S \cup \{ v_1 \} \rangle = V$, entonces $S \cup \{ v_1 \}$ es base de $V$ por definición.

Subcaso 2. Si $\langle S \cup \{ v_1 \} \rangle \subsetneq V$, entonces existe $v_2\in V$ tal que $v_2\notin \langle S \cup \{ v_1 \} \rangle$ Por lo tanto, $ S \cup \{ v_1 \} \cup \{ v_2 \} $ es l.i.

Este proceso no es infinito porque los subconjuntos l.i de $V$ deben ser finitos, así que se detiene después de digamos $m$ pasos, en el momento en que obtenemos un conjunto que genera. El número $m$ es la cantidad de elementos de $V$ que tuvimos que agregar a $S$, entonces $\langle S \cup \{ v_1 \} \cup \{ v_2 \} \cup … \{ v_m \} \rangle$ es una base de $V$.

Corolario: Sea $V$ un $K$ – espacio vectorial tal que $dim_K V=n$.
a) Cualquier conjunto generador con $n$ elementos es una base de $V$.
b) Cualquier conjunto linealmente independiente con $n$ elementos es una base de $V$.

Demostración: Por definición de base tenemos que toda base $B$ de $V$ cumple que $|B|=dim_K V=n$. Es decir, toda base de $V$ tiene $n$ elementos.

a) Sea $S\subseteq V$ generador con $n$ elementos.
Por el teorema anterior $S$ es una base o se puede reducir a una base.
Pero reducir $S$ significaría quitar elementos y obtendríamos una base de $V$ con menos de $n$ elementos, lo que es una contradicción porque toda base de $V$ tiene $n$ elementos.
Por lo tanto $S$ es base.

b) Sea $S\subseteq V$ linealmente independiente.
Por el teorema anterior $S$ es una base o podemos completarlo a una base.
Pero completar $S$ significaría agregar elementos y obtendríamos una base de $V$ con más de $n$ elementos, lo que es una contradicción porque toda base de $V$ tiene $n$ elementos.
Por lo tanto $S$ es base.

Ejemplo

Sea $K=\mathbb{R}, V=\mathcal{M}_{2\times 2}(\mathbb{R})$.
Sea $W=\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\rangle$

Por construcción, $W$ es el subespacio generado por $X=\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\}$
Encontremos un subconjunto de $X$ que sea base de $W$.

Observemos que $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $X$ es l.d. y como $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, entonces $W=\langle X\rangle = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\rangle$

Veamos que $B=\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\}$ es l.i.

Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}+\lambda_2\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$

Esto implica que $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\lambda_1= \lambda_1+\lambda_2= \lambda_3=\lambda_2+\lambda_3=0$.
Por lo tanto, $\lambda_1=\lambda_2=\lambda_3=0$ y $B$ es l.i.

Como $\langle B\rangle=W$ y $B$ es l.i., entonces $B$ es una base y obtenemos que $dim_\mathbb{R}W=|B|=3.$

Teorema: Sean $V$ un $K$ – espacio vectorial de dimensión finita y $W$ un subespacio de $V$. Entonces se cumple lo siguiente:

a) $W$ es de dimensión finita.
b) Toda base de $W$ o es una base de $V$ o se puede completar a una base de $V$.
c) $dim_KW\leq dim_KV$.
d) Si $dim_KW=dim_KV$, entonces $W=V$.

Demostración: Analicemos cada inciso por separado:

a) Veamos que $W$ es de dimensión finita probando que tiene una base finita.

Si $W=\{\theta_V\}$ entonces $\emptyset$ es una base finita de $V$.

Supongamos que $\{\theta_V\}\subsetneq W$, consideremos $w_1\in W\setminus \{\theta_V\} $, notemos que $\{w_1\}$ es l.i. ya que $w_1\neq \theta_V$. Si $\{w_1\}$ genera a $W$, entonces es una base finita de $W$. Si por el contrario $\{w_1\}$ no genera a $W$ tendríamos que $\langle w_1\rangle\subsetneq W$ y podemos considerar $w_2\in W\setminus \langle w_1\rangle$. Debido a la elección de $w_2$ sabemos que $\{w_1, w_2\}$ es l.i. Así, si $\{w_1, w_2\}$ genera a $W$, entonces es una base finita de $W$ y si no elegimos $w_3\in W\setminus \langle w_1,w_2\rangle$.

Continuando de este modo obtenemos subconjuntos de $W$, y por lo tanto de $V$, linealmente independientes. El proceso se detiene después de un número finito de pasos ya que al ser $V$ de dimensión finita no existen conjuntos en $V$ linealmente independientes infinitos y se detiene en el momento en que el subconjunto obtenido genera a $W$. Entonces el proceso acaba después de digamos $t$ pasos obteniendo un subconjunto $\{w_1, \dots ,w_t\}$ de $W$ linealmente independiente que genera a $W$, siendo así una base finita de $W$.

b) Sea $B$ una base de $W$.
Entonces $B$ es un subconjunto l.i. en $V$ y por el teorema anterior o es una base de $V$ o se puede completar a una base de $V$.

c) Sea $B$ una base de $W$.
Por el inciso anterior tenemos $B$ es una base de $V$ o se puede completar para obtener una base de $V$, es decir, existe $A\subseteq V$ tal que $B\cup A$ es una base de $V$. Así,
$$dim_KW=|B|\leq|B\cup A|=dim_KV.$$
Por lo tanto, $dim_KW\leq\dim_KV$.

d) Supongamos que $dim_KW=\dim_KV=n$
Sea $B$ una base de $W$.
Entonces $B$ es un l.i. en $V$ con $n$ elementos. Por el corolario anterior tenemos que $B$ es una base de $V$.
Así, $W=\langle B\rangle =V$ y por lo tanto, $W=V$

Tarea Moral

Más adelante…

Veremos un nuevo concepto: Suma y suma directa de subespacios vectoriales.
¿Qué es? ¿Qué estructura tiene? ¿Dónde vive? ¿Qué relación tiene la suma de dos subespacios con sus uniones?

Entradas relacionadas

1.9. BASE, DIMENSIÓN Y ESPACIO DE DIMENSIÓN (IN)FINITA: definiciones y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

Hemos estudiado a los conjuntos generadores ya los conjuntos linealmente independientes. Los conjuntos generadores son útiles porque nos permiten describir a todo vector del espacio en términos sólo de los vectores del conjunto generador. Por otro lado los conjuntos linealmente independientes son importante porque no tienen vectores que se escriban como combinación lineal de los demás por lo que intuitivamente no contienen información redundante. Será conveniente entonces considerar conjuntos de vectores que sean generadores y linealmente independientes al mismo tiempo y a éstos les llamaremos bases. Además la cardinalidad de un conjunto que cumpla ambas características se vuelve relevante.

De acuerdo a lo que hemos observado en $\mathbb{R}^3$ sabemos que sucede lo siguiente:
1) De todo subconjunto linealmente dependiente que genere podemos encontrar un subconjunto propio linealmente independiente que siga generando.
2) A todo subconjunto de $V$ linealmente independiente podemos agregarle elementos de $V$ hasta crear un conjunto generador de $V$ que siga siendo linealmente independiente.

Para conseguir un conjunto l.i. necesitamos en ocasiones hacer el original «más pequeño» y para conseguir un generador necesitamos a veces hacer el original «más grande».

Esta situación ocurre de manera más general y nos permite justificar la existencia de una base para espacios de dimensión finita.
Estudiaremos a continuación lo que es una base: un conjunto lo «suficientemente grande» para generar al espacio y lo «suficientemente pequeño» para ser linealmente independiente.

BASE DE UN ESPACIO VECTORIAL

Definición: Sean $V$ un $K$ – espacio vectorial, $B\subseteq V$. Decimos que $B$ es una base de $V$ si genera a $V$ y es linealmente independiente. Además, decimos que $V$ es de dimensión finita si tiene una base finita.

Ejemplos

  • Sea $K$ un campo.
    Consideremos las $n$-adas $e_1=(1_K,0_K,0_K,0_K,…,0_K,0_K), e_2=(0_K,1_K,0_K,0_K,…,0_K,0_K),$ $…,e_n=(0_K,0_K,0_K,0_K,…,0_K,1_K)$. El conjunto $\{ e_1,e_2,…,e_n\}$ es una base de $K^n$.

Justificación. Como $B =\{e_1,e_2,…,e_n\}$ es l.i., sólo falta ver que $\langle B\rangle =K^n$.
Sabemos que $K^n$ es un espacio vectorial y cada $e_i\in K^n$, entonces $\langle B\rangle\subseteq K^n$.
Ahora bien, sea $(x_1,x_2,…,x_n)\in K^n$.
Es claro que $(x_1,x_2,…,x_n)=x_1e_1+x_2e_2+…+x_ne_n\in\langle B\rangle$.
De donde $K^n\subseteq\langle B\rangle$.
$\therefore\langle B\rangle =K^n.$

  • Sea $W=\{(x,y,z)\in\mathbb{R}^3|x-y+2z=0\}$ que es un subespacio de $\mathbb{R}^3$.
    Tenemos que $1-1+2(0)=0$ y $-2-0+2(1)=0$, entonces $(1,1,0),(-2,0,1)\in W$.
    Resulta que $\{(1,1,0),(-2,0,1)\}$ es una base de $W$.

Justificación. Primero veamos que $B =\{(1,1,0),(-2,0,1)\}$ es l.i.
Sean $\lambda_1,\lambda_2\in\mathbb{R}$ tales que $\lambda_1(1,1,0)+\lambda_2(-2,0,1)=(0,0,0)$.
Entonces, $(\lambda_1-2\lambda_2,\lambda_1,\lambda_2)=(0,0,0)$.
Inmediatamente se concluye de lo anterior que $\lambda_1=\lambda_2=0$.
$\therefore B$ es l.i.
Como $W$ es un subespacio y $(1,1,0),(-2,0,1)\in W$, entonces $\langle B\rangle\subseteq W$.
Ahora bien, sea $(x,y,z)\in W$.
Por definición de $W$ tenemos que $x=y-2z$, y en consecuencia $(x,y,z)=(y-2z,y,z)$.
Es claro que $(x,y,z)=(y-2z,y,z)=y(1,1,0)+z(-2,0,1)\in\langle B\rangle$.
Así, $W\subseteq\langle B\rangle$.
$\therefore\langle B\rangle.$

Proposición: Sea $V$ un $K$ – espacio vectorial. Si $V$ tiene un conjunto generador finito, entonces $V$ tiene una base finita.

Demostración: Sea $S=\{v_1,v_2,…,v_n\}$ un conjunto generador finito de $V$.

Caso 1. $S$ es l.i.
Entonces $S$ es una base finita de $V$.

Caso 2. $S$ es l.d.
Por el lema de dependencia lineal existe $v_{j_1}\in S$ tal que $\langle S\setminus\{v_{j_1}\}\rangle =\langle S\rangle $. Así, podemos definir el siguiente conjunto:
$S_1=S\setminus\{v_{j_1}\}$ donde $j_1\in\{1,2,…,n\}$ y $\langle S\setminus\{v_{j_1}\}\rangle =\langle S\rangle =V.$
Si $S_1$ es l.i., entonces $S_1$ es una base finita de $V$.
Si $S_1$ es l.d., entonces repetimos el proceso. Observemos que de esta forma vamos encontrando $S_1, S_2, \dots$ subconjuntos de $S$ con $n-1,n-2,\dots$ elementos respectivamente, tales que $\langle S_i \rangle =\langle S\rangle =V$ para toda $i=1,2,\dots$. Este proceso es finito ya que $S$ lo es y termina después de a lo más $n$ pasos. El proceso termina en el momento en que encontramos un $S_t$ con $t\in\{1,\dots ,n\}$ subconjunto de $S$ tal que $S_t$ es l.i. y por la forma en que se construyeron los subconjuntos de $S$ en este proceso se tiene además que $\langle S_t \rangle =\langle S\rangle =V$.
Tenemos entonces que $S_t$ es una base finita de $V$.

Corolario: Sea $V$ un $K$ – espacio vectorial. $V$ tiene un conjunto generador finito si y sólo si $V$ es de dimensión finita.

Demostración: $\Rightarrow )$ Se cumple por el teorema anterior y la definición de espacio vectorial de dimensión finita.

$\Leftarrow )$ Por definición de espacio vectorial de dimensión finita, existe una base finita, es decir, un conjunto l.i. generador de cardinalidad finita, en particular esta base es un conjunto generador finito.

Obs. Si un $V$ espacio vectorial es de dimensión finita, entonces todo conjunto l.i. es finito.

Teorema: Sea $V$ un $K$ – espacio vectorial de dimensión finita. Todas las bases de $V$ son finitas y tienen el mismo número de elementos.

Demostración: Por la observación previa tenemos que todas las bases de $V$ son finitas, pues en particular son conjuntos l.i. Veamos que todas tienen la misma cardinalidad.

Sean $B_1$ y $B_2$ bases de $V$, que son finitas por lo antes mencionado.

Por definición de bases tenemos:
a) $B_1$ es l.i., b) $B_1$ es generador de $V$, c) $B_2$ es l.i., d) $B_2$ es generador de $V$.

Recordando la relación entre conjuntos linealmente independientes y conjuntos generadores tenemos que:
a) y d) implican que $|B_1|\leq |B_2|$,
b) y c) implican que $|B_2|\leq |B_1|$.
$\therefore |B_1|=|B_2|.$

A lo largo de esta entrada hemos logrado concluir que, si bien las bases no son únicas, su cardinalidad (en el caso de espacios de dimensión finita) sí es única.

DIMENSIÓN DE UN ESPACIO VECTORIAL

Definición: Sea $V$ un $K$ – espacio vectorial de dimensión finita. Decimos que la dimensión de $V$ es la cardinalidad de cualquiera de sus bases. Se denota como $dim_K V$.

Ejemplos

  • Sea $W=\langle 2-x+5x^2,3-2x^2,7-2x+8x^2\rangle\leq\mathcal{P}_2[\mathbb{R}]$.
    Tenemos que $dim_{\mathbb{R}}W=2$.

Justificación. Primero describamos los elementos de $V$ como combinaciones lineales de los vectores del conjunto generador.
Sea $a+bx+cx^2 \in V$. Entonces existen $\lambda,\mu,\nu\in\mathbb{R}$ tales que $\lambda (2-x+5x^2) + \mu (3-2x^2) + \nu (7-2x+8x^2)=a+bx+cx^2$
Entonces $(2\lambda + 3\mu +7\nu) + (-\lambda – 2\nu)x + (5\lambda – 2\mu + 8\nu)x^2=a+bx+cx^2$. Por lo tanto:
\begin{align*}2\lambda + 3\mu +7\nu&=a\\
-\lambda – 2\nu&=b\\
5\lambda – 2\mu + 8\nu&=c.\end{align*}

Tenemos entonces:

$\left( \begin{array}{rrr|r} 2 & 3 & 7 & a \\ -1 & 0 & -2 & b\\
5 & -2 & 8 & c \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 3 & 3 & a+2b\\ 0 & -2 & -2 & c+5b \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 1 & 1 & \frac{1}{3}(a+2b)\\ 0 & 1 & 1 & -\frac{1}{2}(c+5b) \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 1 & 1 & \frac{1}{3}(a+2b)\\ 0 & 0 & 0 & -\frac{1}{2}(c+5b) -\frac{1}{3}(a+2b) \end{array} \right)$

Así, $0=-\frac{1}{2}(c+5b) -\frac{1}{3}(a+2b)$.
Y esto ocurre si y sólo si $0=2a+19b+3c$.
Por lo tanto, $a=-\frac{19}{2}b-\frac{3}{2}c$.

$W=\{ a+bx+cx^2 \in \mathcal{P}_2(\mathbb{R})| a=-\frac{19}{2}b-\frac{3}{2}c \}$$=\{ (-\frac{19}{2}b-\frac{3}{2}c)+bx+cx^2\in \mathcal{P}_2(\mathbb{R})| b,c\in\mathbb{R} \}$$=\{ b(-19+x)+c(-1+x^2)|b,c\in\mathbb{R} \}$$=\langle -19+x,-1+x^2 \rangle$.

Se puede verificar que $\{ -19+x,-1+x^2 \}$ es linealmente independiente y claramente genera a $W$, entonces es una base de $W$. Por lo tanto, $dim_{\mathbb{R}}W=2$.

Tarea Moral

Más adelante…

Partiendo de cualquier espacio vectorial de dimensión finita $V$, veremos cómo obtener bases. Además analizaremos qué relación hay entre: a) la dimensión de $V$ y las dimensiones de sus subespacios y b) la base de $V$ y las bases de sus subespacios.

Entradas relacionadas

Álgebra Superior I: El espacio vectorial $\mathbb{R}^n$

Por Eduardo García Caballero

Introducción

En la entrada anterior introdujimos conceptos relacionados a los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$. Hablamos de vectores, combinaciones lineales, espacio generado, independencia lineal y bases. Ahora haremos lo análogo en dimensiones más altas, para lo cual hablaremos de $\mathbb{R}^n$.

La idea es sencilla, queremos extender lo que ya hicimos para vectores con $5$ o $100$ entradas. Sin embargo, visualizar estos espacios y entender su geometría ya no será tan sencillo. Es por esta razón que principalmente nos enfocaremos a generalizar las propiedades algebraicas que hemos discutido. Esta resultará una manera muy poderosa de estudiar los espacios vectoriales, pues nos permitirá generalizar sin mucha dificultad los conceptos aprendidos en la entrada anterior al espacio $\mathbb{R}^n$ para cualquier número natural $n$.

Definición del espacio vectorial $\mathbb{R}^n$

En la entrada anterior vimos cuáles son propiedades que debe cumplir una colección de objetos, en conjunto con una operación de suma y otra de producto escalar, para poder considerarse un espacio vectorial. Como ya vimos, tanto $\mathbb{R}^2$ y $\mathbb{R}^3$ son espacios vectoriales. Podemos definir a $\mathbb{R}^n$ y a sus operaciones como sigue.

Definición. El conjunto $\mathbb{R}^n$ consiste de todas las $n$-adas ordenadas $u=(u_1,u_2,\ldots,u_n)$ en donde cada $u_i$ es un número real, para $i=1,\ldots,n$. A $u_i$ le llamamos la $i$-ésima entrada de $u$. Para dos elementos de $\mathbb{R}^n$, digamos

\begin{align*}
u&=(u_1,u_2,\ldots,u_n)\\
v&=(v_1,v_2,\ldots,v_n),
\end{align*}

definimos la suma $u+v$ como la $n$-áda cuya $i$-ésima entrada es $u_i+v_i$ (decimos que sumamos entrada a entrada). En símbolos, $$u+v=(u_1+v_1,u_2+v_2,\ldots,u_n+v_n).$$

Además, si tomamos un real $r$, definimos el producto escalar de $r$ con $u$ como la $n$-ada cuya $i$-ésima entrada es $r u_i$, es decir, $ru=(ru_1,ru_2,\ldots,ru_n).$

El conjunto $\mathbb{R}^n$ con esta suma y producto escalar cumple ser un espacio vectorial. A continuación probaremos sólo algunas de las propiedades, ¿puedes completar el resto?

1. La suma es asociativa:
\begin{align*}
(u+v)+w
&= ((u_1,u_2,\ldots,u_n) + (v_1,v_2,\ldots,v_n)) + (w_1,w_2,\ldots,w_n) \\
&= (u_1+v_1,u_2+v_2,\ldots,u_n+v_n) + (w_1,w_2,\ldots,w_n) \\
&= ((u_1+v_1)+w_1,(u_2+v_2)+w_2,\ldots,(u_n+v_n)+w_n) \\
&= (u_1+(v_1+w_1),u_2+(v_2+w_2),\ldots,u_n+(v_n+w_n)) \\
&= (u_1,u_2,\ldots,u_n) + (v_1+w_1,v_2+w_2,\ldots,v_n+w_n) \\
&= (u_1,u_2,\ldots,u_n) + ((v_1,v_2,\ldots,v_n) + (w_1,w_2,\ldots,w_n)) \\
&= u + (v+w).
\end{align*}

La cuarta igualdad usa el paso clave de que en $\mathbb{R}$ sí sabemos que la suma es asociativa.

2. La suma es conmutativa:
\[
u+v = v+w.
\]

¡Intenta demostrarlo!

3. Existe un elemento neutro para la suma, que es el elemento de $\mathbb{R}^n$ en donde todas las entradas son iguales al neutro aditivo $0$ de $\mathbb{R}$:
\begin{align*}
u+0
&= (u_1,u_2,\ldots,u_n) + (0,0,\ldots,0) \\
&= (u_1+0,u_2+0,\ldots,u_n+0) \\
&= (u_1,u_2,\ldots,u_n) \\
&= u.
\end{align*}

Para demostrar esta propiedad, necesitaras usar que en $\mathbb{R}$ cada $u_i$ tiene inverso aditivo.

4. Para cada $n$-tupla existe un elemento inverso:
\[
u + (-u) = 0.
\]

5. La suma escalar se distribuye bajo el producto escalar:
\begin{align*}
(r+s)u
&= (r+s)(u_1,u_2,\ldots,u_n) \\
&= ((r+s)u_1,(r+s)u_2,\ldots,(r+s)u_n) \\
&= (ru_1 + su_1, ru_2 + su_2, \ldots, r_n + su_n) \\
&= (ru_1,ru_2,\ldots,ru_n) + (su_1,su_2,\ldots,su_n) \\
&= r(u_1,u_2,\ldots,u_n) + s(u_1,u_2,\ldots,u_n) \\
&= ru + su.
\end{align*}

Una vez más, se está usando una propiedad de $\mathbb{R}$ para concluir una propiedad análoga en $\mathbb{R}^n$. En este caso, se está usando fuertemente que hay una propiedad de distributividad en $\mathbb{R}$.

6. La suma de $n$-tuplas de distribuye bajo el producto de escalares:
\[
r(u+v) = ru + rv.
\]

7. El producto escalar es compatible con el producto de $\mathbb{R}$:
\begin{align*}
(rs)u
&= (rs)(u_1,u_2,\ldots,u_n) \\
&= ((rs)u_1,(rs)u_2,\ldots,(rs)u_n) \\
&= (r(su_1),r(su_2),\ldots,r(su_n)) \\
&= r(su_1, su_2, \ldots, su_n) \\
&= r(s(u_1,u_2,\ldots,u_n)) \\
&= r(su).
\end{align*}

8. El neutro multiplicativo $1$ de $\mathbb{R}$ funciona como neutro para el producto escalar:
\[
1u = u.
\]

De este modo, podemos trabajar con el espacio vectorial $\mathbb{R}^n$ para explorar sus propiedades. La gran ventaja es que lo que demostremos para $\mathbb{R}^n$ en general lo podremos usar para cualquier valor particular de $n$. y poder emplearlas cuando trabajemos con algún número $n$ en particular.

Combinaciones lineales y espacio generado

Al igual que hicimos con $\mathbb{R}^2$ y $\mathbb{R}^3$ podemos definir los conceptos de combinación lineal y espacio generado para el espacio vectorial $\mathbb{R}^n$.

Definición. En $\mathbb{R}^n$, diremos que un vector $u$ es combinación lineal de los vectores $v_1,\ldots,v_k$ si y sólo si existen números reales $r_1,\ldots,r_n$ en $\mathbb{R}$ tales que
\[
u = r_1v_1 + r_2v_2 + \cdots + r_kv_k.
\]

Ejemplo. En $\mathbb{R}^5$, el vector $(3,4,-2,5,5)$ es combinación lineal de los vectores $(2,1,2,0,3)$, $(0,1,-1,3,0)$ y $(1,-1,5,-2,1)$, pues
\[
(3,4,-2,5,5) = 2(2,1,2,0,3) + 1(0,1,-1,3,0) + -1(1,-1,5,-2,1).
\]

$\triangle$

La noción de combinación lineal nos permite hablar de todas las posibles combinaciones lineales, así como en $\mathbb{R}^2$ y $\mathbb{R}^3$.

Definición. Dado un conjunto de vectores $v_1,\ldots,v_n$ en $\mathbb{R}^n$, podemos definir el espacio generado por estos vectores como el conjunto de todas las posibles combinaciones lineales de $v_1,\ldots,v_n$ en $\mathbb{R}^n$.

Es este caso, ya no podremos visualizar geométricamente el espacio generado (aunque con un poco de imaginación, quizás puedas generalizar lo que ya hicimos en dimensiones anteriores: ¿cómo se vería un plano en $\mathbb{R}^4$?, ¿cómo se vería un sub-$\mathbb{R}^3$ de $\mathbb{R}^4$?). De cualquier manera, sí podemos seguir respondiendo preguntas del espacio generado a través de sistemas de ecuaciones.

Ejemplo. ¿El espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$ y $(1,0,2,1)$ es $\mathbb{R}^4$?

Para ver si $\mathbb{R}^4$ es el espacio generado por los vectores propuestos, debemos asegurarnos de que cada vector en $\mathbb{R}^4$ se pueda expresar como combinación lineal de estos. Entonces, seleccionamos un vector $(a,b,c,d)$ arbitrario en $\mathbb{R}^4$, y debemos ver si existen escalares $q$, $r$, $s$ y $t$ tales que
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d);
\]
esto es,
\[
(q,q,q,0) + (0,3r,r,2r) + (2s,3s,s,0) + (t,0,2t,t) = (a,b,c,d),
\]
que equivale a
\[
(q+2s+t, q+3r+3s, q+r+s+2t, 2r+t)=(a,b,c,d),
\]
lo cual a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
q & +{} & & +{} & 2s & +{} & t & = a \\
q & +{} & 3r & +{} & 3s & & & = b \\
q & +{} & r & +{} & s & +{} & 2t & = c \\
& & 2r & & & +{} & t & = d,
\end{alignedat}
\right.
\]
el cual podemos representar como
\[
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}.
\]
Además, podemos observar que la matriz en el lado izquierdo tiene determinante distinto de $0$ (para verificar esto, tendrás que calcularlo), lo que nos indica que es invertible, y la igualdad anterior equivale a
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
o bien,
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
-3 & 1 & 3 & -3 \\
-1/2 & 1/4 & 1/4 & 0 \\
3/2 & -1/4 & -5/4 & 1 \\
1 & -1/2 & -1/2 & 1
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
de donde tenemos la solución para $q,r,s,t$ siguiente:
\[
\left\{
\begin{alignedat}{4}
q & = & -3a & +{} & b & +{} & 3c & -{} & 3d \\
r & = & -\tfrac{1}{2}a & +{} & \tfrac{1}{4}b & +{} & \tfrac{1}{4}c & & \\
s & = & \tfrac{3}{2}a & -{} & \tfrac{1}{4}b & -{} & \tfrac{5}{4}c & +{} & d \\
t & = & a & -{} & \tfrac{1}{2}b & -{} & \tfrac{1}{2}c & +{} & d.
\end{alignedat}
\right.
\]
Este sistema nos da una fórmula para los escalares $q$, $r$, $s$ y $t$ en función del valor de las entradas del vector $(a,b,c,d)$, y estos escalares satisfacen
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d).
\]
Como esto se cumple para un vector arbitrario $(a,b,c,d)$ en $\mathbb{R}^4$, entonces se cumple para todos los vectores de $\mathbb{R}^4$; es decir, ¡$\mathbb{R}^4$ es el espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$, $(1,0,2,1)$!

$\triangle$

Nuestra técnica de resolver sistemas de ecuaciones mediante la inversa de la matriz asociada ha resultado muy útil. Hemos tenido un poco de suerte en que la matriz sea invertible. Si no lo fuera, no podríamos haber hecho el procedimiento descrito en el ejemplo. ¿Será que si la matriz no es invertible, entonces el sistema no se podrá resolver? La respuesta es compleja: a veces sí, a veces no. En ese caso hay que entender el sistema de ecuaciones con otro método, como reducción gaussiana.

Independencia lineal

Cuando exploramos las propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$, observamos que hay ocasiones en las que el espacio generado por un conjunto de vectores es «más chico» de lo que se esperaría de la cantidad de vectores: por ejemplo, dos vectores en $\mathbb{R}^2$ generan una línea (y no todo $\mathbb{R}^2$) cuando estos dos se encuentran alineados con el origen. Cuando tres vectores en $\mathbb{R}^3$ no están alineados, pero se encuentran sobre el mismo plano por el origen, su espacio generado es dicho plano (y no todo $\mathbb{R}^3$).

Aunque el el espacio vectorial $\mathbb{R}^n$ no podamos visualizarlo de manera inmediata, podemos mantener la intuición de que un conjunto de vectores «genera todo lo que puede generar» o «genera algo más chico». Para identificar en qué situación nos encontramos, recurrimos a la siguiente definición.

Definición. Dado un conjunto de $k$ vectores $v_1, v_2, \ldots, v_k$ en $\mathbb{R}^n$ distintos de 0, diremos son linealmente independientes si la única forma de escribir al vector 0 como combinación lineal de ellos es cuando todos los coeficientes de la combinación lineal son igual al escalar 0; es decir, si tenemos que
\[
r_1v_1 + r_2v_2 + \cdots + r_kv_k = 0,
\]
entonces forzosamente $r_1 = r_2 = \cdots = r_n = 0$.

Teniendo esta definición en consideración, se puede mostrar que si un conjunto de vectores es linealmente independiente, entonces ninguno de los vectores se puede escribir como combinación lineal de los otros. De hecho, es únicamente en este caso cuando cuando el espacio generado por los vectores es «todo lo que se puede generar».

La justificación de por qué sucede esto es similar a la que vimos en la entrada anterior: como el primer vector es no genera una línea. Como el segundo vector no se puede escribir como combinación lineal del primero, entonces queda fuera de esta línea y ambos generan un plano. Como el tercer vector no se puede escribir como combinación lineal de los primeros dos, entonces queda fuera del plano, y entre los tres generan un espacio «más grande» («de dimensión $3$»). A partir de este punto, quizá no podamos visualizar inmediatamente la forma geométrica del espacio generado, pero como sabemos que los vectores son linealmente independientes, entonces el cuarto vector no se puede escribir como combinación lineal de los primeros tres. Por ello, queda fuera del espacio generado por los primeros tres, y el espacio generado por los cuatro es aún «más grande» («de dimensión $4$»); y así sucesivamente, para tantos vectores linealmente independientes como tengamos.

Una herramienta que podemos emplear para determinar cuándo un conjunto de vectores es linealmente independiente son nuevamente los sistemas de ecuaciones. Para esto veamos el siguiente ejemplo.

Ejemplo. ¿Son los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ linealmente independientes en $\mathbb{R}^4$?

Supongamos que para ciertos escalares $a$, $b$, $c$ y $d$, se cumple que
\[
a(1,5,1,-2) + b(3,-3,0,-1) + c(-2,0,4,1) + d(0,1,-1,0) = (0,0,0,0).
\]
Esto es equivalente a decir que
\[
(a,5a,a,-2a) + (3b,-3b,0,-b) + (-2c,0,4c,c) + (0,d,-d,0) = (0,0,0,0)
\]
que equivale a
\[
(a+3b-2c, 5a-3b+d,a+4c-d,-2a-b+c) = (0,0,0,0),
\]
y a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
a & +{} & 3b & -{} & 2c & & & = 0 \\
5a & -{} & 3b & & & +{} & d & = 0 \\
a & & & +{} & 4c & -{} & d & = 0 \\
-2a & -{} & b & +{} & c & & & = 0
\end{alignedat}
\right.
\]
el cual podemos representar de la forma
\[
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
y, como notamos que la matriz del lado izquierdo de la ecuación tiene determinante distinto de 0 (¿puedes verificarlo?), entonces es invertible, de modo que
\[
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
es decir,
\[
a = b = c = d = 0,
\]
lo que nos indica, basándonos en la definición, que los vectores anteriores son linealmente independientes.

$\triangle$

El ejemplo anterior nos da una idea de lo que debe cumplir un conjunto linealmente independiente de $n$ vectores en $\mathbb{R}^n$. En general, podemos mostrar que un conjunto de $n$ vectores $v_1 = (v_{11}, v_{12}, \ldots, v_{1n})$, $v_2 = (v_{21}, v_{22}, \ldots, v_{2n})$, $\ldots$, $v_n = (v_{n1}, v_{n2}, \ldots, v_{nn})$ es linealmente independiente si y sólo si la matriz
\[
\begin{pmatrix}
v_{11} & v_{21} & \cdots & v_{n1} \\
v_{12} & v_{22} & \cdots & v_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{1n} & v_{2n} & \cdots & v_{nn}
\end{pmatrix},
\]
formada por los vectores escritos como columna, es invertible. Esto ya platicamos que está relacionado con que su determinante sea distinto de 0. Pero no en todas las situaciones tendremos tantos vectores como entradas y entonces tendremos que estudiar el sistema de ecuaciones lineales con otras técnicas, como reducción gaussiana.

Ejemplo. ¿Serán los vectores $(1,2,3,4,5)$, $(6,7,8,9,10)$ y $(11,12,13,14,15)$ de $\mathbb{R}^5$ linealmente independientes? Tal y como lo hemos hecho arriba, podemos preguntarnos si hay reales $a,b,c$ tales que $$a(1,2,3,4,5)+b(6,7,8,9,10)+c(11,12,13,14,15)=(0,0,0,0,0),$$ y que no sean todos ellos cero. Tras plantear el sistema como sistema de ecuaciones y luego en forma matricial, lo que se busca es ver si el sistema $\begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $ tiene alguna solución no trivial. Esto puede entenderse aplicando reducción gaussiana a $A$, que muestra que toda solución al sistema anterior es solución al sistema $\begin{pmatrix} 1 & 0 & -1\\0 & 1 & 2\\0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$ lo cual nos lleva a que el sistema original es equivalente al sistema $$\left\{ \begin{array} \,a – c &= 0\\ b + 2c &= 0\end{array}.\right.$$

De aquí, podemos tomar a $c$ como cualquier valor, digamos $1$, de donde $a=1$ y $b=-2$ es solución. En resumen, hemos detectado que $$(1,2,3,4,5)-2(6,7,8,9,10)+(11,12,13,14,15)=(0,0,0,0,0),$$ que es una combinación lineal de los vectores donde no todos los coeficientes son cero. Por ello, no son linealmente intependientes.

Puedes intentar «imaginar» esto como que son vectores en $\mathbb{R}^5$ (un espacio de «dimensión $5$»), pero no generan dentro de él algo de dimensión $3$, sino algo de dimensión menor. Como $(1,2,3,4,5)$ y $(6,7,8,9,10)$ sí son linealmente independientes (¡demuéstralo!), entonces los tres vectores en realidad generan sólo un plano mediante sus combinaciones lineales.

$\square$

Bases

De manera similar a lo que observamos en la entrada anterior, hay ocasiones en las que un conjunto de vectores no tiene como espacio generado a todo $\mathbb{R}^n$. Por otra parte, hay ocasiones en las que el conjunto de vectores sí genera a todo $\mathbb{R}^n$, pero lo hace de manera «redundante», en el sentido de que, aunque su espacio generado sí es todo $\mathbb{R}^n$, podríamos quitar a algún vector del conjunto y el espacio generado sería el mismo. La siguiente definición se enfoca en los conjuntos en los que no pasa mal ninguna de estas cosas. Es decir, los vectores generan exactamente al espacio: cada vector se genera por una y sólo una combinación lineal de ellos.

Definición. Diremos que un conjunto de vectores $v_1, v_2, \ldots, v_k$ es base del esapacio vectorial $\mathbb{R}^n$ si el conjunto de vectores es linealmente independiente y el espacio generado por estos es exactamente $\mathbb{R}^n$.

Ejemplo. Al igual que en $\mathbb{R}^2$ y $\mathbb{R}^3$, la «base canónica» es el primer ejemplo que seguramente se nos viene a la mente. La base canónica en $\mathbb{R}^n$ consiste en los $n$ vectores $\mathrm{e}_1 = (1,0,0,\cdots,0)$, $\mathrm{e}_2 = (0,1,0,\cdots,0)$, $\mathrm{e}_3 = (0,0,1,\ldots,0)$, $\ldots$, $\mathrm{e}_n = (0,0,0,\cdots,1)$. Es claro que cualquier vector $u = (u_1,u_2,\cdots,u_n)$ es combinación lineal de $\mathrm{e}_1,\ldots,\mathrm{e}_n$ pues podemos expresarlo como
\begin{align*}
u
&= (u_1,u_2,\cdots,u_n) \\
&= (u_1,0,\cdots,0) + (0,u_2,\cdots,0) + \cdots (0,0,\cdots,u_n) \\
&= u_1(1,0,\cdots,0) + u_2(0,1,\cdots,0) + \cdots + u_n(0,0,\cdots,1) \\
&= u_1\mathrm{e}_1 + u_2\mathrm{e}_2 + \cdots + u_n\mathrm{e}_n.
\end{align*}
Además, los vectores $\mathrm{e}_1,\ldots,\mathrm{e}_n$ son linealmente independientes (¿puedes ver por qué?). De este modo, verificamos que la «base canónica» es, en efecto, una base.

$\triangle$

Ejemplo. Más arriba verificamos que los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ son linealmente independientes. Además, vimos que la matriz formada por estos es invertible. De este modo, verificamos que estos vectores forman una base para $\mathbb{R}^4$.

$\triangle$

Más adelante…

A lo largo de esta unidad nos hemos enfocado en estudiar a vectores, matrices, ecuaciones lineales y espacios vectroriales. En las últimas entradas, vimos que hay ocho condiciones que se deben cumplir para que un conjunto de objetos matemáticos (junto con una operación de suma y una de producto escalar) sean considerados espacio vectorial. Todos los ejemplos de espacio vectorial que vimos son de la forma $\mathbb{R}^n$, sin embargo, puede surgir la pregunta, ¿existen espacios vectoriales que no sean de esta forma?

De hecho, si has estado prestando atención en la formalidad de los resultados, hay muchos resultados que han quedado pendientes:

  • ¿Por qué el determinante no depende de la fila o columna en la que se expanda?
  • Si tenemos matrices de $n\times n$, ¿por qué son invertibles si y sólo si el determinate es cero?
  • En matrices de $n\times n$, ¿por qué el determinante es multiplicativo?
  • ¿Cómo se formaliza el proceso de reducción gaussiana y para qué más sirve?
  • ¿Será que podemos tener muchos vectores linealmente independientes en $\mathbb{R}^n$? ¿Será posible tener un conjunto generador de menos de $n$ vectores para $\mathbb{R}^n$? ¿Por qué?

Estas dudas no se resuelven en el curso de Álgebra Superior 2, que sigue a este. Sin embargo, en el curso de Álgebra Lineal I sí se resuelven varias de estas dudas.

Además, podrás ver que hay otros tipos de objetos matemáticos distintos a las listas ordenadas y que también forman un espacio vectorial; algunos con los cuales ya hemos trabajado, como lo son las matrices, y otros que se comportan de manera muy poco usual, como son los espacios con dimensión infinita. Asimismo, con las herramientas que hemos desarrollado hasta ahora, podremos aprender nuevos conceptos como transformaciones lineales, eigenvectores y eigenvalores; estos nos permitirán comprender de manera más íntima los espacios vectoriales, y podremos relacionarlos unos con otros.

Tarea moral

  1. Verifica lo siguiente:
    • $(1,1,1,1)$, $(2,2,2,2)$, $(1,1,2,2)$, $(2,2,1,1)$ no es un conjunto linealmente independiente de $\mathbb{R}^4$.
    • $(1,2,3,4)$, $(2,3,4,1)$, $(3,4,1,2)$, $(4,1,2,3)$ es un conjunto generador de $\mathbb{R}^4$.
    • $(1,1,1,1,1),(1,1,1,1,0),(1,1,1,0,0),(1,1,0,0,0),(1,0,0,0,0)$ es una base de $\mathbb{R}^5$.
  2. Demuestra las siguientes dos cosas:
    • Sea $S$ un conjunto generador de $\mathbb{R}^n$ y $T\supseteq S$. Entonces $T$ es conjunto generador de $\mathbb{R}^n$.
    • Sea $T$ un conjunto linealmente independiente de $\mathbb{R}^n$ y $S\subseteq T$. Entonces $S$ es un conjunto linealmente independiente de $\mathbb{R}^n$.
  3. Sean $v_1,v_2,v_3,\ldots,v_k$ vectores linealmente independientes de $\mathbb{R}^n$. Demuestra que $v_1, v_1+v_2, v_1+v_2+v_3,\ldots,v_1+v_2+v_3+\ldots+v_k$ son también vectores linealmente independientes de $\mathbb{R}^n$. ¿Es esto un si y sólo si?
  4. En vista de lo que hemos platicado para matrices de $2\times 2$, $3\times 3$, $\mathbb{R}^2$ y $\mathbb{R}^3$, ¿cómo definirías el producto matriz-vector $AX$ donde $A$ es una matriz de $m\times n$ y $X$ un vector en $\mathbb{R}^n$?
  5. Demuestra que la definición de base tal y como está en la entrada en efecto permite no sólo escribir a cada vector $v$ del espacio como combinación lineal de los elementos de una base $v_1,\ldots,v_n$, sino que también implica que dicha expresión será única.

Entradas relacionadas