Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Cálculo Diferencial e Integral III: Ejemplos e intuición del teorema de la función implícita

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior revisamos el teorema de la función implícita formalmente enunciado y demostrado. En ésta lo que haremos será reflexionar sobre él y observar con más detalle su propósito y usos.

Dicho de forma simplista pero resaltando su objetivo principal el teorema de la función implícita busca establecer las condiciones bajo las cuales podemos despejar unas variables en término de otras. Da una condición en términos de cierta diferenciabilidad. Como esbozamos en la entrada anterior, lo que el teorema nos dice es cuándo es posible despejar las variables de un sistema de ecuaciones (o funciones coordenadas de un campo vectorial) en función de ciertas las variables libres, y alrededor de una vecindad. Para hacer esto, básicamente hay que resolver un sistema de ecuaciones en donde ciertos coeficientes vienen de ciertas derivadas parciales. El teorema de la función implícita también habla de cómo derivar una función definida implícitamente respecto de cualquiera de sus derivables.

¿Por qué teorema de la función implícita?

¿Por qué este nombre? En numerosos problemas matemáticos derivados de aplicaciones diversas se utilizan modelos geométricos. Estos modelos geométricos usualmente se construyen a partir de restringir ciertas variables con ciertas ecuaciones. Pensemos en objetos geométricos en tres dimensiones. Tenemos variables $x,y,z$. Definamos $G(x,y,z):=x^{2}+y^{2}+z^{2}-1$. Podemos preguntarnos por el objeto geométrico descrito por la ecuación $G(x,y,z)=0.$ Sabemos que las ternas $(x,y,z)$ que satisfacen esto justo conforman una esfera de radio 1 centrada en el origen. Decimos que esta ecuación proporciona una representación implícita de la superficie.

Pero quizás nuestra aplicación nos lleva a preguntarnos si alguna coordenada está en términos de las otras para los puntos que están en dicha esfera. En afortunadas ocasiones es posible despejar en la ecuación $G(x,y,z)$ algunas de las variables en términos de las otras. Esto nos lleva a una o varias ecuaciones de la forma $z=g(x,y)$, en nuestro caso particular tenemos:

\begin{align*}z=\sqrt{1-x^{2}-y^{2}} && \textup{y} && z=-\sqrt{1-x^{2}-y^{2}}.\end{align*}

El teorema de la función inversa nos dice que si ciertas derivadas existen y son invertibles como transformaciones lineales, entonces podemos hacer estos despejes. De hecho, nos dice algo mejor: que podemos hacerlos alrededor de toda una vecindad donde no se anule dicha derivada. De aquí sale la idea de «función implícita». Algunas ecuaciones, aunque no permitan despejar variables, sí lo permiten «localmente» y entonces ahí hay una «función oculta».

En la gran mayoría de los casos es difícil lograr estos despejes mediante expresiones algebraicas sencillas por ejemplo en una superficie representada por la ecuación $y^{3}+z^{2}-xz+e^{zx}-4=0$ suena muy difícil que podamos despejar $z$. Sin embargo el teorema de la función implícita nos garantiza que, aunque no sepamos cómo, la variable $z$ sí se puede poner en función de las variables $x$ y $y$.

La derivada de la función implícita

Otra buena notica es que aunque no conozcamos explícitamente el despeje que nos interesa, con el teorema de la función implícita sí podemos encontrar las derivadas parciales de la función implícita que aparece. Si pensaste los problemas de la tarea moral de la entrada anterior, quizás ya hayas llegado al siguiente resultado.

Corolario. Sea $F:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ un campo escalar diferenciable con $S$ abierto. Supongamos que la ecuación $F(x_{1},\dots ,x_{n})=0$ define implícitamente a $x_{n}$ como función diferenciable de $x_{1},\dots ,x_{n-1}$ como $x_{n}=f(x_{1},\dots ,x_{n-1})$, para todos los puntos $(x_{1},\dots ,x_{n-1})\in S’\subseteq \mathbb{R}^{n-1}$, entonces para cada $k=1,2,\dots ,n-1$ la derivada parcial $\frac{\partial f}{\partial x_{k}}$ está dada por la fórmula:

\[ \begin{equation}\frac{\partial f}{\partial x_{k}}=-\frac{\frac{\partial F}{\partial x_{k}}}{\frac{\partial F}{\partial x_{n}}}\end{equation} \]

en los puntos en los que $\frac{\partial F}{\partial x_{n}}\neq 0$. Las derivadas parciales de $F$ están calculadas en el punto $(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n}))$.

Demostración. Pensemos $F:\mathbb{R}^{n-1}\times \mathbb{R} \to \mathbb{R}$. Si $(x_{1},\dots x_{n})$ es tal que $F(x_{1},\dots ,x_{n})=0$, por el teorema de la función implícita tenemos a una única función $f:\mathbb{R}^{n-1}\rightarrow \mathbb{R}$ tal que $F(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))=0$.

(Nota. En la entrada anterior teníamos entradas de la forma $(y,x)$ y $y$ quedaba en función de $x$. De manera totalmente análoga podemos intercambiar los papeles de $x$ y $y$, pidiendo las hipótesis correctas. De hecho, usualmente se piensa en parejas $(x,y)$ y las variables de $y$ son las que quedan en términos de las variables $x$)

Ahora, pensemos en el campo vectorial $G:S’\subseteq \mathbb{R}^{n-1}\rightarrow \mathbb{R}^{n}$ dado por $G(x_{1},\dots ,x_{n-1})=(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))$. Así $(F\circ G)(x_{1},\dots ,x_{n-1})=0$. Por regla de la cadena, $DFDG=0$. Tenemos así $0=\triangledown F\cdot DG$, lo cual explícitamente es:

\[ 0=\begin{bmatrix} \frac{\partial F}{\partial x_{1}} & \dots & \frac{\partial F}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \\ \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial f}{\partial x_{n-1}} \end{bmatrix}= \]

\[ \begin{bmatrix} \frac{\partial F}{\partial x_{1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{1}} & \frac{\partial F}{\partial x_{2}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial F}{\partial x_{n-1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{n-1}} \end{bmatrix}.\]

Por ello, para cada $i$ tenemos:

\[ \frac{\partial F}{\partial x_{i}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{i}}=0.\]

De esta ecuación se deduce la $(1)$.

$\square$

Un primer ejemplo del teorema de la función inversa

Pasemos ahora a hacer algunas cuentas concretas para entender mejor lo que uno tiene que hacer para aplicar el teorema de la función implícita en funciones particulares.

Ejemplo. Consideremos la ecuación $y^{2}+xz+z^{2}-e^{z}-c=0$. Expresaremos a $z$ en función de $x$ e $y$, es decir, $z=f(x,y)$. Nos gustaría encontrar un valor de la constante $c$ tal que $f(0,e)=2$. Para dicha $c$, queremos calcular las derivadas parciales con respecto a $x$ y $y$ en el punto $(x,y)=(0,e)$.

Para la primera parte sustituimos $x=0$, $y=e$ y $z=2$. Tenemos $$e^{2}+0\cdot 2+2^{2}-e^{2}-c=0,$$ que es lo mismo que $4-c=0$, y esto implica $c=4$. De esta manera, estudiaremos la función $$F(x,y,z)=y^{2}+xz+z^{2}-e^{z}-4.$$

Notemos que

\begin{align*}\frac{\partial F}{\partial z}=x+2z-e^{z},&&\frac{\partial F}{\partial x}=z,&&\frac{\partial F}{\partial y}=2y,\end{align*}

por lo cual

\begin{align*} \frac{\partial f}{\partial x}=-\frac{z}{x+2z-e^{z}},&&\frac{\partial f}{\partial y}=-\frac{2y}{x+2z-e^{z}}.\end{align*}

Así para $x=0$, $y=e$ y $z=2$ al sustituir resulta

\begin{align*} \frac{\partial f}{\partial x}(0,e)=\frac{2}{e^{2}-4}&&\textup{y}&&\frac{\partial f}{\partial y}(0,e)=\frac{2e}{e^{2}-4}. \end{align*}

$\triangle$

En este ejemplo vemos cómo hemos podido calcular las derivadas parciales de $z=f(x,y)$ usando el valor de $f$ en el punto $(0,e)$, sin conocer quién es la función $f(x,y)$.

Un repaso chiquito de la demostación del teorema de la función implícita

Ahora repasaremos la demostración del teorema de la función implícita pero para un caso muy particular: Dos superficies $S_{1}$ y $S_{2}$ en el espacio con las siguientes representaciones implícitas:

$$ \textup{para}\hspace{0.3cm}S_{1}:\Psi (x,y,z)=0\hspace{1cm}\textup{y}\hspace{1cm}\textup{para}\hspace{0.3cm}S_{2}:\Gamma (x,y,z)=0.$$

Supongamos que las superficies se cortan en la curva $\mathfrak{C}$. En otras palabras, $\mathfrak{C}$ es el conjunto solución para el siguiente sistema de ecuaciones:

\[ \left \{\begin{matrix} \Psi (x,y,z)=0 \\ \Gamma (x,y,z)=0. \end{matrix} \right.\]

Supongamos que podemos despejar $x$ y $y$ en estas ecuaciones en términos de $z$ de la siguiente manera:

\[ \begin{equation}x=X(z),\hspace{1cm}y=Y(z)\hspace{0.3cm}\textup{para todo}\hspace{0.1cm}z\in (a,b).\end{equation} \]

Aquí, al reemplazar $x$ y $y$ por $X(z)$ y $Y(z)$ (respectivamente), el sistema $(2)$ se satisface. Por tanto tenemos $\Psi (X(z),Y(z),z)=0$ y $\Gamma (X(z),Y(z),z)=0$ para todo $z\in (a,b)$. Podemos calcular las derivadas $X^{\prime}(z)$, $Y^{\prime}(z)$, sin un conocimiento explícito de $X(z)$ y $Y(z)$.

¿Cómo hacemos esto? Consideramos las siguientes funciones auxiliares:

\begin{align*}
\psi (z)&=\Psi (X(z),Y(z),z),\\
\gamma (z)&=\Gamma (X(z),Y(z),z).
\end{align*}

Tenemos $\psi (z)=\gamma (z)=0$ y en consecuencia $\psi^{\prime}(z)=\gamma^{\prime}(z)=0$.

Derivando con la regla de la cadena tenemos:

\begin{align*}
\psi^{\prime}(z)&=\frac{\partial \Psi}{\partial x}X'(z)+\frac{\partial \Psi}{\partial y}Y'(z)+\frac{\partial \Psi}{\partial z},\\
\gamma^{\prime}(z)&=\frac{\partial \Gamma}{\partial x}X'(z)+\frac{\partial \Gamma}{\partial y}Y'(z)+\frac{\partial \Gamma}{\partial z}
\end{align*}

Dado que $\psi^{\prime} (z)=\gamma^{\prime}(z)=0$ tenemos el siguiente sistema de dos ecuaciones con dos incógnitas $X^{\prime}(z)$, $Y^{\prime}(z)$:

\[ \left \{\begin{matrix}\frac{\partial \Psi}{\partial x}X^{\prime}(z)+\frac{\partial \Psi}{\partial y}Y^{\prime}(z)=-\frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x}X^{\prime}(z)+\frac{\partial \Gamma}{\partial y}Y^{\prime}(z)=-\frac{\partial \Gamma}{\partial z} \end{matrix} \right.\]

En los puntos en los cuales el determinante del sistema no es cero, usamos la regla de Cramer para obtener las soluciones como sigue:

\[ X^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial z} & \frac{\partial \Psi}{\partial y}\\ \frac{\partial \Gamma}{\partial z} & \frac{\partial \Gamma }{\partial y}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} },\hspace{0.5cm}Y^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma }{\partial z}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} }.\]

Otro ejemplo para encontrar derivadas de funciones implícitas

Veamos un último ejemplo en donde pondemos usar las ideas anteriores.

Ejemplo. Consideremos las ecuaciones $y=uv^{2}$, y $x=u+v$. Queremos ver que podemos determinar una función $h$ tal que $v=h(x,y)$ y para la cual:

\[ \frac{\partial h}{\partial x}(x,y)= \frac{h(x,y)}{3h(x,y)-2x}.\]

Además, queremos encontrar una fórmula análoga para $\frac{\partial h}{\partial y}$.

Primero, en la ecuación $x=u+v$ despejamos $u$ y sustituimos en $y=uv^{2}$, tenemos $y=(x-v)v^{2}$. De aquí $$xv^{2}-v^{3}-y=0.$$ Esto nos sugiere pensar en la función $$F(x,y,v):=xv^{2}-v^{3}-y,$$ pues nos permite representar nuestra ecuación como $F(x,y,v)=0$. Por el teorema de la función implícita (¡verifica las hipótesis!), esta ecuación define implícitamente a $v$ como función de $x$ e $y$, digamos, como $v=h(x,y)$. Aplicando las fórmulas que conocemos para las derivadas de la función implicita, tenemos lo siguiente:

\[ \frac{\partial h}{\partial x}= -\frac{\partial F /\partial x}{\partial F /\partial v}\hspace{0.5cm}\textup{y}\hspace{0.5cm}\frac{\partial h}{\partial y}=-\frac{\partial F /\partial y}{\partial F /\partial v} \]

Donde $\frac{\partial F}{\partial x}=v^{2}$, $\frac{\partial F}{\partial v}=2xv-3v^{2}$ y $\frac{\partial F}{\partial y}=-1$. Luego tenemos:

\begin{align*} \frac{\partial h}{\partial x}(x,y)&=-\frac{v^{2}}{2xv-3v^{2}}\\ &=-\frac{v}{2x-3v}\\ &=\frac{h(x,y)}{3h(x,y)-2x}.\end{align*}

Esto muestra la primera parte. Para encontra la fórmula análoga, volvemos a usar las fórmulas para derivadas de la función implícita:

\begin{align*}\frac{\partial h}{\partial y}(x,y)&=-\frac{-1}{2xv-3v^{2}}\\ &=\frac{1}{2xh(x,y)-3h^{2}(x,y)}.\end{align*}

$\triangle$

Más adelante…

Hemos cubierto el teorema de la función inversa y el teorema de la función implícita. Estos son temas teóricos profundos e importantes que tienen muchas consecuencias. Tienen también otras versiones en contextos más amplios como variedades, geometría diferencial, etc. Por el momento, dejaremos hasta aquí nuestro estudio de estos temas, pero te recomendamos de vez en cuando repasarlos, pues cada vez entenderás más de sus demostraciones y lo que significan.

Nuestra atención se enfocará ahora en otros conceptos que se pueden definir en términos de funciones de varias variables: la divergencia, el laplaciano y el rotacional. Después, hablaremos un poco de cómo la teoría que hemos desarrollado nos ayudará a encontrar puntos críticos para funciones de varias variables.

Tarea moral

  1. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $y$ como funciones implícitas de $u$ y $v$, sean éstas $x=X(u,v)$ y $y=Y(u,v)$. Demuestra que $\partial X/\partial u=(xv-1)/(x-y)$ si $x\neq y$, y halla las fórmulas para $\partial X/\partial v$, $\partial Y/\partial v$, $\partial Y/\partial u$.
  2. Las tres ecuaciones \[ \left\{\begin{matrix} x^{2}-y\hspace{0.1cm}cos\hspace{0.1cm}(uv)+z^{2}=0, \\ x^{2}+y^{2}-\hspace{0.1cm}sen\hspace{0.1cm}(uv)+2z^{2}=2, \\ xy-\hspace{0.1cm}sen\hspace{0.1cm}u\hspace{0.1cm}cos\hspace{0.1cm}v+z=0 \end{matrix}\right.\] definen $x$, $y$, y $z$ como funciones de $u$ y $v$. Calcula las derivadas parciales $\partial x/\partial u$ y $\partial x/\partial v$ en el punto $x=y=1$, $u=\pi /2$, $v=0$, $z=0$.
  3. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $v$ como funciones de $u$ y $y$, sean éstas $x=X(u,v)$ y $v=V(u,y)$. Demuestra que $\partial X/\partial u=(u+v)/(1+yu)$ si $1+yu\neq 0$ y halla las fórmulas de $\partial X/\partial y$, $\partial V /\partial u$, $\partial V /\partial y$.
  4. Sigue las ideas de los resultados de la entrada anterior para escribir una calca de ella pero ahora para $f:S\subseteq \mathbb{R}^{m} \times \mathbb{R}^{l}$, en donde la función que se busca tiene ahora dominio en $\mathbb{R}^{m}$ que pone a las variables del dominio $\mathbb{R}^l$ en términos de las de $\mathbb{R}^m$.
  5. Haz un esfuerzo extra, y medita nuevamente en el teorema de la función implícita tratando de escribir una demostración de como sería el asunto para $f$ con dominio en $\mathbb{R}^{m}\times \mathbb{R}^{l}\times \mathbb{R}^{k}$. ¿Se podrá hallar la función $h$, pero ahora con dominio en $\mathbb{R}^{l}$?

Entradas relacionadas

Cálculo Diferencial e Integral III: Demostración del teorema de la función inversa

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior empezamos a hablar del teorema de la función inversa. Dimos su enunciado y probamos varias herramientas que nos ayudarán ahora con su demostración.

Recordemos que lo que queremos demostrar es lo siguiente.

Teorema (de la función inversa). Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el abierto $S$. Si $Df(\bar{a})$ es invertible, entonces, existe $\delta >0$ tal que:

  1. $B_{\delta}(\bar{a})\subseteq S$ y $f$ es inyectiva en $B_{\delta}(\bar{a})$.
  2. $f^{-1}:f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es continua en $f(B_{\delta}(\bar{a}))$.
  3. $f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}$ es un conjunto abierto.
  4. $f^{-1}$ es de clase $C^{1}$ en $f(B_{\delta}(\bar{a}))$ y además, si $\bar{x}=f(\bar{v})\in f(B_{\delta}(\bar{a}))$, entonces, $Df^{-1}(\bar{x})=Df^{-1}(f(\bar{v}))=(Df(\bar{v}))^{-1}$.

La herramienta más importante que probamos en la entrada anterior nos dice que si una función $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^n$ es de clase $C^1$, $\bar{a}\in S$ y $DF(\bar{a})$ es invertible, entonces existe una $\delta>0$ tal que $B_\delta(\bar{a})\subseteq S$ y $Df(\bar{b})$ es invertible para todo $\bar{b}\in B_\delta(\bar{a})$. Veremos cómo esta herramienta y otras que desarrollaremos en el transcurso de esta entrada nos permiten demostrar el teorema.

La función $f$ es inyectiva en una vecindad de $\bar{a}$

Vamos a enfocarnos en el punto $(1)$ del teorema. Veremos que existe la $\delta$ que hace que la función restringida a la bola de radio $\delta$ centrada en $\bar{a}$ es inyectiva. En esta parte de la prueba es conveniente que recuerdes que la norma infinito de un vector $(x_1,\ldots,x_n)\in \mathbb{R}^n$ es $$||\bar{x}||_{\infty}:=máx\{ |x_{1}|,\dots ,|x_{n}|\}.$$

Además, cumple para todo $\bar{x}\in \mathbb{R}^{n}$ que $$||\bar{x}||\leq \sqrt{n} ||\bar{x}||_{\infty}.$$

Veamos que bajo las hipótesis del problema se puede acotar $||f(\bar{u})-f(\bar{v})||$ en términos de $||\bar{u}-\bar{v}||$ dentro de cierta bola.

Proposición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el conjunto abierto $S$, y $\bar{a}\in S$. Si $Df(\bar{a})$ es invertible, entonces existe $\delta >0$ y $\varepsilon>0$ tal que $B_{\delta}(\bar{a})\subseteq S$ y $||f(\bar{u})-f(\bar{v})||\geq \varepsilon||\bar{u}-\bar{v}||$ para cualesquiera $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$.

Demostración. Por la diferenciabilidad de $f$ en $\bar{a}$, tenemos

\[ Df(\bar{a})(\bar{x})=\begin{pmatrix} \triangledown f_{1}(\bar{a})\cdot \bar{x} \\ \vdots \\ \triangledown f_{n}(\bar{a})\cdot \bar{x}\end{pmatrix} \]

para cada $\bar{a}\in S$ y cada $\bar{x}\in \mathbb{R}^{n}$.

Como $Df(\bar{a})$ es invertible, por los resultados de la entrada anterior existe un $m>0$ tal que

\[ ||Df(\bar{a})(\bar{x})||\geq m||\bar{x}|| \]

para todo $\bar{x}\in \mathbb{R}^{n}$.

También por resultados de la entrada anterior, para $\epsilon:=\frac{m}{2\sqrt{n}}>0$ existe $\delta >0$ tal que si $\bar{b}\in B_{\delta}(\bar{a})\subseteq S$ entonces

\[||(Df(\bar{b})-Df(\bar{a}))(\bar{x})||\leq \frac{m}{2\sqrt{n}}||\bar{x}||\]

para todo $\bar{x}\in \mathbb{R}^{n}$.

Usaremos en un momento estas desigualdades, pero por ahora fijemos nuestra atención en lo siguiente. Dados $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$, tomemos el $k\in \{1,\dots ,n\}$ tal que $$||Df(\bar{a})(\bar{u}-\bar{v})||_{\infty}=|\triangledown f_{k}(\bar{a})\cdot (\bar{u}-\bar{v})|.$$

Para dicho $k$, tenemos

\begin{align*}
|\triangledown f_{k}(\bar{a})\cdot (\bar{u}- \bar{v})|&=||Df(\bar{a})(\bar{u}-\bar{v})||_{\infty}\\
&\geq \frac{1}{\sqrt{n}}||Df(\bar{a})(\bar{u}-\bar{v})||.
\end{align*}

¿Cómo podemos seguir con nuestras desigualdades? Necesitamos usar el teorema del valor medio. Bastará el que demostramos para campos escalares. Aplicándolo a $f_k$ en los puntos $\bar{u},\bar{v}$ cuyo segmento se queda en la bola convexa $B_\delta(\bar{a})$, podemos concluir que existe un vector $\bar{w}$ en el segmento $\bar{\bar{u}\bar{v}}$ que cumple

$$f_k(\bar{u})-f_k(\bar{v})=\triangledown f(\bar{w}) \cdot (\bar{u}-\bar{v}).$$

Sabemos que para cualquier vector el valor absoluto de cualquiera de sus coordenadas es en valor menor o igual que la norma del vector. Además, demostramos inicialmente unas desigualdades anteriores. Juntando esto, obtenemos la siguiente cadena de desigualdades:

\begin{align*}
||f(\bar{u})-f(\bar{v})||&\geq |f_{k}(\bar{u})-f_{k}(\bar{v})|\\
&=|\triangledown f(\bar{w}) \cdot (\bar{u}-\bar{v})|\\
&\geq |\triangledown f_k(\bar{a})\cdot (\bar{u}-\bar{v})|-|\triangledown f_k(\bar{w}) \cdot (\bar{u}-\bar{v})-\triangledown f_k(\bar{a})\cdot (\bar{u}-\bar{v})|\\
&\geq \frac{1}{\sqrt{n}}||Df(\bar{a})(\bar{u}-\bar{v})|| – ||Df(\bar{w})(\bar{u}-\bar{v})-Df(\bar{a})(\bar{u}-\bar{v})||\\
&\geq \frac{1}{\sqrt{n}}(m||\bar{u}-\bar{v}||)-\frac{m}{2\sqrt{n}}||\bar{u}-\bar{v}||\\
&=\frac{m}{2\sqrt{n}}||\bar{u}-\bar{v}||\\
&=\varepsilon||\bar{u}-\bar{v}||.
\end{align*}

La gran conclusión de esta cadena de desigualdades es que $$||f(\bar{u})-f(\bar{v})||\geq \varepsilon||\bar{u}-\bar{v}||,$$ que es lo que buscábamos.

$\square$

¡Esto es justo lo que nos pide el primer punto! Hemos encontrado una bola alrededor de $\bar{a}$ dentro de la cual si $\bar{u}\neq \bar{v}$, entonces $||f(\bar{u})-f(\bar{v})||\geq \varepsilon ||\bar{u}-\bar{v}||>0$, de modo que $f(\bar{u})\neq f(\bar{v})$. ¡La función restringida en esta bola es invertible! En términos geométricos el último teorema nos dice lo siguiente: Si $f$ es diferenciable en un abierto $S$, y $Df(\bar{a})$ es invertible, entonces hay una vecindad alrededor de $\bar{a}$ en donde $f$ «no se pega», es decir $f$ es inyectiva.

Figura 1: Si la función no es inyectiva, lo que tenemos es que proyecta el rectángulo $\mathcal{R}$ en una superficie que pega los puntos $\bar{a}$ y $\bar{b}$. Arriba una función inyectiva y abajo una que no lo es.

Ya vimos cómo encontrar una bola $B_\delta(\bar{a})$ dentro de la cual $f$ es inyectiva. Si pensamos que el contradominio es exactamente $f(B_\delta(\bar{a}))$, entonces la función también es suprayectiva. Esto hace que sea biyectiva y por tanto que tenga inversa $f^{-1}$.

La función inversa es continua

Veamos ahora que la función inversa es continua. De hecho, mostraremos algo un poco más fuerte.

Teorema. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el abierto $S$, y $\bar{a}\in S$. Si $Df(\bar{a})$ es invertible, entonces existe $\delta >0$ tal que $B_{\delta}(\bar{a})\subseteq S$, $f$ es inyectiva en $B_{\delta}(\bar{a})$ y además $f^{-1}:f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es uniformemente continua en su dominio.

Demostración. La primera parte y la existencia de $f^{-1}:f(B_\delta(a))\subseteq \mathbb{R}^n \to \mathbb{R}^n$ se debe a la discusión de la sección anterior. De hecho, lo que mostramos es que existe $\delta >0$ y $\varepsilon>0$ tal que $||f(\bar{v})-f(\bar{u})||\geq \varepsilon||\bar{v}-\bar{u}||$ para todo $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$.

Supongamos que nos dan un $\varepsilon^\ast$. Tomemos $\delta^\ast=\varepsilon^\ast \varepsilon$. Tomemos $\bar{x},\bar{y}$ en $f(B_\delta(\bar{a}))$ tales que $||\bar{y}-\bar{x}||<\delta ^{\ast}$. Como $\bar{x}$ y $\bar{y}$ están en dicha bola, podemos escribirlos como $\bar{x}=f(\bar{u})$, $\bar{y}=f(\bar{v})$ con $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$. Notemos entonces que

\begin{align*}
||f^{-1}(\bar{y})-f^{-1}(\bar{x})||&=||\bar{v}-\bar{u}||\\
&\leq \frac{1}{\varepsilon}||f(\bar{v})-f(\bar{u})||\\
&= \frac{1}{\varepsilon}||\bar{y}-\bar{x}||\\
&<\frac{\varepsilon^\ast\varepsilon}{\varepsilon}\\
&=\varepsilon^\ast.
\end{align*}

Tenemos entonces que $f^{-1}$ es uniformemente continua en $f(B_\delta(\bar{a}))$.

$\square$

Esto demuestra el punto $(2)$ de nuestro teorema. La prueba de que el conjunto $f(B_\delta(\bar{a}))$ es abierto no es para nada sencilla como parecería ser. Una demostración muy instructiva, al nivel de este curso, se puede encontrar en el libro Cálculo diferencial de varias variables del Dr. Javier Páez Cárdenas editado por la Facultad de Ciencias de la Universidad Nacional Autónoma de México (UNAM) en las páginas 474-476.

La función inversa es diferenciable

Resta hacer la demostración de $(4)$. En esta sección veremos que la inversa $f^{-1}$ es derivable y que la derivada es precisamente lo que propone el teorema. En la siguiente sección veremos que la inversa es $C^1$.

Tomemos un punto $\bar{x}_0=f(\bar{v}_0)\in f(B_{\delta}(\bar{a}))$. Mostraremos que, en efecto, $T=(Df(\bar{v}_0))^{-1}$ es la derivada de $f^{-1}$ en $\bar{x}_0$, lo cual haremos por definición verificando que

\[ \lim\limits_{\bar{x}\to \bar{x}_{0}}\frac{f^{-1}(\bar{x})-f^{-1}(\bar{x}_{0})-T(\bar{x}-\bar{x}_{0})}{||\bar{x}-\bar{x}_{0}||}=0.\]

Para ello, introducimos la siguiente función auxiliar $g:B_{\delta}(\bar{a})\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ dada por:

\[ g(\bar{v})=\left\{ \begin{matrix} \frac{\bar{v}-\bar{v}_{0}-T(f(\bar{v})-f(\bar{v}_{0}))}{||f(\bar{v})-f(\bar{v}_{0})||} & \bar{v}\neq \bar{v}_{0} \\ \bar{0} & \bar{v}=\bar{v}_{0}. \end{matrix} \right. \]

Esta función está bien definida, pues $f$ es inyectiva en la bola $B_{\delta}(\bar{a})$. La composición $g\circ f^{-1}$ también está bien definida en el abierto $f(B_{\delta}(\bar{a}))$ y

\[ (g\circ f^{-1})(\bar{x})=\left\{ \begin{matrix} \frac{f^{-1}(\bar{x})-f^{-1}(\bar{x}_{0})-T(\bar{x}-\bar{x}_{0})}{||\bar{x}-\bar{x}_{0}||} & \bar{x}\neq \bar{x}_{0} \\ \bar{0} & \bar{x}=\bar{x}_{0} \end{matrix} \right.\]

para todo $\bar{x}\in f(B_{\delta}(\bar{a}))$. Esto nos permite poner el límite buscado como el límite de una composición de la siguiente forma:

\[ \lim\limits_{\bar{x}\to \bar{x}_{0}}\frac{f^{-1}(\bar{x})-f^{-1}(\bar{x}_{0})-T(\bar{x}-\bar{x}_{0})}{||\bar{x}-\bar{x}_{0}||}=\lim\limits_{\bar{x}\to \bar{x}_{0}}(g\circ f^{-1})(\bar{x}) \]

Como $f^{-1}$ es continua en $\bar{x}_{0}$, basta demostrar que $g$ es continua en $\bar{v}_{0}=f^{-1}(\bar{x}_{0})$. Esto equivale a probar que

\[ \lim\limits_{\bar{v}\to \bar{v}_{0}}g(\bar{v})=\lim\limits_{\bar{v}\to \bar{v}_{0}}\frac{\bar{v}-\bar{v}_{0}-(Df(\bar{v}_{0}))^{-1}(f(\bar{v})-f(\bar{v}_{0})))}{||f(\bar{v})-f(\bar{v}_{0})||}=0.\]

Hay que demostrar este último límite. Reescribimos la expresión

$$\frac{\bar{v}-\bar{v}_{0}-(Df(\bar{v}_{0}))^{-1}(f(\bar{v})-f(\bar{v}_{0}))}{||f(\bar{v})-f(\bar{v}_{0})||}$$ como

$$\frac{(Df(\bar{v}_{0}))^{-1}[Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})-(f(\bar{v})-f(\bar{v}_{0}))]}{||f(\bar{v})-f(\bar{v}_{0})||},$$

y luego multiplicamos y dividimos por $||\bar{v}-\bar{v}_0||$ y reorganizamos para obtener

\[ -\frac{||\bar{v}-\bar{v}_{0}||}{||f(\bar{v})-f(\bar{v}_{0})||}(Df(\bar{v}_{0}))^{-1}\left( \frac{f(\bar{v})-f(\bar{v}_{0})-Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})}{||\bar{v}-\bar{v}_{0}||}\right).\]

Como $(Df(\bar{v}_{0}))^{-1}$ es continua (por ser lineal) y $f$ es diferenciable en $\bar{v}_{0}$, se tiene que

\begin{align*}
\lim\limits_{\bar{v}\to \bar{v}_{0}}(Df(\bar{v}_{0}))&^{-1}\left( \frac{f(\bar{v})-f(\bar{v}_{0})-Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})}{||\bar{v}-\bar{v}_{0}||}\right)\\
&=(Df(\bar{v}_{0}))^{-1}\left( \lim\limits_{\bar{v}\to \bar{v}_{0}}\frac{f(\bar{v})-f(\bar{v}_{0})-Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})}{||\bar{v}-\bar{v}_{0}||}\right)\\
&=(Df(\bar{v}_{0}))^{-1}(\bar{0})\\
&=\bar{0}.
\end{align*}

El factor que nos falta entender es $\frac{||\bar{v}-\bar{v}_{0}||}{||f(\bar{v})-f(\bar{v}_{0})||}$. Pero por la primera proposición de esta entrada, sabemos que existe una $\epsilon>0$ que acota este factor superiormente por $\frac{1}{\epsilon}$. De esta manera,

\[ \lim\limits_{\bar{v}\to \bar{v}_{0}}g(\bar{v})=\cancelto{acotado}{\lim\limits_{\bar{v}\to \bar{v}_{0}}\frac{-||\bar{v}-\bar{v}_{0}||}{||f(\bar{v})-f(\bar{v}_{0})||}}\cancelto{0}{(Df(\bar{v}_{0}))^{-1}\left( \frac{f(\bar{v})-f(\bar{v}_{0})-Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})}{||\bar{v}-\bar{v}_{0}||}\right)}=0.\]

Esto nos dice entonces que $g$ es continua en $\bar{v}_0$ y por lo tanto:

\begin{align*}
\lim\limits_{\bar{x}\to \bar{x}_{0}}(g\circ f^{-1})(\bar{x}) &= g\left(\lim_{\bar{x}\to \bar{x}_0} f^{-1}(\bar{x})\right)\\
&=g(f^{-1}(\bar{x}_0))\\
&=g(\bar{v}_0)\\
&=\bar{0}.
\end{align*}

Por lo tanto $f^{-1}$ es diferenciable en $\bar{x}_{0}$ mediante la derivada que propusimos, es decir,

\[ Df^{-1}(\bar{x}_{0})=Df^{-1}(f(\bar{v}_{0}))=(Df(\bar{v}_{0}))^{-1}=(Df(f^{-1}(\bar{x}_{0})))^{-1} \]

para todo $\bar{x}_0\in f(B_{\delta}(\bar{a}))$.

La función inversa es de clase $C^1$

Resta verificar que $f^{-1}$ es de clase $C^{1}$ en $f(B_{\delta}(\bar{a}))$. Lo haremos con la caracterización de la entrada anterior. Tomemos una $\mu>0$. Nos gustaría ver que si $\bar{x}$ y $\bar{x}_0$ están suficientemente cerca, entonces

$$||Df^{-1}(\bar{x})(\bar{z})-Df^{-1}(\bar{x}_{0})(\bar{z})||<\mu ||\bar{z}||$$

para toda $\bar{z} \in \mathbb{R}^n$.

Recordemos que por la entrada anterior hay una $m>0$ tal que para todo $\bar{z}$ en $\mathbb{R}^n$ se cumple

\begin{equation}
\label{eq:clasec1}
\frac{1}{m}||\bar{z}||=\frac{1}{m}|Df(\bar{v})((Df(\bar{v}))^{-1})(\bar{z})||\geq ||(Df(\bar{v}))^{-1}(\bar{z})||
\end{equation}

También notemos que, si $X,Y$ son matrices invertibles en $M_n(\mathbb{R})$, tenemos:

$$X^{-1}(Y-X)Y^{-1}=X^{-1}YY^{-1}-X^{-1}XY^{-1}=X^{-1}-Y^{-1}.$$

Tomando $X=Df(\bar{v})$ y $Y=Df(\bar{v}_0)$, aplicando la igualdad anterior en un punto $\bar{x}$ en $\mathbb{R}^n$, sacando normas y usando la desigualdad \eqref{eq:clasec1}, obtenemos:

\begin{align*}
||(X^{-1}-Y^{-1})(\bar{z})||&=||(X^{-1}(Y-X)Y^{-1})(\bar{z})||\\
&\leq \frac{1}{m} ||((Y-X)Y^{-1})(\bar{z})||\\
&=\frac{1}{m}||((Df(\bar{v}_0)-Df(\bar{v}))Df^{-1}(f(\bar{v}_0)))(\bar{z})||.
\end{align*}

Como $f$ es de clase $C^1$, por la entrada anterior podemos construir una $\delta^\ast$ tal que $B_{\delta^\ast}(\bar{v}_0)\subseteq B_\delta(\bar{a})$ y para la cual si $\bar{v}$ está en $B_{\delta^\ast}(\bar{v}_0)$, entonces:

\[ \begin{equation}||(Df(\bar{v}_{0})-Df(\bar{v}))(\bar{z})||\leq m^{2}\mu||\bar{z}||\end{equation}.\]

Para todo $\bar{x}\in \mathbb{R}^{n}$.

Finalmente, como $f^{-1}$ es continua en $f(B_{\delta}(\bar{a}))$, si $\bar{x}$ y $\bar{x}_0$ están suficientemente cerca, digamos $||\bar{x}-\bar{x}_0||<\nu$, entonces

\[ \begin{equation}||f^{-1}(\bar{x})-f^{-1}(\bar{x}_{0})||=||\bar{v}-\bar{v}_{0}||<\delta ^\ast.\end{equation}.\]

Usamos todo lo anterior para establecer la siguiente cadena de desigualdades cuando $||\bar{x}-\bar{x}_0||<\nu$:

\begin{align*}
||Df^{-1}(\bar{x})(\bar{z})-Df^{-1}(\bar{x}_{0})(\bar{z})||&=||Df^{-1}(f(\bar{v}))(\bar{z})-Df^{-1}(f(\bar{v}_{0}))(\bar{z})||\\
&\leq \frac{1}{m}||[Df(\bar{v}_{0})-Df(\bar{v})](Df^{-1}(f(\bar{v}_{0})))(\bar{z})||\\
&\leq \frac{1}{m}\left( m^{2}\mu ||Df^{-1}(f(\bar{v}_{0}))(\bar{z})||\right) \\
&=m\mu ||Df^{-1}(f(\bar{v}_{0}))(\bar{z})||\\
&\leq m\mu \left( \frac{1}{m}||\bar{z}||\right)\\
&=\mu||\bar{z}||.
\end{align*}

Esto implica que $f^{-1}$ es de clase $C^1$. Como tarea moral, revisa los detalles y di explícitamente qué resultado de la entrada anterior estamos usando.

$\square$

Ejemplo del teorema de la función inversa

Ejemplo. Consideremos $\xi :\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}$ dada por $\xi (r,\theta, \phi)=(r\hspace{0.15cm}sen \phi \hspace{0.15cm}cos\theta ,r\hspace{0.15cm} sen \phi \hspace{0.15cm}sen\theta ,r\hspace{0.15cm}cos \phi)$. Se tiene que $\xi$ es diferenciable en todo su dominio pues cada una de sus derivadas parciales es continua. Esta es la función de cambio de coordenadas de esféricas a rectangulares o cartesianas. La matriz jacobiana está dada como sigue.

\[ D\xi (r,\theta ,\phi )=\begin{pmatrix} sen\phi \hspace{0.1cm}cos\theta & -r\hspace{0.1cm}sen\phi \hspace{0.1cm}sen\theta & r\hspace{0.1cm}cos\phi \hspace{0.1cm}cos\theta \\ sen\phi \hspace{0.1cm}sen\theta & r\hspace{0.1cm}sen\phi \hspace{0.1cm}cos\theta & r\hspace{0.1cm}cos\phi \hspace{0.1cm}sen\theta \\ cos\phi & 0 & -r\hspace{0.1cm}sen\phi \end{pmatrix}.\]

Luego $\det(D\xi (r,\theta ,\phi ))=-r^{2}\hspace{0.1cm}sen\phi$ entonces $D\xi$ es invertible cuando $r\neq 0$ y $\phi \neq k\pi$, $k\in \mathbb{Z}$. Su inversa es:

\[ (D\xi (r,\theta ,\phi ))^{-1}=\begin{pmatrix} sen\phi \hspace{0.1cm}cos\theta & sen\phi \hspace{0.1cm}sen\theta & cos\phi \\ -\frac{sen\theta}{r\hspace{.01cm}sen\phi} & \frac{cos\theta}{r\hspace{0.1cm}sen\phi} & 0 \\ \frac{1}{r}\hspace{0.1cm}cos\theta \hspace{0.1cm}cos\phi & \frac{1}{r}\hspace{0.1cm}cos\phi \hspace{0.1cm}sen\theta & -\frac{1}{r}\hspace{0.1cm}sen\phi \end{pmatrix}.\]

El teorema de la función inversa nos garantiza la existencia local de una función $\xi ^{-1}$. En este caso, sería la función de cambio de coordenadas rectangulares a esféricas. Si $f:S\subseteq \mathbb{R}^{3}\rightarrow \mathbb{R}$ es una función $C^{1}$ dada en coordenadas esféricas; podemos asumir que $f\circ \xi ^{-1}$ es la misma función pero en términos de coordenadas rectangulares.

$\triangle$

Más adelante…

¡Lo logramos! Hemos demostrado el teorema de la función inversa, uno de los resultados cruciales de nuestro curso. El siguiente tema es el teorema de la función implícita, que será otro de nuestros resultados principales. Uno podría pensar que nuevamente tendremos que hacer una demostración larga y detallada. Pero afortunadamente la demostración del teorema de la función implícita se apoya fuertemente en el teorema de la función inversa que ya demostramos. En la siguiente entrada enunciaremos y demostraremos nuestro nuevo resultado y una entrada más adelante veremos varios ejemplos para profundizar en su entendimiento.

Tarea moral

  1. En el ejemplo que dimos, verifica que el determinante en efecto es $-r^2\sin\phi$. Verifica también que la inversa es la matriz dada.
  2. Repasa cada una de las demostraciones de esta entrada y asegúrate de entender por qué se siguen cada una de las desigualdades. Explica en qué momentos estamos usando resultados de la entrada anterior.
  3. Da la función inversa de la transformación de cambio de coordenadas polares a rectangulares $g(r,\theta)=(r\hspace{0.1cm}cos\theta , r\hspace{0.1cm}sen\theta )$.
  4. Demuestra que para todo $\bar{x}\in \mathbb{R}^{n}$ se tiene $||\bar{x}||\leq \sqrt{n}||\bar{x}||_{\infty}.$
  5. Verifica que en efecto $||\cdot||_{\infty}$ es una norma.

Entradas relacionadas

Cálculo Diferencial e Integral III: Introducción al teorema de la función inversa

Por Alejandro Antonio Estrada Franco

Introducción

Estamos a punto de entrar a discutir dos de los resultados principales de nuestro curso: el teorema de la función inversa y el teorema de la función implícita. Repasemos un poco qué hemos hecho hasta ahora. En las dos entradas anteriores introdujimos la noción de diferenciabilidad, la cual cuando sucede para una función $f:\mathbb{R}^n\to \mathbb{R}^m$, nos dice que $f$ se parece mucho a una función lineal en un punto dado. Vimos que esta noción implica continuidad y que tiene una regla de la cadena relacionada con el producto de matrices. También, hemos discutido cómo esta noción se relaciona con la existencia de espacios tangentes a gráficas multidimensionales.

Ahora queremos entender todavía mejor a las funciones diferenciables. Hay dos teoremas que nos permiten hacer eso. Uno es el teorema de la función inversa y el otro es el teorema de la función implícita. En esta entrada hablaremos del primero, y en un par de entradas más introduciremos el segundo resultado. El propósito del teorema de la función inversa es dar una condición bajo la cual una función es invertible, por lo menos localmente. De hecho, la mayoría de las veces sólo se puede garantizar la invertibilidad localmente, pues las funciones usualmente no son inyectivas y esto da comportamientos globales más difíciles de manejar.

Enunciar el teorema y entenderlo requiere de cierto esfuerzo. Y demostrarlo todavía más. Por esta razón, en esta entrada nos enfocaremos sólo en dar el teorema y presentar herramientas preliminares que necesitaremos para hacer su demostración.

Enunciado del teorema de la función inversa

Supongamos que tenemos $f:\mathbb{R}^n\to \mathbb{R}^n$ y que es diferenciable en el punto $\bar{a}$. Entonces, $f$ se parece mucho a una función lineal en $\bar{a}$, más o menos $f(\bar{x})\approx f(\bar{a}) + T_{\bar{a}}(\bar{x}-\bar{a})$. Así, si $T_{\bar{a}}$ es invertible, suena a que «cerquita de $\bar{a}$» la función $f(\bar{x})$ debe de ser invertible. El teorema de la función inversa pone estas ideas de manera formal.

Teorema (de la función inversa). Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el abierto $S$. Si la matriz $Df(\bar{a})$ es invertible, entonces, existe $\delta >0$ tal que:

  1. $B_{\delta}(\bar{a})\subseteq S$ y $f$ es inyectiva en $B_{\delta}(\bar{a})$.
  2. $f^{-1}:f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es continua en $f(B_{\delta}(\bar{a}))$.
  3. $f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}$ es un conjunto abierto.
  4. $f^{-1}$ es de clase $C^{1}$ en $f(B_{\delta}(\bar{a}))$ y además, si $\bar{x}=f(\bar{v})\in f(B_{\delta}(\bar{a}))$, entonces, $Df^{-1}(\bar{x})=Df^{-1}(f(\bar{v}))=(Df(\bar{v}))^{-1}$.

Veamos qué nos dice de manera intuitiva cada una de las conclusiones del teorema.

  1. Tendremos una bola $B_\delta(\bar{a})$ dentro de la cual $f$ será inyectiva, y por lo tanto será biyectiva hacia su imagen. Así, $f$ restringida a esta bola será invertible. Es importante que sea una bola abierta, porque entonces sí tenemos toda una región «gordita» en donde pasa la invertibilidad (piensa que si fuera un cerrado, a lo mejor sólo es el punto $\bar{a}$ y esto no tiene chiste).
  2. La inversa $f^{-1}$ que existirá para $f$ será continua. Esto es lo mínimo que podríamos esperar, aunque de hecho el punto $4$ garantiza algo mucho mejor.
  3. La imagen de $f$ en la bola $B_\delta(\bar{a})$ será un conjunto abierto.
  4. Más aún, se tendrá que $f^{-1}$ será de clase $C^1$ y se podrá dar de manera explícita a su derivada en términos de la derivada de $f$ con una regla muy sencilla: simplemente la matriz que funciona para derivar $f$ le sacamos su inversa como matriz y esa funciona al evaluarla en el punto apropiado.

El teorema de la función inversa es profundo pues tanto su enunciado como su demostración combina ideas de topología, álgebra y cálculo. Por esta razón, para su demostración necesitaremos recopilar varias de las herramientas de álgebra lineal que hemos repasado en la Unidad 2 y la Unidad 5. Así mismo, necesitaremos ideas topológicas de las que hemos visto en la Unidad 3. Con ellas desarrollaremos algunos resultados auxiliares que en la siguiente entrada nos permitirán concluir la demostración.

Un criterio para campos vectoriales $C^1$

El teorema de la función inversa es para funciones de clase $C^1$. Nos conviene entender esta noción mejor. Cuando una función $f$ es de clase $C^1$, entonces es diferenciable. Pero el regreso no es cierto y hay contraejemplos. ¿Qué le falta a una función diferenciable para ser de clase $C^1$? A grandes rasgos, que las funciones derivadas $T_\bar{a}$ y $T_\bar{b}$ hagan casi lo mismo cuando $\bar{a}$ y $\bar{b}$ son cercanos. En términos de matrices, necesitaremos que la expresión $||(Df(\bar{a})-Df(\bar{b}))(\bar{x})||$ sea pequeña cuando $\bar{a}$ y $\bar{b}$ son cercanos entre sí.

El siguiente teorema será importante en nuestro camino hacia el teorema de la función inversa. Intuitivamente, para lo que lo usaremos es para aproximar una función $f$ localmente, con «cuadritos» que corresponden a los planos tangentes, porque «muy cerquita» estos planos varían muy poco si pedimos que $f$ sea de clase $C^1$. Es decir si $\bar{a}$ y $\bar{b}$ son dos puntos en el dominio de una función diferenciable, y estos están muy cerca uno del otro, sus planos tangentes serán casi el mismo. Esto nos invita a cambiar localmente a una superficie por cuadritos como más adelante se explicará con detalle.

Figura 1. En azul y en rojo dos planos que corresponden a las derivadas $T_{\bar{a}}$ y $T_{\bar{b}}$. Este cambio calculado es distintos puntos cercanos es «suave», esto se expresará con la ecuación $||Df(\bar{b})(\bar{x})-Df(\bar{a})(\bar{x})||\leq \epsilon ||\bar{x}||$ ya con las diferenciales para todo $\bar{x}$.

El teorema concreto que nos interesa demostrar es la siguiente equivalencia para que una función sea de clase $C^1$.

Teorema. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ una función diferenciable en $S$. Se tiene que $f$ es de clase $C^{1}$ en $S$ si y sólo si para todo $\bar{a}\in S$ y para cada $\varepsilon >0$ existe $\delta >0$ tal que $B_{\delta}(\bar{a})\subseteq S$, y si $\bar{b}\in B_{\delta}(\bar{a})$ se tiene $||(Df(\bar{b})-Df(\bar{a}))(\bar{x})||\leq \varepsilon ||\bar{x}||$ para todo $\bar{x}\in \mathbb{R}^{n}$.

Demostración. $\Rightarrow).$ Supongamos que $f$ es de clase $C^1$ en $S$, es decir, todas sus funciones componentes tienen derivadas parciales en $S$ y son continuas. Sea $\varepsilon>0$. Veremos que se puede encontrar una $\delta$ como en el enunciado.

Tomemos $\bar{a}$ y $\bar{b}$ en $S$. Expresamos a $(Df(\bar{b})-Df(\bar{a}))(\bar{x})$ como

\begin{align*}
\begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\bar{b})-\frac{\partial f_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{b})-\frac{\partial f_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \dots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{b})-\frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{b})-\frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}\begin{pmatrix} x_{1} \\ \vdots \\ x_{n}\end{pmatrix}
\end{align*}

o equivalentemente como

\begin{align*}
\begin{pmatrix} \left( \triangledown f_{1}(\bar{b})-\triangledown f_{1}(\bar{a})\right) \cdot \bar{x} \\ \vdots \\ \left( \triangledown f_{m}(\bar{b})-\triangledown f_{m}(\bar{a})\right) \cdot \bar{x} \end{pmatrix}.
\end{align*}

De tal manera que por Cauchy-Schwarz:

\begin{align*}
||(Df(\bar{b})-Df(\bar{a}))(\bar{x})||^2&=\sum_{i=1}^m (\left( \triangledown f_{i}(\bar{b})-\triangledown f_{i}(\bar{a})\right)\cdot \bar{x})^2\\
&\leq \sum_{i=1}^m ||\triangledown f_{i}(\bar{b})-\triangledown f_{i}(\bar{a})||^2||\bar{x}||^2\\
&=||\bar{x}||^2 \sum_{i=1}^m ||\triangledown f_{i}(\bar{b})-\triangledown f_{i}(\bar{a})||^2\\
&=||\bar{x}||^2 \sum_{i=1}^m \sum_{j=1}^{n}\left( \frac{\partial f_{i}}{\partial x_{j}}(\bar{b})-\frac{\partial f_{i}}{\partial x_{j}}(\bar{a})\right) ^{2}
\end{align*}

En este punto se ve la importancia de que las parciales sean continuas. Podemos encontrar una $\delta$ que nos garantice que $B_\delta\subseteq S$ y que si $||\bar{b}-\bar{a}||<\delta$, entonces $$\left| \frac{\partial f_{i}}{\partial x_{j}}(\bar{b})-\frac{\partial f_{i}}{\partial x_{j}}(\bar{a}) \right| < \frac{\varepsilon}{\sqrt{mn}}.$$ En esta situación, podemos seguir acotando $||(Df(\bar{b})-Df(\bar{a}))(\bar{x})||^2$ como sigue:
\begin{align*}
&\leq ||\bar{x}|| \sum_{i=1}^m \sum_{j=1}^{n}\frac{\varepsilon^2}{mn}\\
&=\varepsilon^2||\bar{x}||^2.
\end{align*}

Al sacar raiz cuadrada, obtenemos la desigualdad $$||(Df(\bar{b})-Df(\bar{a}))(x)||\leq \varepsilon||\bar{x}||$$ buscada.

$\Leftarrow).$ Supongamos ahora que para cada $\varepsilon$ existe una $\delta$ como en el enunciado del teorema. Debemos ver que todas las derivadas parciales de todas las componentes son continuas. Podemos aplicar la desigualdad $||(Df(\bar{b})-Df(\bar{a}))(\bar{x})||\leq ||\bar{x}||\varepsilon$ tomando como $\bar{x}$ cada vector $\hat{e}_i$ de la base canónica. Esto nos dice que

\[ ||Df(\bar{b})(\hat{e}_i)-Df(\bar{a})(\hat{e}_i)||< \varepsilon||\hat{e}_i|| =\varepsilon.\]

Por nuestro desarrollo anterior, para cada $i$ tenemos

\begin{align*}
\varepsilon&>||Df(\bar{b})(\hat{e}_i)-Df(\bar{a})(\hat{e}_i)||\\
&=||\left( \triangledown f_{1}(\bar{b})\cdot \hat{e}_i-\triangledown f_{1}(\bar{a})\cdot \hat{e}_i,\dots ,\triangledown f_{m}(\bar{b})\cdot \hat{e}_i-\triangledown f_{m}(\bar{a})\cdot \hat{e}_i\right)||\\
&=\left| \left|\left( \frac{\partial f_{1}}{\partial x_{i}}(\bar{b})-\frac{\partial f_{1}}{\partial x_{i}}(\bar{a}),\dots ,\frac{\partial f_{m}}{\partial x_{i}}(\bar{b})-\frac{\partial f_{m}}{\partial x_{i}}(\bar{a})\right) \right| \right|\\
&= \sqrt{\sum_{j=1}^{m}\left(\frac{\partial f_{j}}{\partial x_{i}}(\bar{b})-\frac{\partial f_{j}}{\partial x_{i}}(\bar{a})\right)^{2}}.
\end{align*}

Elevando al cuadrado,

\[ \sum_{j=1}^{m}\left(\frac{\partial f_{j}}{\partial x_{i}}(b)-\frac{\partial f_{j}}{\partial x_{i}}(a)\right)^{2}<\varepsilon ^{2}.\]

Como todos los términos son no negativos, cada uno es menor a $\epsilon^2$. Así, para cada $i,j$ tenemos

\[ \left|\frac{\partial f_{j}}{\partial x_{i}}(\bar{b})-\frac{\partial f_{j}}{\partial x_{i}}(\bar{a})\right|<\varepsilon.\]

Esto es precisamente lo que estábamos buscando: si $\bar{b}$ está lo suficientemente cerca de $\bar{a}$, cada derivada parcial en $\bar{b}$ está cerca de su correspondiente en $\bar{a}$.

$\square$

Invertibilidad de $Df(\bar{a})$ en todo un abierto

En esta sección demostraremos lo siguiente. Si $f:\mathbb{R}^n\to \mathbb{R}^n$ es un campo vectorial diferenciable en $\bar{a}$ y $Df(\bar{a})$ es invertible, entonces $Df(\bar{x})$ será invertible para cualquier $\bar{x}$ alrededor de cierta bola abierta alrededor de $\bar{a}$. Los argumentos en esta ocasión están un poco más relacionados con el álgebra lineal.

Será útil que recuerdes que una transformación lineal $T:\mathbb{R}^n \to \mathbb{R}^n$ es invertible si el único $\bar{x}\in \mathbb{R}^n$ tal que $T(\bar{x})=\bar{0}$ es $\bar{x}=\bar{0}$. El siguiente criterio es otra caracterización de invertibilidad en términos de lo que le hace $T$ a la norma de los vectores.

Teorema. Sea $T:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ una transformación lineal. La transformación $T$ es invertible si y sólo si existe $\varepsilon >0$ tal que $$||T(\bar{x})||\geq \varepsilon ||\bar{x}||$$ para todo $\bar{x}\in \mathbb{R}^{n}$.

Demostración. $\left. \Rightarrow \right)$ Como $T$ es invertible, para todo $\bar{x}\neq \bar{0}$ sucede que $T(\bar{x})\neq \bar{0}$. En particular, esto sucede para todos los vectores en $S^{n-1}$ (recuerda que es la esfera de radio $1$ y dimensión $n-1$ centrada en $\bar{0}$). Esta esfera es compacta y consiste exactamente de los $\bar{x}\in \mathbb{R}^n$ de norma $1$.

Sabemos que las transformaciones lineales y la función norma son continuas. Por la compacidad de $S^{n-1}$, la expresión $||T(\bar{x})||$ tiene un mínimo digamos $\varepsilon$, que alcanza en $S^{n-1}$. Por el argumento del párrafo anterior, $\varepsilon>0$.

Tomemos ahora cualquier vector $\bar{x}\in \mathbb{R}^n$. Si $\bar{x}=\bar{0}$, entonces $$||T(\bar{0})||=||\bar{0}||=0\geq \varepsilon ||\bar{0}||.$$ Si $\bar{x}\neq \bar{0}$, el vector $\frac{\bar{x}}{||\bar{x}||}$ está en $S^{n-1}$, de modo que $$\left|\left|T\left(\frac{\bar{x}}{||\bar{x}||}\right)\right|\right| \geq \varepsilon.$$ Usando linealidad para sacar el factor $||\bar{x}||$ y despejando obtenemos $$||T(\bar{x})||\geq \varepsilon ||\bar{x}||,$$ como estábamos buscando.

$\left. \Leftarrow \right)$ Este lado es más sencillo. Si existe dicha $\varepsilon >0$, entonces sucede que para $\bar{x}$ en $\mathbb{R}^n$, con $\bar{x}\neq \bar{0}$ tenemos $$||T(\bar{x})||\geq \varepsilon||\bar{x}||>0.$$ Por lo tanto, $T(\bar{x})\neq \bar{0}$ y así $T$ es invertible.

$\square$

Obtengamos una consecuencia del teorema de clasificación de la sección anterior que está muy relacionada con este resultado que acabamos de demostrar.

Teorema. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el conjunto abierto $S$ y $\bar{a}\in S$. Si $Df(\bar{a})$ es invertible, entonces existen $\delta >0$ y $m>0$ tales que $B_{\delta}(\bar{a})\subseteq S$ y $||Df(\bar{b})(\bar{x})||\geq m||\bar{x}||$, para todo $\bar{b}\in B_{\delta}(\bar{a})$ y para todo $\bar{x}\in \mathbb{R}^{n}$.

Demostración. Como $Df(\bar{a})$ es invertible, por el teorema que acabamos de demostrar existe $\varepsilon’>0$ tal que $$||Df(\bar{a})(\bar{x})||\geq \varepsilon’||\bar{x}||$$ para todo $\bar{x}\in \mathbb{R}^{n}$.

Por nuestra caracterización de funciones $C^1$, Ahora como $f\in C^{1}$ en $S$ (abierto) para $\varepsilon =\frac{\varepsilon’}{2}>0$, existe $\delta >0$ tal que $B_{\delta}(\bar{a})\subseteq S$, y $||Df(\bar{b})(\bar{x})-Df(\bar{a})(\bar{x})||\leq \frac{\varepsilon’}{2}||\bar{x}||$ para todo $\bar{b}\in B_{\delta}(\bar{a})$ y para todo $\bar{x}\in \mathbb{R}^{n}$.

Por la desigualdad del triángulo, \[ ||Df(\bar{a})(\bar{x})-Df(\bar{b})(\bar{x})||+||Df(\bar{b})(\bar{x})||\geq ||Df(\bar{a})(\bar{x})||,\]

de donde

\begin{align*}
||Df(\bar{b})(\bar{x})||&\geq ||Df(\bar{a})(\bar{x})||-||Df(\bar{b})(\bar{x})-Df(\bar{a})(\bar{x})||\\
&\geq \varepsilon’||\bar{x}||-\frac{\varepsilon’}{2}||\bar{x}||\\
&= \frac{\varepsilon’}{2} ||\bar{x}||.
\end{align*}

De esta manera, el resultado es cierto para la $\delta$ que dimos y para $m=\frac{\varepsilon’}{2}$.

$\square$

El siguiente corolario es consecuencia inmediata de lo discutido en esta sección y está escrito de acuerdo a la aplicación que haremos más adelante en la demostración del teorema de la función inversa.

Corolario. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ una función de clase $C^{1}$ en $S$ y $\bar{a}\in S$. Si $Df(\bar{a})$ es invertible, entonces, existe $\delta > 0$ tal que $B_{\delta}(\bar{a})\subseteq S$ y $Df(\bar{b})$ es invertible para todo $\bar{b}\in B_{\delta}(\bar{a})$.

Queda como tarea moral responder por qué este corolario es consecuencia inmediata del teorema anterior.

Un poco de intuición geométrica

Dejamos esta entrada hasta aquí, la naturaleza densamente teórica de lo que estamos haciendo puede hacer pesadas las exposiciones. Lo que hasta aquí demostramos es que para un campo vectorial $C^1$ si su derivada en $\bar{a}$ es invertible, entonces lo es en toda una vecindad que tiene a $\bar{a}$. Imaginemos al pedacito de superficie $f(B_{\delta}(\bar{a}))$ cubierto con pequeños rectángulos. En cada punto, las imágenes de estos rectángulos están muy cerquita, casi pegados a la superficie. Esto nos garantizaría la invertibilidad de $f$ en esta vecindad.

Figura 2

En la Figura 2 vemos ilustrado esto. El círculo inferior corresponde a la vecindad $B_{\delta}(\bar{a})$ en el dominio de $f$. La función $f$ levanta una porción del plano en la sabana delineada con negro arriba del círculo. En el círculo tenemos al punto $\bar{a}$ en verde agua. Sobre la sábana de arriba tenemos con el mismo color a $f(\bar{a})$. Los puntos negros pequeños dentro de la vecindad alrededor de $\bar{a}$ son alzados por $f$ a puntos negros sobre la sabana. Sobre de cada punto negro en la sabana tenemos un cuadrito rojo que representa al cachito de plano tangente cerca de la imagen de cada punto. La imagen esta llena de estos pequeños cuadritos, todos ellos representan diferenciales invertibles, esto nos permitirá asegurar la invertibilidad de $f$ en al menos una vecindad.

Más adelante…

En la siguiente entrada demostraremos el teorema de la función inversa, inciso por inciso. Es importante que estes familiarizado con los resultados de esta entrada, pues serán parte importante de la demostración.

Tarea moral

  1. ¿Qué diría el teorema de la función inversa para campos vectoriales $f:\mathbb{R}^2\to \mathbb{R}^2$? ¿Se puede usar para $$f(r,\theta)=(r\cos(\theta),r\sin(\theta))?$$ Si es así, ¿para qué valores de $r$ y $\theta$? ¿Qué diría en este caso explícitamente?
  2. Explica por qué el corolario que enunciamos en efecto se deduce de manera inmediata de lo discutido en la sección correspondiente.
  3. Revisa todas las desigualdades que usamos en esta entrada. ¿Qué resultado estamos usando? ¿Cuándo se darían estas igualdades?
  4. Demuestra que el determinante de una matriz es una función continua en términos de las entradas de la matriz. Usa esto para demostrar que si $A\in M_n(\mathbb{R})$ es una matriz y $B$ es una matriz muy cercana a $A$, entonces $B$ también es invertible.
  5. Demuestra que si una transformación $T$ es diagonalizable, entonces en el teorema de caracterización de invertibilidad se puede usar como $\epsilon$ al mínimo de la expresión $|\lambda|$ variando sobre todos los eigenvalores $\lambda$ de $T$.

Entradas relacionadas

Cálculo Diferencial e Integral III: Regla de la cadena para campos vectoriales

Por Alejandro Antonio Estrada Franco

Introducción

Tenemos ya la definición de diferenciabilidad, y su versión manejable: la matriz jacobiana. Seguiremos construyendo conceptos y herramientas del análisis de los campos vectoriales muy importantes e interesantes. A continuación, enunciaremos una nueva versión de la regla de la cadena, que nos permitirá calcular las diferenciales de composiciones de campos vectoriales entre espacios de dimensión arbitraria. Esta regla tiene numerosas aplicaciones y es sorprendentemente fácil de enunciar en términos de producto de matrices.

Primeras ideas hacia la regla de la cadena

La situación típica de regla de la cadena es considerar dos funciones diferenciables que se puedan componer. A partir de ahí, buscamos ver si la composición también es diferenciable y, en ese caso, intentamos dar la derivada de la composición en términos de las derivadas de las funciones. Veamos qué pasa en campos vectoriales.

Pensemos en $f:S_{f}\subseteq \mathbb{R}^{m}\rightarrow \mathbb{R}^{n}$, $g:S_{g}\subseteq \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}$ y en su composición $h=f\circ g$ definida sobre alguna vecindad $V\subseteq S_g$ de $\bar{a}$ y tal que $g(V)\subseteq S_f$. Pensemos que $g$ es diferenciable en $\bar{a}$ con derivada $G_\bar{a}$ y que $f$ es diferenciable en $\bar{b}:=g(\bar{a})$ con derivada $F_\bar{b}$.

Exploremos la diferenciabilidad de la composición $h$ en el punto $\bar{a}$. Para ello, tomemos un $\bar{y}\in \mathbb{R}^{l}$ tal que $\bar{a}+\bar{y}\in V$ y consideremos la siguiente expresión:

\begin{align*}
h(\bar{a}+\bar{y})-h(\bar{a})=f(g(\bar{a}+\bar{y}))-f(g(\bar{a})).
\end{align*}

Tomando $\bar{v}=g(\bar{a}+\bar{y})-g(\bar{a})$, tenemos $\bar{b}+\bar{v}=g(\bar{a})+\bar{v}=g(\bar{a}+\bar{y})$. De esta forma,

\begin{align*}
f(g(\bar{a}+\bar{y}))-f(g(\bar{a}))=f(\bar{b}+\bar{v})-f(\bar{b}).
\end{align*}

Por la diferenciabilidad de $g$ en $\bar{a}$, tenemos que podemos escribir

$$\bar{v}=G_{\bar{a}}(\bar{y})+||\bar{y}||E_{g}(\bar{a};\bar{y}),$$ con $\lim\limits_{\bar{y}\to \bar{0}}E_{g}(\bar{a};\bar{y})=0$.

Usando la diferenciabilidad de $f$ en $\bar{b}$, y la linealidad de su derivada $F_\bar{b}$, tenemos entonces que:

\begin{align*}
f(\bar{b}+\bar{v})-f(\bar{b})&=F_\bar{b}(\bar{v})+||\bar{v}||E_f(\bar{b};\bar{v})\\
&=F_\bar{b}(G_{\bar{a}}(\bar{y})+||\bar{y}||E_{g}(\bar{a};\bar{y}))+||\bar{v}||E_f(\bar{b};\bar{v})\\
&=(F_{b}\circ G_{\bar{a}})(\bar{y})+||\bar{y}||(F_{\bar{b}}\circ E_{g}(\bar{a};\bar{y}))+||\bar{v}||E_{f}(\bar{b};\bar{v}),
\end{align*}

con $\lim\limits_{\bar{y}\to \bar{0}}E_{f}(\bar{b};\bar{v})=0$.

Concatenando nuestras igualdades, podemos reescribir esto como

\[ h(\bar{a}+\bar{y})-h(\bar{a})=(F_{\bar{b}}\circ G_{\bar{a}})(\bar{y})+||\bar{y}||E_{h}(\bar{a};\bar{y}),\] en donde hemos definido

\[ E_{h}(\bar{a};\bar{y})=(F_{\bar{b}}\circ E_{g})(\bar{a};\bar{y})+\frac{||\bar{v}||}{||\bar{y}||}E_{f}(\bar{b};\bar{v}).\] Si logramos demostrar que $\lim\limits_{\bar{y}\to \bar{0}}E_{h}(\bar{a};\bar{y})=0$, entonces tendremos la diferenciabilidad buscada, así como la derivada que queremos. Dejemos esto en pausa para enunciar y demostrar un lema auxiliar.

Un lema para acotar la norma de la derivada en un punto

Probemos el siguiente resultado.

Lema. Sea $\phi:S\subseteq \mathbb{R}^l\to \mathbb{R}^m$ un campo vectorial diferenciable en un punto $\bar{c}\in S$ y $T_\bar{c}$ su derivada. Entonces, para todo $\bar{v}\in \mathbb{R}^{l}$, se tiene:

$$||T_{\bar{c}}(\bar{v})||\leq \sum_{k=1}^{m}||\triangledown \phi_{k}(\bar{c})||||\bar{v}||.$$

Donde $\phi(\bar{v})=\left( \phi_{1}(\bar{v}),\dots ,\phi_{m}(\bar{v})\right)$

Demostración. Procedemos con desigualdad del triángulo como sigue:

\begin{align*}
||T_{\bar{c}}(\bar{v})||&=\left|\left|\sum_{k=1}^{m}(\triangledown \phi_{k}(\bar{c})\cdot \bar{v})e_{k}\right|\right|\\
&\leq \sum_{k=1}^{m}||(\triangledown \phi_{k}(\bar{c})\cdot \bar{v})e_k||\\
&=\sum_{k=1}^{m}|\triangledown \phi_{k}(\bar{c})\cdot \bar{v}|
\end{align*}

y luego usamos la desigualdad de Cauchy-Schwarz en cada sumando para continuar como sigue

\begin{align*}
\leq \sum_{k=1}^{m}||\triangledown \phi_{k}(\bar{c})||||\bar{v}||,
\end{align*}

que es lo que buscábamos.

$\square$

Conclusión del análisis para regla de la cadena

Retomando el análisis para $E_{h}(\bar{a};\bar{y})$, dividamos el límite en los dos sumandos.

Primer sumando:

Como $F_{\bar{b}}$ es lineal, entonces es continua. También, sabemos que $\lim\limits_{\bar{y}\to \bar{0}}E_{g}(\bar{a};\bar{y})=0$. Así,

\begin{align*}
\lim\limits_{\bar{y}\to \bar{0}}(F_{\bar{b}}\circ E_{g})(\bar{a};\bar{y})&=F_{\bar{b}}\left(\lim\limits_{\bar{y}\to \bar{0}} E_{g}(\bar{a};\bar{y})\right)\\
&=F_\bar{b}(\bar{0})\\
&=0.
\end{align*}

Segundo sumando:

Retomando la definición de $\bar{v}$, aplicando desigualdad del triángulo y el lema que demostramos,

\begin{align*}
||\bar{v}||&=||G_{\bar{a}}(\bar{y})+||\bar{y}||E_{g}(\bar{a};\bar{y})||\\
&\leq ||G_{\bar{a}}(\bar{y})||+||\bar{y}||||E_{g}(\bar{a};\bar{y})||\\
&\leq \left(\sum_{k=1}^{m}||\triangledown g_{k}(\bar{a})||||\bar{y}||\right)+||\bar{y}||||E_{g}(\bar{a};\bar{y})||.
\end{align*}

Dividiendo ambos lados entre $||\bar{y}||$, obtenemos entonces que

$$ \frac{||\bar{v}||}{||\bar{y}||}\leq \sum_{k=1}^{m}||\triangledown g_{k}(\bar{a})||+||E_{g}(\bar{a};\bar{y})||. $$

De aquí se ve que conforme $\bar{y}\to \bar{0}$, la expresión $\frac{||\bar{v}||}{||\bar{y}||}$ está acotada superiormente por la constante $A:=\sum_{k=1}^{m}||\triangledown g_{k}(\bar{a})||.$ Además, si $\bar{y}\to \bar{0}$, entonces $\bar{v}\to \bar{0}$. Así,

\[0\leq \lim\limits_{\bar{y}\to \bar{0}}\frac{||\bar{v}||}{||\bar{y}||}E_{f}(\bar{b},\bar{v})\leq A\lim\limits_{\bar{y}\to \bar{0}}E_{f}(\bar{b},\bar{v})=0 \] pues $\lim\limits_{\bar{y}\to \bar{0}}\bar{v}=\bar{0}$ implica $\lim\limits_{\bar{y}\to \bar{0}}E_{f}(\bar{b},\bar{v})$.

Hemos concluido que $$h(\bar{a}+\bar{y})-h(\bar{a})=(F_{\bar{b}}\circ G_{\bar{a}})(\bar{y})+||\bar{y}||E_{h}(\bar{a};\bar{y}),$$

con $\lim_{\bar{y}\to \bar{0}} E_h(\bar{a};\bar{y})=0$. Esto precisamente es la definición de $h=f\circ g$ es diferenciable en $\bar{a}$, y su derivada en $\bar{a}$ es la transformación lineal dada por la composición de transformaciones lineales $F_\bar{b}\circ G_\bar{a}$.

Recapitulación de la regla de la cadena

Recapitulamos toda la discusión anterior en el siguiente teorema.

Teorema (Regla de la cadena). Sean $f:S_{f}\subseteq \mathbb{R}^{m}\rightarrow \mathbb{R}^{n}$, $g:S_{g}\subseteq \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}$ campos vectoriales. Supongamos que la composición $f\circ g$ está definida en todo un abierto $S\subseteq S_g$. Supongamos que $g$ es diferenciable en un punto $\bar{a}\in S$ con derivada $G_\bar{a}$ y $f$ es diferenciable en $\bar{b}:=g(\bar{a})$ con derivada $F_\bar{b}$. Entonces, $h$ es diferenciable en $\bar{a}$ con derivada $F_\bar{b}\circ G_\bar{a}$.

Dado que la representación matricial de la composición de dos transformaciones lineales es igual al producto de estas, podemos reescribir esto en términos de las matrices jacobianas como el siguiente producto matricial: $$Dh(\bar{a})=Df(\bar{b})Dg(\bar{a}).$$

Usos de la regla de la cadena

Hagamos algunos ejemplos de uso de regla de la cadena. En el primer ejemplo que veremos a continuación, la función $f$ es un campo escalar.

Ejemplo 1. Tomemos $g:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ campo vectorial, y $f:U\subseteq \mathbb{R}^{m}\rightarrow \mathbb{R}$ campo escalar. Consideremos $h=f\circ g$ y supongamos que se satisfacen las hipótesis del teorema de la regla de la cadena. Tenemos: \[ Df(\bar{b})=\begin{pmatrix} \frac{\partial f}{\partial x_{1}}(\bar{b}) & \dots & \frac{\partial f}{\partial x_{m}}(\bar{b}) \end{pmatrix} \] y \[ Dg(\bar{a})=\begin{pmatrix}\frac{\partial g_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial g_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial g_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix} . \]

Por la regla de la cadena tenemos $Dh(\bar{a})=Df(\bar{b})Dg(\bar{a})$ esto implica \[ \begin{pmatrix} \frac{\partial h}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial h}{\partial x_{n}}(\bar{a}) \end{pmatrix}=\begin{pmatrix} \frac{\partial f}{\partial x_{1}}(\bar{b}) & \dots & \frac{\partial f}{\partial x_{m}}(\bar{b}) \end{pmatrix}\begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial g_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial g_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}. \]

Así \[ \begin{pmatrix} \frac{\partial h}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial h}{\partial x_{n}}(\bar{a}) \end{pmatrix}= \begin{pmatrix} \sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(\bar{b})\frac{\partial g_{i}}{\partial x_{1}}(\bar{a}) & \dots & \sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(\bar{b})\frac{\partial g_{i}}{\partial x_{n}}(\bar{a}) \end{pmatrix}. \]

En otras palabras, tenemos las siguientes ecuaciones para calcular cada derivada parcial de $h$: \[ \frac{\partial h}{\partial x_{j}}(\bar{a})=\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(\bar{b})\frac{\partial g_{i}}{\partial x_{j}}(\bar{a}).\]

$\triangle$

Ejemplo 2. Sean $\bar{a}=(s,t)$ y $\bar{b}=(x,y)$ puntos en $\mathbb{R}^{2}$. Pensemos que las entradas de $\bar{b}$ están dadas en función de las entradas de $\bar{a}$ mediante las ecuaciones $x=g_{1}(s,t)$ y $y=g_{2}(s,t)$. Pensemos que tenemos un campo escalar $f:\mathbb{R}^2\to \mathbb{R}$, y definimos $h:\mathbb{R}^2\to \mathbb{R}$ mediante $$h(s,t)=f(g_{1}(s,t),g_{2}(s,t)).$$

Por el ejemplo anterior \[ \frac{\partial h}{\partial s}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial s} \] y \[ \frac{\partial h}{\partial t}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial t}. \] Como tarea moral queda que reflexiones qué significa $\partial x$ cuando aparece en el «numerador» y qué significa cuando aparece en el «denominador».

$\triangle$

Ejemplo 3. Para un campo escalar $f(x,y)$ consideremos un cambio de coordenadas $x=rcos\theta$, $y=rsen\theta$ es decir tomemos la función $\phi (r,\theta)=f(rcos\theta ,rsen\theta )$.

Por el ejemplo anterior tenemos \[ \frac{\partial \phi }{\partial r}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial r} \] y \[ \frac{\partial \phi }{\partial \theta }=\frac{\partial f}{\partial x}\frac{\partial x}{\partial \theta }+\frac{\partial f}{\partial y}\frac{\partial y}{\partial \theta } \] donde, haciendo las derivadas parciales tenemos: \[ \frac{\partial x}{\partial r}=cos\theta ,\hspace{1cm}\frac{\partial y}{\partial r}=sen\theta \] y \[ \frac{\partial x}{\partial \theta }=-rsen\theta,\hspace{1cm}\frac{\partial y}{\partial \theta }=-rcos\theta. \] Finalmente obtenemos: \[ \frac{\partial \phi }{\partial r }=\frac{\partial f }{\partial x }cos\theta +\frac{\partial f }{\partial y }sen\theta \] y \[ \frac{\partial \phi }{\partial \theta }=-\frac{\partial f }{\partial x }rsen\theta +\frac{\partial f }{\partial y }rcos\theta \] que son las derivadas parciales del cambio de coordenadas en el dominio de $f$.

$\triangle$

Mas adelante…

En la siguiente entrada comenzaremos a desarrollar la teoría para los importantes teoremas de la función inversa e implícita si tienes bien estudiada esta sección disfrutaras mucho de las siguientes.

Tarea moral

  1. Considera el campo escalar $F(x,y,z)=x^{2}+y sen(z)$. Imagina que $x,y,z$ están dados por valores $u$ y $v$ mediante las condiciones $x=u+v$, $y=vu$, $z=u$. Calcula $\frac{\partial F}{\partial u}$, $\frac{\partial F}{\partial v}$.
  2. Sea $g(x,y,z)=(xy,x)$, y $f(x,y)=(2x,xy^{2},y)$. Encuentra la matriz jacobiana del campo vectorial $g\circ f$. Encuentra también la matriz jacobiana del campo vectorial $f\circ g$.
  3. En la demostración del lema que dimos, hay un paso que no justificamos: el primero. Convéncete de que es cierto repasando el contenido de la entrada anterior Diferenciabilidad.
  4. Imagina que sabemos que la función $f:\mathbb{R}^n\to \mathbb{R}^n$ es invertible y derivable en $\bar{a}$ con derivada $T_\bar{a}$. Imagina que también sabemos que su inversa $f^{-1}$ es derivable en $\bar{b}=f(\bar{a})$ con derivada $S_\bar{b}$. De acuerdo a la regla de la cadena, ¿Qué podemos decir de $T_\bar{a}\circ S_\bar{b}$? En otras palabras, ¿Cómo son las matrices jacobianas entre sí, en términos de álgebra lineal?
  5. Reflexiona en cómo todas las reglas de la cadena que hemos estudiado hasta ahora son un corolario de la regla de la cadena de esta entrada.

Entradas relacionadas

Cálculo Diferencial e Integral III: Diferenciabilidad en campos vectoriales

Por Alejandro Antonio Estrada Franco

Introducción

Después de haber abordado a modo de repaso las herramientas que usaremos de álgebra lineal, estamos listos para estudiar la diferenciabilidad en funciones más generales. Ya estudiamos la diferenciabilidad en curvas (funciones $f:S\subseteq \mathbb{R}\to \mathbb{R}^m$) y en campos escalares (funciones $f:S\subseteq \mathbb{R}^n \to \mathbb{R}$). Ahora podemos estudiar la diferenciabilidad en campos vectoriales, que recuerda que ahora sí son funciones $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$ para cualesquiera $m$ y $n$ enteros positivos.

Intuición de diferenciabilidad en campos vectoriales

Con anterioridad, hemos discutido la intuición geométrica de lo que quiere decir que un campo escalar $f:\mathbb{R}^n\to \mathbb{R}$ sea diferenciable. A grandes rasgos, estamos pidiendo que cerca de un punto $\bar{a}$ la función $f(\bar{a})$ cambie «como una función lineal». Esto quiere decir que la gráfica de la función se parece mucho a un hiperplano en $\mathbb{R}^{n+1}$ cerca del punto $\bar{a}$, tanto que de hecho podemos dar un hiperplano tangente a la gráfica en $\bar{a}$. Bajo suficiente regularidad, esta función lineal estaba dada por las derivadas parciales y estaba muy relacionada con el gradiente $\triangledown f$.

La situación para campos vectoriales es parecida. Si tenemos una función $f:\mathbb{R}^n\to \mathbb{R}^m$, entonces está dada por funciones coordenada que la expresan de la manera $f(\bar{x})=(f_1(\bar{x}),\ldots,f_m(\bar{x}))$ para cada $\bar{x}\in \mathbb{R}^n$. La diferenciabilidad que buscaremos ahora deberá suceder coordenada a coordenada, y por ello lo que pensaremos como derivada tendrá algo así como un gradiente por cada coordenada. Esto nos daría $m$ gradientes, pero una mejor forma de pensar en resumen a la derivada es como una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^m$ que nos diga con mucha precisión cuándo cambia la funciíon $f$ (cuando esto sea posible).

Para tener clara idea de lo que queremos hacer recordemos el ejemplo de campos escalares, y de aquí construiremos una generalización a campos vectoriales: Observa la Figura $1$. A la izquierda, hemos dibujado dos copias de $\mathbb{R}^n$ (pero que puedes pensar como $\mathbb{R}^2$). A la derecha, hemos dibujado la gráfica de dos funciones. Una es una función cualquiera $f:\mathbb{R}^{n}\rightarrow \mathbb{R}^m$. La otra es una transformación lineal $T:\mathbb{R}^{n}\rightarrow \mathbb{R}^m$ que ha sido trasladada sobre el plano $xy$ y sobre el eje $z$ con la función $G(\bar{v})=T(\bar{v}-\bar{a})+f(\bar{a})$. Estas gráficas son objetos en $\mathbb{R}^n \times \mathbb{R}^m$ (ponemos un punto por cada pareja $(\bar{x},f(\bar{x}))$ con $\bar{x}\in \mathbb{R}^n$).

Como $T$ es lineal, cumple $T(\bar{0})=0$. Al hacer la traslación, obtenemos $G(\bar{a})=T(\bar{0})+f(\bar{a})=f(\bar{a})$. Así, $T$ traslada un subespacio $H$ de dimensión $n$ a un subespacio afín de dimensión $n$ que pasa por $f(\bar{a})$. Lo que buscaremos al pedir que la función $f$ sea diferenciable con derivada $T$ es que la gráfica de $f$ se parezca mucho a este subespacio $H+f(\bar{a})$, tanto que de hecho dicho subespacio lo podremos pensar como tangente a la gráfica en el punto $(\bar{a},f(\bar{a}))$.

Figura 1

Definición de diferenciabilidad para campos vectoriales

¿Cuál es la condición algebraica que pediremos? Será muy similar a lo que pasaba en campos escalares. Lo que queremos es que el cambio $f(\bar{a}+\bar{v})-f(\bar{a})$ se parezca mucho a $T(\bar{v})$ cuando $\bar{v}$ es pequeño. De hecho, tiene que parecerse tanto, tanto, que $f(\bar{a}+\bar{v})-f(\bar{a})$ debe parecerse a $T(\bar{v})$ más rápido de lo que $\bar{v}$ se va a $\bar{0}$. Esto nos lleva a plantear que la condición buscada sea la siguiente:

$$\lim_{\bar{v}\to \bar{0}}\frac{||(f(\bar{a}+\bar{v})-f(\bar{a}))-T(\bar{v})||}{||\bar{v}||}=0.$$ La Figura $2$ tiene un diagrama que ayuda a entender esto un poco mejor. Queremos que la flecha indicada en amarillo acabe muy cerca de $f(\bar{a}+\bar{v})$.

El vector $T(\bar{v}-\bar{a})+f(\bar{a})$ es el vector $T(\bar{v})$ transportado hasta el plano tangente el cual está en color rosa. La idea es que $f(\bar{a}+\bar{v})-f(\bar{a})$, que es el vector señalado con amarillo abajo, se aproxime mucho en el sentido señalado por el límite mencionado en el párrafo de arriba. De esta manera tenemos la mejor aproximación lineal. Esta definición se inspira en el polinomio de Tylor de grado 1 para funciones de una variable real.

Por supuesto, la discusión que hemos tenido sólo aplica para cuando estamos trabajando cerca del punto $\bar{a}$, así que más bien la transformación lineal de la que estamos hablando dependerá del punto $\bar{a}$. Todo esto nos lleva a nuestra primera definición formal de diferenciabilidad.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ un campo vectorial. Decimos que $f$ es diferenciable en $\bar{a}\in Int(S)$ si existe una transformación lineal $T_{\bar{a}}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ tal que

$$\lim_{\bar{v}\to \bar{0}}\frac{||f(\bar{a}+\bar{v})-f(\bar{a})-T_{\bar{a}}(\bar{v})||}{||\bar{v}||}=0.$$

En este caso, a $T_{\bar{a}}$ le llamamos la derivada de $f$ en el punto $\bar{a}$.

Antes de empezar a demostrar propiedades de esta noción, nos conviene tener una versión alternativa y totalmente equivalente.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ un campo vectorial. Decimos que $f$ es diferenciable en $\bar{a}\in Int(S)$ si existe una transformación lineal $T_{\bar{a}}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ y una función $E:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}^m$ de manera que $$f(\bar{a}+\bar{v})=f(\bar{a})+T_{\bar{a}}(\bar{v})+||\bar{v}||E(\bar{a};\bar{v})$$ con $$\lim_{||\bar{v}||\to 0}E(\bar{a};\bar{v})=0.$$

Esta definición es equivalente a la anterior pues si despejamos tenemos: \[E(\bar{a};\bar{v})=\frac{f(\bar{a}+\bar{v})-f(\bar{a})-T_{\bar{a}}(\bar{v})}{||\bar{v}||},\] de donde se puede verificar que se cumple una definición si y sólo si se cumple la otra. Los detalles quedan como tarea moral.

Ejemplo. Consideremos la función $f(x,y)=(x^2y^2,xy)$ y tomemos el punto $a=(1,1)$. ¿Será $f$ diferenciable en $a$? Afirmamos que sí, que la función lineal $T_a(x,y)=(2x+2y, x+y)$ cumple con la definición de límite que se pide. Veamos esto en la primera versión de la definición. Tendríamos, usando $\bar{v}=(h,k)$, que

\begin{align*}
f((1,1)&+(h,k))-f(1,1)-T_a(h,k)\\
&=((h+1)^2(k+1)^2,(h+1)(k+1))-(1,1)-(2h+2k,h+k)\\
&=(h^2k^2+2h^2k+2hk^2+h^2+k^2+4hk,hk)
\end{align*}

Dividiendo entre $\sqrt{h^2+k^2}$ que es la norma de $v$, y haciendo manipulaciones algebraicas, se obtiene

$$\left(\frac{h^2k^2+2h^2k+2hk^2+h^2+k^2+4hk}{\sqrt{h^2+k^2}},\frac{hk}{\sqrt{h^2+k^2}}\right).$$

Por la desigualdad entre la media cuadrática y la media geométrica, $$\frac{|hk|}{\sqrt{h^2+k^2}}\leq \sqrt{\frac{|hk|}{2}},$$

de modo que cuando $(h,k)\to (0,0)$, la segunda coordenada del vector que nos interesa converge a cero. La primera coordenada también se puede ver que converge a cero: el primero, segundo, tercero y sexto sumandos se acotan de manera similar, pues tienen factores $h$ o $k$ adicionales. El cuarto y quinto sumando se acotan notando que $\frac{h^2+k^2}{\sqrt{h^2+k^2}}=\sqrt{h^2+k^2}$, que también converge a cero con $h$ y $k$. Los detalles quedan de tarea moral.

$\triangle$

Diferenciabilidad implica continuidad

En el caso de las funciones de una variable real teníamos claramente que diferenciabilidad implica continuidad. Como es de esperarse, lo mismo se cumple para campos vectoriales, ya que una función diferenciable es más «suave» que una continua.

Teorema. Supongamos $f:S\subseteq \mathbb{R}^n\to\mathbb{R}^m$ es un campo vectorial diferenciable en un punto $\bar{a}$ de $S$. Entonces $f$ es continuo en $\bar{a}$.

Demostración. Si $f$ es diferenciable en $\bar{a}$ entonces cumple con la ecuación \[f(\bar{a}+\bar{v})=f(\bar{a})+T_{\bar{a}}(\bar{v})+||\bar{v}||E(\bar{a};\bar{v})\] con $E(\bar{a};\bar{v})$ una función tal que $\lim_{\bar{v}\to \bar{0}} E(\bar{a}; \bar{v})=0$ (¿Por qué es válida esta última afirmación?). Por ello:

\begin{align*}
\lim\limits_{\bar{v}\to \bar{0}}f(\bar{a}+\bar{v})&=\lim\limits_{\bar{v}\to \bar{0}}\left( f(\bar{a})+T_{\bar{a}}(\bar{v})+||\bar{v}||E(\bar{a};\bar{v}) \right)\\
&= \lim\limits_{\bar{v}\to \bar{0}}f(\bar{a})+\lim\limits_{\bar{v}\to \bar{0}}T_{\bar{a}}(\bar{v})+\lim\limits_{\bar{v}\to \bar{0}}||\bar{v}||E(\bar{a};\bar{v}).
\end{align*}

El primer sumando no depende de $\bar{v}$, así que es $f(\bar{a})$. El segundo se va a cero pues las transformaciones lineales son continuas. Finalmente, el tercer sumando se va a cero por lo que sabemos de $E(\bar{a},\bar{v})$. Así, $\lim\limits_{\bar{v}\to \bar{0}}f(\bar{a}+\bar{v})=f(\bar{a})$. Por lo tanto $f$ es continua.

$\square$.

Derivadas direccionales y derivadas parciales

Si bien tenemos dos definiciones de diferenciabilidad, aún no tenemos una manera muy práctica de encontrar o describir a la transformación lineal $T_{\bar{a}}$, que es la mejor aproximación lineal. En el ejemplo después de nuestra definición, nos dieron la transformación y funcionó, pero hasta donde hemos platicado, todavía es un misterio cómo obtenerla.

Nos gustaría tener una descripción más explícita pues queremos resolver problemas específicos como encontrar, por ejemplo, la ecuación de un hiperplano tangente. Este problema ya lo habíamos resuelto para campos escalares: si tenemos suficiente regularidad, entonces podemos construir la derivada a través de las derivadas parciales (que a su vez son derivadas direccionales). La teoría que ya desarrollamos prácticamente se puede copiar, considerando que ahora tendremos derivadas en cada función coordenada.

Lo primero que notaremos es que así como para campos escalares, para campos vectoriales también podemos definir la noción de derivadas direccionales. Pensemos en una función $f:S\subseteq \mathbb{R}^{n}\to \mathbb{R}^n$. Tomemos un vector fijo $\bar{a}\in Int=(S)$. Coloquemos una flecha que comience en $\bar{a}$ y tenga dirección dada por otro vector dado $\bar{y}\in \mathbb{R}^{n}$. Si multiplicamos a $\bar{y}$ por un escalar $h$ positivo, esto estira o encoge al vector $\bar{y}$, pero lo deja con la misma dirección. En el ejemplo de la Figura 3, al variar sobre todos los valores de $h$ se genera la recta $\bar{a}+h\bar{y}$. Si a los puntos de esta recta le aplicamos la función $f$, se obtiene un cierto lugar geométrico $$f(\bar{a}+h\bar{y})=(f_1(\bar{a}+h\bar{y}),\ldots,f_m(\bar{a}+h\bar{y})),$$ conforme se varían los valores de $h$. Lo que definiremos como derivada direccional nos permitirá hablar de un espacio afín tangente de dimensión $m$ a este lugar geométrico en el punto $f(\bar{a})$.

Figura 3

A continuación tenemos nuestra definición de derivada direccional para campos vectoriales.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ un campo vectorial. Tomemos $\bar{a}\in Int(S)$, $\bar{y}\in \mathbb{R}^{n}$. Definimos la derivada direccional de $f$ en $\bar{a}$ en la dirección $\bar{y}$ como: \[ f'(\bar{a};\bar{y})=\lim\limits_{h\to 0}\frac{f(\bar{a}+h\bar{y})-f(\bar{a})}{h}, \] siempre y cuando el límite exista.

Notemos que $f'(\bar{a};\bar{y})$ es un vector de $\mathbb{R}^{m}$.

En los campos escalares teníamos derivadas parciales. En este caso también las tenemos y describen a las derivadas direccionales en el mismo sentido que en el caso escalar. Para formalizar las cosas, damos la definición a continuación.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ un campo vectorial. Tomemos $\bar{a}\in Int(S)$, $\bar{y}\in \mathbb{R}^{n}$. Definimos la derivada direccional de $f$ en la coordenada $x_i$ en $a$ como la derivada parcial $f'(\bar{a};\hat{e}_i)$, donde $\hat{e}_i$ es el $i$-ésimo vector de la base canónica, siempre y cuando esta exista.

Como en el caso de los campos escalares, las derivadas direccionales pueden entenderse en términos de las derivadas parciales bajo suficiente regularidad. Tomemos $\hat{e}_1,\ldots,\hat{e}_n$ la base canónica de $\mathbb{R}^n$. Tomemos $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$. Pensemos que todas las derivadas parciales de $f$ existen en un punto dado $\bar{a}$ y que son continuas. Expresemos a $\bar{y}$ como $\bar{y}=\alpha_1\hat{e}_1+\alpha_2\hat{e}_2+\ldots+\alpha_n\hat{e}_n$ con $\hat{e}_1,\ldots,\hat{e}_n$ la base canónica de $\mathbb{R}^n$. En esta entrada discutiremos hacia el final que bajo estas condiciones tendremos que $f'(\bar{a};\bar{y})$ existe y de hecho que $$f'(\bar{a};\bar{y})=\sum_{i=1}^n \alpha_i f'(\bar{a};\bar{e}_i).$$

El tener derivadas parciales continuas resultará una hipótesis muy fuerte y de hecho implicará todavía más que la existencia de derivadas direccionales. De hecho, como en el caso de campos escalares, esta hipótesis implicará diferenciabilidad. Antes de discutir esto, veremos en la siguiente sección qué pasa componente a componente.

Si las derivadas parciales no son continuas, no deberíamos esperar que las derivadas direccionales existan: ¡hay muchas posibles direcciones y sólo sabemos que pasa en dos de ellas! Como tarea moral, puedes pensar en un contraejemplo de un campo escalar $f:\mathbb{R}^2\to \mathbb{R}^2$ con derivadas parciales en cierto punto $\bar{a}$, pero sin alguna (o algunas) derivadas direccionales en $\bar{a}$.

Derivadas por componente

Las derivadas direccionales pueden entenderse mediante las derivadas parciales, pero también, como en el caso de las trayectorias, pueden entenderse mediante las derivadas por componente. Para pensar en ello, tomemos $\hat{e}_1,\ldots,\hat{e}_m$ la base canónica de $\mathbb{R}^m$. Tomemos $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$ con funciones coordenadas $f(\bar{x})=\left( f_{1}(\bar{x}),\dots ,f_{m}(\bar{x})\right)$. Pensemos que las derivadas direccionales de $f_1,\ldots, f_m$ en $\bar{a}$ en la dirección $\bar{y}$ existen.

Tenemos entonces:

\begin{align*} \lim\limits_{h\to 0}\frac{f(\bar{a}+h\bar{y})-f(\bar{a})}{h} &=\lim\limits_{h\to 0}\frac{\left( f_{1}(\bar{a}+h\bar{y}),\dots ,f_{m}(\bar{a}+h\bar{y})\right) -\left( f_{1}(\bar{a}),\dots ,f_{m}(\bar{a})\right)}{h}\\ &=\lim\limits_{h\to 0}\left( \frac{f_{1}(\bar{a}+h\bar{y})-f_{1}(\bar{a})}{h},\dots ,\frac{f_{m}(\bar{a}+h\bar{y})-f_{m}(\bar{a})}{h}\right)\\ &=\lim\limits_{h\to 0}\sum_{i=1}^{m}\frac{f_{i}(\bar{a}+h\bar{y})-f_{i}(\bar{a})}{h}{\hat{e}_{i}}\\
&=\sum_{i=1}^{m}\lim\limits_{h\to 0}\frac{f_{i}(\bar{a}+h\bar{y})-f_{i}(\bar{a})}{h}{\hat{e}_{i}}\\ &=\sum_{i=1}^{m}f_{i}'(\bar{a};\bar{y}){\hat{e}_{i}}. \end{align*}

En la última igualdad estamos usando la suposición de que las derivadas existen componente a componente. Como mostramos que el límite planteado inicialmente existe, obtenemos entonces que
\begin{equation} \label{eq:porcomponente} f'(\bar{a};\bar{y})=\sum_{i=1}^{m}f_{i}'(\bar{a};\bar{y}){\hat{e}_{i}} .\end{equation}

Lo que tenemos aquí es que la derivada direccional de $f$ en $\bar{a}$ en dirección de $\bar{y}$ es la suma vectorial de cada vector de la base escalado por la derivada direccional del campo escalar $f_{i}$ en $\bar{a}$ con respecto a la dirección de $\bar{y}$.

Diferenciabilidad implica derivadas direccionales

La noción de diferenciabilidad que dimos implica la diferenciabilidad de cada una de las funciones componente $f_i$ de una función $f:\mathbb{R}^n\to \mathbb{R}^m$. Es decir, si el campo vectorial es diferenciable, entonces cada uno de los campos escalares $f_1,\ldots,f_m$ componentes son también diferenciables, pues el límite $$\lim_{\bar{v}\to \bar{0}}\frac{||f(\bar{a}+\bar{v})-f(\bar{a})-T_{\bar{a}}(\bar{v})||}{||\bar{v}||}=0$$ se cumple, y por lo tanto se cumple componente a componente. En el caso de $T_{\bar{a}}$ el $i$-ésimo componente es precisamente hacer el producto interior del $i$-ésimo renglon de la matriz que representa a $T_{\bar{a}}$ con $\bar{v}$, y entonces la derivada $\triangledown f_i(\bar{a})$ del campo escalar $f_i$ está dada precisamente por dicho $i$-ésimo renglón.

A su vez, sabemos que si un campo escalar es diferenciable, entonces existen todas las derivadas parciales. Por lo que hemos platicado en unidades anteriores, si $\bar{y}\in \mathbb{R}^{n}$ se escribe en la base canónica como $\bar{y}=\sum_{j=1}^{n}y_{j}{\hat{e}_{j}}$, al aplicar $\triangledown f_i(\bar{a})$ obtenemos

\begin{align*}
\triangledown f_i(\bar{a})(\bar{y})&=\sum_{j=1}^n y_j\triangledown f_i(\bar{a})(\hat{e}_j)\\
&=\sum_{j=1}^n y_j \frac{\partial f_i}{\partial x_j}(\bar{a}),\\
\end{align*}

lo cual abreviamos como

$$f_i'(\bar{a};\bar{y})=\left(\frac{\partial f_i}{\partial x_1}(\bar{a}), \ldots, \frac{\partial f_i}{\partial x_n}(\bar{a})\right) \cdot \bar{y}.$$

Usando esta igualdad para cada $i$ y sustituyendo la ecuación \eqref{eq:porcomponente} que obtuvimos al analizar componente por componente, obtenemos entonces que

$$f^{\prime}(\bar{a};\bar{y})=\sum_{i=1}^m \left(\left(\frac{\partial f_i}{\partial x_1}(\bar{a}), \ldots, \frac{\partial f_i}{\partial x_n}(\bar{a})\right) \cdot \bar{y}\right)\hat{e}_i.$$

¡Pero esto se puede denotar de manera mucho más compacta mediante un producto matricial! Reflexiona un poco por qué la expresión anterior dice exactamente lo mismo que la siguiente:

$$f'(\bar{a};\bar{y})= \begin{pmatrix} \frac{\partial f_{1}}{\partial y_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial y_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}\begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}.$$

Como tarea moral, tendrás que verificar que en un campo vectorial diferenciable en $\bar{a}$ se debe cumplir que $f'(\bar{a};\bar{y})=T_{\bar{a}}(\bar{y})$. Por lo discutido, debe pasar entonces para cada $y$ que \[ T_{\bar{a}}(\bar{y})=\begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}\begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}.\]

Esto precisamente nos está diciendo que si $f$ es diferenciable en $a$, entonces sus derivadas parciales deben existir y se debe cumplir que la forma matricial de $T_{\bar{a}}$ en las bases canónicas de $\mathbb{R}^n$ y $\mathbb{R}^m$ debe ser \begin{equation}\label{eq:jacobiana}\begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}.\end{equation}

Matriz jacobiana

Toda la discusión anterior nos lleva a lo siguiente.

Definición. Dado un campo vectorial $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ diferenciable en un punto $\bar{a}\in Int(S)$ con derivada $T_{\bar{a}}$, a la matriz que representa a $T_{\bar{a}}$ en las bases canónicas la denotamos por $Df(\bar{a})$ y le llamamos la matriz jacobiana de $f$ en $\bar{a}$.

Por lo discutido en la sección anterior,

$$Df(\bar{a})=\begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}.$$

Escribiremos $Df(\bar{a})(\bar{x})$ para referirnos al producto de la matriz $Df(\bar{a})$ con el vector (columna) $\bar{x}$, que precisamente coincide con $T_{\bar{a}}(\bar{x})$. Así, bajo la hipótesis de diferenciabilidad, hemos recuperado entonces lo que hace $T_{\bar{a}}$ como una multiplicación matricial, donde la matriz tiene como elementos a las derivadas parciales de las funciones coordenada en el punto $\bar{a}$.

Ejemplos de diferenciabilidad en campos vectoriales

Con todo lo discutido hasta ahora, obtenemos un método para obtener la derivada para campos vectoriales, lo que nos permitirá, por ejemplo, encontrar la transformación lineal de forma explícita y encontrar hiperplanos tangentes.

Ejemplo. Consideremos $f(x,y)=(x^{2},xy,y^{2}).$ Calculemos su diferencial en el punto $(1,-1)$. Las funciones coordenada son

\begin{align*}
f_{1}(x,y)&=x^{2}\\
f_{2}(x,y)&=xy\\
f_{3}(x,y)&=y^{2},
\end{align*}

de donde tenemos: \[ \frac{\partial f_{1}}{\partial x}(1,-1)=\left. 2x\right|_{_{(1,-1)}}=2;\hspace{3cm} \frac{\partial f_{1}}{\partial y}(1,-1)=0;\hspace{3cm}\frac{\partial f_{2}}{\partial x}(1,-1)=\left. y\right|_{_{(1,-1)}}=-1;\] \[ \frac{\partial f_{2}}{\partial y}(1,-1)=\left. x\right|_{_{(1,-1)}}=1;\hspace{3cm}\frac{\partial f_{3}}{\partial x}(1,-1)=0;\hspace{3cm}\frac{\partial f_{3}}{\partial y}(1,-1)=\left. 2y\right|_{_{(1,-1)}}=-2.\] Así \[ Df(1,-1)=\begin{pmatrix} \frac{\partial f_{1}}{\partial x}(1,-1) & \frac{\partial f_{1}}{\partial y}(1,-1) \\ \frac{\partial f_{2}}{\partial x}(1,-1) & \frac{\partial f_{2}}{\partial y}(1,-1) \\ \frac{\partial f_{3}}{\partial x}(1,-1) & \frac{\partial f_{3}}{\partial y}(1,-1) \end{pmatrix}= \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & -2 \end{pmatrix}.\]

$\triangle$

Ejemplo. Ahora obtengamos el plano tangente a una superficie dada en un punto dado. Sea $\mathcal{S}$ la superficie de $\mathbb{R}^{3}$ descrita por la imagen de la función $f(x,y)=(x,y,xy^{2})$. Vamos a determinar el plano tangente a dicha superficie en el punto $(1,1,1)$. Comencemos calculando $Df(1,1)$. En primer lugar calculemos las parciales: \[ \frac{\partial f_{1}}{\partial x}(1,1)=1;\hspace{3cm}\frac{\partial f_{1}}{\partial y}(1,1)=0;\hspace{3cm}\frac{\partial f_{2}}{\partial x}(1,1)=0 \] \[ \frac{\partial f_{2}}{\partial y}(1,1)=1;\hspace{3cm}\frac{\partial f_{3}}{\partial y}(1,1)=1;\hspace{3cm}\frac{\partial f_{3}}{\partial y}(1,1)=2.\]

Por lo tanto \[ Df(1,1)=\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}.\]

Esta transformación manda al punto $(x,y)$ del plano $\mathbb{R}^2$ al punto\[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}=\begin{pmatrix} x \\ y \\ x+2y \end{pmatrix}.\]

De modo que el plano centrado en el origen es el conjunto $$H=\{(x,y,x+2y)\in \mathbb{R}^{3}|(x,y)\in \mathbb{R}^{2}\}.$$

Pero este plano debemos todavía trasladarlo por el vector $(1,1,1)$ para que pase por el punto $f(1,1)$. Concluimos entonces que el plano tangente buscado es el conjunto

$$\{(x+1,y+1,x+2y+1)\in \mathbb{R}^{3}|(x,y)\in \mathbb{R}^{2}\}.$$

En la Figura 4 tenemos la en rojo la imagen del campo vectorial de este ejemplo y en verde la del plano tangente, el punto negro es el punto $(1,1,1)$.

Figura 4

$\triangle$

¿Y derivadas parciales implica diferenciabilidad?

Cuando un campo vectorial es diferenciable, existen todas las derivadas parciales de todos sus campos escalares coordenados. El regreso no es cierto. Sin embargo, sí se vale bajo una condición adicional de regularidad.

Definición. Diremos que un campo vectorial $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$ es de clase $C^1$ (o simplemente es $C^1$) en un punto $\bar{a}\in S$ si todas las derivadas parciales de todas las funciones componentes de $f$ existen y son continuas en $\bar{a}$. Definimos de manera análoga lo que significa que $f$ sea de clase $C^1$ en todo $S$.

Teorema. Si $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$ es un campo vectorial, $\bar{a}\in S$ y $f$ es $C^1$ en $\bar{a}$, entonces $f$ es diferenciable y su derivada $T_a$ tiene como forma matricial a la matriz jacobiana \eqref{eq:jacobiana}.

La prueba de este resultado se hace coordenada a coordenada, aplicando en cada una de ellas el teorema de diferenciabilidad y derivadas parciales para campos escalares que demostramos en la entrada del teorema del valor medio para campos escalares.

Más adelante

En esta entrada introdujimos el concepto de diferenciabilidad, de derivadas parciales, direccionales y por componente. Además, mostramos que cuando una función es diferenciable, entonces su derivada tiene una forma matricial muy sencilla, dada por las derivadas parciales de las componentes. Esto es nuestra primera señal de que las derivadas y las matrices están muy relacionadas entre sí. Lo que veremos en la siguiente entrada es que esta conexión se sigue dando, y de hecho nos permitirá enunciar de manera muy elegante la regla de la cadena para campos vectoriales: ¡será una multiplicación de matrices!

Después de entender mejor la diferenciabilidad, presentaremos y demostraremos teoremas clásicos e importantes de campos vectoriales: el teorema de la función inversa, y el teorema de la función implícita.

Tarea moral

  1. Completa los detalles faltantes del primer ejemplo que dimos de diferenciabilidad.
  2. Calcula la matriz jacobiana de la función $g(x,y,z)=(xz,xy,x^{2}y^{2}z^{2})$. Úsala para encontrar la ecuación del espacio tangente a la gráfica en el punto $g(2,1,0)$.
  3. Halla el campo vectorial cuya imagen es el plano tangente a la superficie dada por la ecuación $F(x,y)=x^{2}y^{2}+1$ en el punto $(1,1)$. Como ayuda al graficar $F$ en $\mathbb{R}^{3}$ nos dibuja la misma superficie que obtenemos de la imagen del campo vectorial $f(x,y)=(x,y,x^{2}y^{2}+1)$ que esta contenida en $\mathbb{R}^{3}$.
  4. Verifica que en efecto las dos definiciones de diferenciabilidad que dimos son equivalentes.
  5. Demuestra que si las parciales de cada componente de un campo vectorial existen, y son continuas, entonces la función es diferenciable. Tendrás que seguir la sugerencia dada en la última sección. Después, justifica la igualdad que dimos que escribe a las derivadas direccionales en términos de las parciales.
  6. Explica a detalle por qué la expresión a la que llegamos para $f^{\prime}(\bar{a};\bar{y})$ en efecto se puede pensar como el producto matricial mencionado.
  7. Encuentra un ejemplo de campo vectorial $f:\mathbb{R}^2\to \mathbb{R}^2$ en donde las derivadas parciales existen en algún punto $\bar{a}$, pero no todas las derivadas direccionales existen.

Entradas relacionadas