Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Moderna I: Operación binaria

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Bienvenido al curso de Álgebra Moderna I. Antes de comenzar de lleno con el tema principal del curso, los grupos, es necesario sentar ciertas bases, así que en esta primera entrada comenzaremos con la definición de una operación binaria.

El objetivo de una operación binaria, como dice su nombre, es tomar dos elementos de un conjunto, operarlos y obtener un resultado que también pertenezca al mismo. La suma (+) y la multiplicación (•) de números reales son operaciones binarias que conocemos desde hace tiempo. Además de ellas, veremos ejemplos de varias operaciones binarias definidas en diversos conjuntos, no sólo en los reales.

¿Qué es una Operación Binaria?

Como mencionamos en la introducción, la operación binaria es una función que toma dos elementos de un conjunto y devuelve un elemento del mismo. Formalmente escrito, quedaría de la siguiente manera:

Definición. Una operación binaria en un conjunto $\mathcal{S}$ es una función $\mu : \mathcal{S} \times \mathcal{S} \to \mathcal{S}$, es decir una forma de asignar a cada par ordenado $(a,b) \in \mathcal{S} \times \mathcal{S}$ un elemento $\mu (a,b) \in \mathcal{S}$.

Sin embargo, normalmente no trabajamos la notación de función. Así que hacemos la siguiente aclaración:

Notación. Nuestra operación binaria $\mu$ será denotada por $*$ y al elemento asignado a la pareja $(a,b)$. En lugar de ser denotado por $\mu (a,b)$ será denotado por $a*b$, más adelante será denotada simplemente por $ab$ o por $a+b$.

Las siguientes observaciones son importantes en la definición de una operación binaria:

Observación 1. A cada par de elementos en $\mathcal{S}$ se le asigna exactamente un elemento de $\mathcal{S}$, es decir, $*$ es una función bien definida.

Observación 2. Para cada par de elementos en $\mathcal{S}$ el elemento debe estar en $\mathcal{S}$, es decir, $*$ es una operación cerrada en $\mathcal{S}$.

La segunda observación toma más importancia cuando queremos definir una operación binaria en un subconjunto de $\mathcal{S}$, digamos $X$, porque la operación debe ser de $X$ en $X$.

Ejemplos de operaciones binarias

Para ilustrar los ejemplos, tomaremos el símbolo $:=$ como una asignación de valor, y lo usaremos para definir y al símbolo $=$ como la igualdad usual, que indica eso, una igualdad entre dos valores.

  1. En $\mathcal{S} := \mathbb{R}$, podemos definir la siguiente operación binaria, $a*b := ab – 2$, es decir, la multiplicación de ambos números, menos dos unidades.
  2. En $\mathcal{S} := \mathbb{R}^+$, observemos que es posible tomar la operación $a*b := \frac{a}{b}$ como la división usual. Es importante considerar el conjunto $\mathcal{S}$ en el que estamos trabajando. Por ejemplo, esta operación no se podría considerar en $\mathbb{Z}^+$ porque no podemos asegurar que siempre nos dé un entero, por lo tanto no sería una operación binaria.
  3. Ahora, si tomamos $\mathcal{S} := \mathbb{Z}^+$ y definimos $a*b := \text{máx}{\{a,b\}}$, es decir, una operación binaria no tiene que ser siempre aritmética.
  4. En $\mathcal{S} := \mathbb{Z}^+$, podemos definir $a*b = a$, es decir, la operación asigna a cada par de números el primero de los dos.
  5. También podemos trabajar con matrices, por ejemplo $\mathcal{S} := \mathcal{M}_{2\times2}(\mathbb{Z})$ (el conjunto de matrices $2\times 2$ con entradas enteras), definida como $A*B := A + B$, es decir, la suma de matrices.
  6. Si pensamos en funciones, podemos considerar $\mathcal{S}:=\{f \;| f:\mathbb{R} \to \mathbb{R}\}$ y definir la composición de funciones, $f*g:= f\circ g$. Como todas las funciones comparten dominio y codominio, tiene sentido componer. Recordemos que esa notación se lee de derecha a izquierda, es decir, primero se aplica $g$ y luego $f$.
  7. En $\mathcal{S}:= S_3$, con $S_3 := \{f | f: \{1,2,3\} \to \{1,2,3\}, f \text{ es biyectiva}\}$, también podemos considerar $f*g := f\circ g$ y sería una operación binaria en el conjunto.

Para este último ejemplo, recordemos que como el dominio de $f$ es finito podemos denotar a $f$ como una matriz de la forma,

$$f = \begin{pmatrix} 1 & 2 & 3\\ f(1) & f(2) & f(3) \end{pmatrix}.$$

Ejemplo:

Si $f = \begin{pmatrix} 1 & 2 & 3\\ 2 & 3 & 1 \end{pmatrix}$ y $g = \begin{pmatrix} 1 & 2 & 3\\ 3 & 1 & 2 \end{pmatrix}$, entonces la composición $f \circ g = \begin{pmatrix} 1 & 2 & 3\\ 1 & 2 & 3 \end{pmatrix}$. Puesto que $g$ manda el $1$ al $3$ y $f$ manda el $3$ al $1$, $g$ manda el $2$ al $1$ y $f$ manda el $1$ al $2$ y $g$ manda el $3$ al $2$ y $f$ manda el $2$ al $3$.

$\blacksquare$

De modo más general, si $f$ es una función cuyo dominio es un conjunto finito con $n$ elementos $a_1,a_2,\dots, a_n,$ la regla de correspondencia de $f$ se puede describir con el arreglo

$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n\\ f(a_1) & f(a_2)&\dots & f(a_n) \end{pmatrix}.$$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Como calentamiento, piensa por qué ocurren las dos observaciones dadas.
  2. Investiga cómo se pueden definir operaciones binarias con tablas.
  3. De los ejemplos dados, busca conjuntos en donde la operación binaria deje de serlo por no cumplir con la cerradura.
  4. Da cinco ejemplos de conjuntos y operaciones binarias sobre ellos.
  5. Determina si las siguientes operaciones son binarias o no y en caso de no serlo, ¿qué le cambiarías al conjunto para que lo sea?
    • En $\mathcal{S} = \mathbb{R}^+$, $a*b = ab-2$.
    • En $\mathcal{S} = \mathcal{M}_{2\times2}(\mathbb{Z})$, $A*B = A^{-1}B$.
    • En $\mathcal{S} = \mathbb{Z}\setminus \{-1\}$, $a*b = 1 + ab$.
    • En $\mathcal{S} = \mathbb{Z}_5$, $a*b = ab(\text{mód } 7)$.

Más adelante…

Con el fin de trabajar con operaciones que sean más manejables, continuaremos expandiendo nuestro concepto de operación binaria agregándole las propiedades de conmutatividad y asociatividad.

Entradas relacionadas

Álgebra Lineal II: Introducción al teorema de Cayley-Hamilton

Por Julio Sampietro

Introducción

En esta entrada introducimos el teorema de Cayley-Hamilton, otro de los teoremas importantes del curso. Intuitivamente este teorema nos dice que «el polinomio característico anula al operador lineal». Es decir, si $P(\lambda)$ es el polinomio característico de una transformación lineal $T$, entonces $P(T)=0$.

Algunos ejemplos

Damos unos cuantos ejemplos para que entendamos que está pasando.

Ejemplo 1. Sea $A\in M_2(\mathbb{R})$ la matriz dada por

\begin{align*}
A=\begin{pmatrix} 0 & -1\\ 1 & 0
\end{pmatrix}.
\end{align*}

Calculemos su polinomio característico

\begin{align*}
\chi_A(X)=\det \begin{pmatrix} X & 1\\ -1 & X\end{pmatrix}=X^2+1.
\end{align*}

Así, si evaluamos al polinomio $\chi_A$ en la matriz $A$ tenemos que calcular

\begin{align*}
\chi_A(A)= A^2+I_2.
\end{align*}

Por un lado

\begin{align*}
A^2=\begin{pmatrix} 0 & 1\\ -1 & 0\end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\ -1 & 0\end{pmatrix}=\begin{pmatrix} -1 &0 \\ 0 & -1\end{pmatrix}=-I_2.
\end{align*}

Luego

\begin{align*}
\chi_A(A)=A^2+I_2= -I_2+I_2=O_2.
\end{align*}

Es decir, ¡$\chi_A(A)$ es la matriz cero!

$\triangle$

Ejemplo 2. Calculemos el polinomio característico de la matriz $A\in M_3(\mathbb{R})$ dónde $A$ está dada por

\begin{align*}
A=\begin{pmatrix}
0 & -1 & -2\\ 0 & 3 &4\\ 0 & 0 & -5.
\end{pmatrix}
\end{align*}

Notamos que $A$ es una matriz triangular superior. Por una entrada anterior sabemos que el polinomio característico es solo el producto de los monomios $(X-a_{ii})$. Es decir

\begin{align*}
\chi_A(X)=(X-0)(X-3)(X-(-5))= X(X-3)(X+5).
\end{align*}

Enseguida, evaluemos $\chi_A(A)$. Recordamos que esto quiere decir que tenemos que calcular

\begin{align*}
\chi_A(A)=A(A-3I_3)(A+5I_3).
\end{align*}

Por un lado

\begin{align*}
A-3I_3=\begin{pmatrix}
-3 & -1 & -2\\ 0 & 0 & 4\\ 0 & 0 & -8
\end{pmatrix},
\end{align*}

y por otro

\begin{align*}
A+5I_3=\begin{pmatrix}
5 & -1 & -2\\ 0 & 8 & 4\\ 0 & 0 &0
\end{pmatrix}.
\end{align*}

Así

\begin{align*}
(A-3I_3)(A+5I_3)&=\begin{pmatrix}
-3 & -1 & -2\\ 0 & 0 & 4\\ 0 & 0 & -8
\end{pmatrix}\cdot \begin{pmatrix}
5 & -1 & -2\\ 0 & 8 & 4\\ 0 & 0 &0
\end{pmatrix}\\ &=\begin{pmatrix} -15 & -5 & -2\\ 0 &0 &0 \\ 0 & 0 &0\end{pmatrix}.
\end{align*}

Finalmente

\begin{align*}
A(A-I_3)(A+5I_3)=\begin{pmatrix}
0 & -1 & -2\\ 0 & 3 &4\\ 0 & 0 & -5.
\end{pmatrix}\cdot \begin{pmatrix} -15 & -5 & -2\\ 0 &0 &0 \\ 0 & 0 &0\end{pmatrix}=O_3.
\end{align*}

Una vez más $\chi_A(A)=0$.

$\triangle$

El teorema

Los ejemplos anteriores sirven de calentamiento para enunciar el teorema de Cayley-Hamilton, que dice exactamente lo que sospechamos.

Teorema (de Cayley-Hamilton). Para cualquier matriz $A\in M_n(F)$ se cumple

\begin{align*}
\chi_A(A)=O_n.
\end{align*}

En otras palabras, si $\chi_A(X)=X^n+a_{n-1}X^{n-1}+\dots+a_0$ entonces

\begin{align*}
A^{n}+a_{n-1}A^{n-1}+\dots+a_0 I_n=O_n.
\end{align*}

Demostraremos este teorema en la próxima entrada. Uno podría sospechar que la demostración consiste en simplemente sustituir $A$ en la expresión de $\chi_A$ como sigue

\begin{align*}
\chi_A(A)= \det(AI_n-A)=\det(0)=0.
\end{align*}

Sin embargo, esta ‘prueba’ no es correcta, ya que estamos multiplicando a $A$ con $I_n$ como si fueran matrices, mientras que la expresión de $\chi_A$ se refiere a escalares. Más aún, observa como el resultado de la expresión que anotamos es el escalar cero, mientras que sabemos que $\chi_A(A)$ debería ser la matriz cero.

Concluimos esta sección con una breve aplicación del teorema de Cayley-Hamilton.

Proposición. El polinomio mínimo de una matriz $A\in M_n(F)$ divide al polinomio característico.

Demostración. Por el teorema de Cayley-Hamilton, $\chi_A(A)=0$. Luego por definición del polinomio mínimo se sigue que $\mu_A(X)$ divide a $\chi_A(X)$.

$\square$

Más adelante…

En la próxima entrada demostraremos el teorema de Cayley-Hamilton, y luego pasaremos a dar aplicaciones de este.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. En una entrada anterior calculamos el polinomio característico de una matriz nilpotente. Explica por qué el teorema de Cayley-Hamilton es compatible con dicho cálculo. De otra manera, verifica el teorema de Cayley-Hamilton en ese caso particular.
  2. Sea $A\in M_3(\mathbb{R})$ tal que $\operatorname{Tr}(A)=\operatorname{Tr}(A^2)=0$. Usa el teorema de Cayley-Hamilton para demostrar que existe un $\alpha\in \mathbb{R}$ tal que $A^3=\alpha I_3$.
  3. Calcula el polinomio característico de $A\in M_2(\mathbb{C})$ donde
    \begin{align*}
    A=\begin{pmatrix} 0 & -1\\ 1 & 0\end{pmatrix}.
    \end{align*}
    Es decir, $A$ es la misma matriz que en el ejemplo pero pensada como una matriz compleja. Verifica que $\chi_A(A)=O_2$.
  4. Verifica que $\chi_A(A)=O_3$ con
    \begin{align*}
    A= \begin{pmatrix} 1 & 0 & -1\\ 1 & 1 & 1 \\ 0 & 2 & 1\end{pmatrix}\in M_3(\mathbb{R}).
    \end{align*}
  5. Sea $A\in M_n(\mathbb{R})$ una matriz tal que $A$ y $3A$ son similares. Demuestra que $A^n=O_n$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Geometría Analítica I: Hipérbolas

Por Héctor Morales

Introducción

En las entradas anteriores definimos un círculo y establecimos algunas de sus propiedades; esto nos llevó naturalmente a estudiar las elipses: una de las tres figuras geométricas que podemos observar al hacer «cortes» en diferentes secciones de un cono. Al igual que para las circunferencias, discutimos detalladamente los elementos que componen a una elipse, estudiamos sus propiedades y hablamos, de manera general, sobre las aplicaciones que pueden tener en diferentes campos como en física o ingeniería.

La segunda de las secciones cónicas que vamos a estudiar en esta unidad son las hipérbolas. Decimos que será la segunda, pues recordemos que una circunferencia es una elipse; una en la cual el eje mayor y el eje menor tienen el mismo tamaño. Al igual que para las elipses, la motivación para estudiar analíticamente las hipérbolas, nace de observar fenómenos naturales. Probablemente ya has visto antes una hipérbola, y tal vez tengas dificultades pensando en qué momento de tu vida cotidiana has visto la misma figura; para motivarnos a estudiar la hipérbola hablaremos de una de sus aplicaciones: sistemas de navegación.

En el sistema de navegación LORAN se utiliza la propiedad de la definición de la hipérbola que nos dice que «la diferencia de las distancias de los puntos de la hipérbola a los focos es constante»; es este tipo de sistema de navegación, una estación radioemisora maestra y otra estación radioemisora secundaria emiten señales que pueden ser recibidas por un barco en altamar (ver figura). Puesto que un barco que monitoreé las dos señales estará probablemente más cerca de una de las estaciones, habrá una diferencia entra las distancias recorridas por las dos señales, lo cual se registrará como una pequeña diferencia de tiempo entre las señales. En tanto la diferencia de tiempo permanezca constante, la diferencia entre las dos distancias también será constante. Si el barco sigue la trayectoria correspondiente a una diferencia fija de tiempo, esta trayectoria será una hipérbola cuyos focos están localizados en las posiciones de las dos estaciones.

Esquema del sistema de navegación LORAN: una de las aplicaciones de la hipérbola a la ingeniería.

Como pudimos ver, las hipérbolas son extensamente usadas para resolver problemas importantes; entonces es importante encontrar una expresión analítica que nos permita extraer toda su información geométrica. Esta expresión analítica, saldrá naturalmente cuando veamos cómo podemos definir una hipérbola.

Definición de Hipérbola

Ya que hemos discutido brevemente por qué queremos tener una expresión analítica de la hipérbola, pasemos a definirla de una forma más formal. La hipérbola está definida como el lugar geométrico de los puntos cuya diferencia (em valor absoluto) de sus distancias a dos puntos fijos $\mathbf{p}$ y $\mathbf{q}$, llamados focos, es constante. Entonces, una hipérbola $\mathcal{H}$ está definida por la ecuación

\begin{equation}
|d(\mathbf{x}, \mathbf{p})-d(\mathbf{x}, \mathbf{q})|=2 a.
\end{equation}

donde $a>0$, y además $2 a<d(\mathbf{p}, \mathbf{q})=: 2 c$. A continuación puedes ver la figura que define a este conjunto de puntos, sometidos a la condición de la definición. Como ya te habrás dado cuenta, la definición de la hipérbola es muy parecida a la definición de la elipse. A lo largo de esta entrada y de la siguiente veremos que a pesar de ser figuras muy distintas comparten varios elementos y características.

Hipérbola como conjunto de puntos que cumplen la ecuación 1.

Así como hicimos para la elipse, queremos llegar a una ecuación canónica que sea «sencilla» y que nos permite leer toda la información geométrica de la figura. Si tomamos como focos a $\mathbf{p}=(c, 0)$ y a $\mathbf{q}=(-c, 0)$; ver la siguiente figura, esta ecuación toma la forma

\begin{equation}
\left|\sqrt{(x-c)^{2}+y^{2}}-\sqrt{(x+c)^{2}+y^{2}}\right|=2 a.
\end{equation}

y veremos a continuación que es equivalente a

\begin{equation}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{equation}

donde $b>0$ está definida por $a^{2}+b^{2}=c^{2}$. A esta última ecuación se le llama la ecuación canónica de la hipérbola.

Hipérbola vertical centrada en el orgien

Como las ecuaciones anteriores involucraban un valor absoluto, entonces se tienen dos posibilidad que corresponden a las dos ramas de la hipérbola. En una de ellas la distancia a uno de los focos es mayor y en la otra se invierten los papeles. De la ecuación $2$ se tienen dos posibilidades:

\begin{equation}
\sqrt{(x-c)^{2}+y^{2}}=2 a+\sqrt{(x+c)^{2}+y^{2}}
\end{equation}

\begin{equation}
\sqrt{(x+c)^{2}+y^{2}}=2 a+\sqrt{(x-c)^{2}+y^{2}}
\end{equation}

la primera corresponde a la rama donde $x<0$ y la segunda a $x>0$. Como hicimos en el caso de la elipse vamos a llegar a la ecuación canónica desarrollando todos los pasos. Partiendo de la definición y de la fórmula de distancia:

$$
d_{2}-d_{1}=\sqrt{(x-(-c))^{2}+(y-0)^{2}}-\sqrt{(x-c)^{2}+(y-0)^{2}}=2 a.
$$

Ahora, simplificando la expresión:

$$
\sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}=2 a.
$$

Si movemos uno de los radicales al lado opuesto:

$$
\sqrt{(x+c)^{2}+y^{2}}=2 a+\sqrt{(x-c)^{2}+y^{2}}.
$$

Luego, elevando al cuadrado ambos lados:

$$
(x+c)^{2}+y^{2}=\left(2 a+\sqrt{(x-c)^{2}+y^{2}}\right)^{2}.
$$

Después, expandimos los cuadrados:

$$
x^{2}+2 c x+c^{2}+y^{2}=4 a^{2}+4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2}.
$$

Ahora, si expandimos el cuadrado restante:

$$
x^{2}+2 c x+c^{2}+y^{2}=4 a^{2}+4 a \sqrt{(x-c)^{2}+y^{2}}+x^{2}-2 c x+c^{2}+y^{2}.
$$

En la ecuación anterior combinamos los términos y separamos al radical:

$$
2 c x=4 a^{2}+4 a \sqrt{(x-c)^{2}+y^{2}}-2 c x
$$

$$
4 c x-4 a^{2}=4 a \sqrt{(x-c)^{2}+y^{2}}
$$

Dividiendo entre $4$ y elevando al cuadrado ambos lados:

$$
c x-a^{2}=a \sqrt{(x-c)^{2}+y^{2}}
$$

$$
\left(c x-a^{2}\right)^{2}=a^{2}\left[\sqrt{(x-c)^{2}+y^{2}}\right]^{2}
$$

Finalmente, expandiendo de nuevo el cuadrado y agrupando términos semejantes llegamos a que,

$$
c^{2} x^{2}-2 a^{2} c x+a^{4}=a^{2}\left(x^{2}-2 c x+c^{2}+y^{2}\right)
$$

$$
c^{2} x^{2}-2 a^{2} c x+a^{4}=a^{2} x^{2}-2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2}
$$

$$
a^{4}+c^{2} x^{2}=a^{2} x^{2}+a^{2} c^{2}+a^{2} y^{2}
$$

$$
c^{2} x^{2}-a^{2} x^{2}-a^{2} y^{2}=a^{2} c^{2}-a^{4}
$$

$$
x^{2}\left(c^{2}-a^{2}\right)-a^{2} y^{2}=a^{2}\left(c^{2}-a^{2}\right)
$$

$$
x^{2} b^{2}-a^{2} y^{2}=a^{2} b^{2}
$$

$$
\frac{x^{2} b^{2}}{a^{2} b^{2}}-\frac{a^{2} y^{2}}{a^{2} b^{2}}=\frac{a^{2} b^{2}}{a^{2} b^{2}}
$$

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Como ya mencionamos, esta última ecuación es la ecuación canónica de la hipérbola.

Como conclusión de este primer acercamiento a las hipérbolas, prueba el siguiente recuadro interactivo de GeoGebra. Identifica los elementos básicos de la hipérbola y dibuja algunas variando parámetros. Observa cómo variando los diferentes elementos de la ecuación cambia la forma de la hipérbola.

Más adelante…

En esta entrada nos familiarizamos con la idea elemental de la hipérbola. Todavía nos queda mucho que estudiar acerca de esta sección cónica. En la siguiente entrada nombraremos cada uno de sus elementos, presentaremos algunas propiedades métricas y discutiremos su propiedad focal. Al igual que como hicimos para las elipses, tocaremos brevemente el tema de excentricidad y luego realizaremos algunos ejercicios sobre hipérbolas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • A partir de la definición de hipérbola, determine la ecuación de la que tiene sus focos en $(6,0)$ y $(-6,0)$ si $2a=8$.
  • A partir de su definición, muestre que la ecuación de una hipérbola cuyos focos están en $F_{1}(a,a)$ y $F_{2}(-a,a)$ y para la cual se cumple que $$|\mathbf{PF}_{1}| – |\mathbf{PF}_{2}| = \pm 2a$$ para todo punto $P(x,y)$ de la curva es $xy=\frac{1}{2}a^{2}$.
  • Dada la siguiente ecuación, determina si se trata de una hipérbola. En caso de que sí, escríbela en su forma canónica:

$$
25 x^{2}-16 y^{2}=400
$$

Entradas relacionadas

Geometría Analítica I: Propiedades de elipses

Por Héctor Morales

Introducción

En la entrada anterior definimos qué es una elipse, hablamos de una técnica para trazar una y cómo esta técnica, nos conduce naturalmente a su definición analítica: una elipse es la curva que define al conjunto de puntos que cumplen que la suma a dos puntos distintos llamados focos es constante. Finalmente vimos cómo escribir la ecuación canónica de la elipse; a partir de esta ecuación canónica podemos leer toda su información geométrica.

Ahora, para finalizar nuestro estudio de las elipses, vamos a hablar de sus elementos, propiedades focales y sus propiedades métricas. Verás cómo algunos problemas de aplicación motivan el estudio formal de estas propiedades y extenderemos algunas de ellas para el estudio de las cónicas que nos faltan. Sin más preámbulo, abordaremos el tema.

Elementos de una elipse

En la entrada anterior hicimos mención a algunos de los elementos que componen una elipse. Como mencionamos, a partir de la ecuación canónica puedes leer directamente información como el eje menor y el eje mayor; conociendo estos dos ejes, puedes deducir cuáles son sus vértices y sus focos. Haciendo más cuentas puedes deducir cuál es su lado recto y directrices.

En la siguiente figura puedes observar un diagrama que muestra todos los elementos de la elipse y en la siguiente tabla puedes ver qué relación guardan unos con otros. Es importante que sepamos extraer toda la información geométrica que nos sea posible cuando se nos presente una ecuación en su forma canónica.

Breve resumen de los elementos de una elipse. Estos elementos tienen análogos cuando tratamos con otras secciones cónicas.
Elemento dentro de la elipse canónicaExpresión analítica
Longitud del eje mayor$$2a$$
Coordenadas de los vértices$$(\pm a,0)$$
Longitud del eje menor$$2b$$
Coordenadas de los co-vértices$$(0,\pm b)$$
Coordenadas de los focos$(\pm c,0) \quad \text{donde} \quad c^{2}=a^{2}+b^{2}$
Excentricidad$$\varepsilon=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}=\sqrt{1-\frac{b^{2}}{a^{2}}}$$

Como puedes notar, la última fila se refiere a una propiedad de la elipse que no hemos discutido: la excentricidad. La excentricidad normalmente denotada como $\epsilon$ es un parámetro que determina el grado de desviación de una sección cónica con respecto a una circunferencia. Pronto veremos que a partir de la excentricidad, podemos definir a las tres secciones cónicas como el lugar geométrico de los puntos $\mathbf{X}$ cuya razón de sus distancias a un foco $\mathbf{p}$ y a una recta $\ell$ es una constante fija. Profundizaremos en el estudio de la excentricidad a lo largo de esta unidad, por el momento fijemos la idea de que las elipses necesariamente deben tener una excentricidad menor que uno; es decir $\epsilon < 1$.

Otra observación importante: estas reglas se refieren a una elipse centrada en el origen que tiene una ecuación canónica $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. No es el objetivo de esta unidad hablar de traslaciones y rotaciones; pero debes saber que si la elipse tiene el centro fuera del origen en un punto $(h,k)$, su ecuación se ve así: $\frac{x^{2}-h}{a^{2}}+\frac{y^{2}-k}{b^{2}}=1$. El estudio de elipses rotadas se aborda comúnmente en un segundo curso de geometría analítica.

Propiedad focal de la elipse

La propiedad focal de la elipse es es que cualquier fotón que sale de uno de los focos, se refleja dentro de la elipse para llegar al otro foco. Si no estás familiarizado con el fotón, imagina la siguiente situación: estás en un cuarto con paredes reflejantes y con forma elíptica; si tu te paras en uno de los focos del cuarto y apuntas con una linterna hacia algún punto en las paredes, el rayo de luz de tu linterna impactará directamente en el otro foco.

Existen dos formas de formalizar la propiedad que describimos en el párrafo anterior; la primera consiste en tomar el círculo de radio $2\mathbf{a}$ centrado en el foco $\mathbf{p}$ (este círculo contiene el otro foco $\mathbf{q}$, puesto que ahora $2 a>d(p, q)$) y luego ver que para los puntos de este círculo, su mediatriz con $\mathbf{q}$ es tangente a la elipse $\mathcal{E}$. La segunda forma de resolver este problema nos va a permitir abordar el clásico «problema del bombero», entonces dejaremos el primero como tarea moral.

Para hablar del problema del bombero observa la siguiente figura, supongamos que un bombero está para en el punto $\mathbf{p}$ y hay un incendio en el punto $\mathbf{q}$. Pero tiene su cubeta vacía, y entonces tiene que pasar primero a llenarla a un río cuyo borde es la recta $\mathcal{l}$. El problema consiste en saber cuál es la trayectoria óptima que debe seguir el bombero. Es decir, ¿para cuál punto $x \in \mathcal{l}$? se tiene que $\mathrm{d}(\mathbf{p}, \boldsymbol{x})+\mathrm{d}(\boldsymbol{x}, \mathbf{q})$ es mínima.

Nota cómo no hemos específicado de qué lado del río está el fuego; si estuviera del otro lado que el bombero, cualquier trayectoria al fuego tiene que pasar por $\mathcal{l}$ y entonces debe irse por la línea recta de $\mathbf{p}$ a $\mathbf{q}$ y tomar agua en $\boldsymbol{x}_{0}=\ell \cap \overline{\mathbf{p q}}$ (ver la siguiente figura). Entonces, si fuego y bombero están del mismo lado del río $\mathcal{l}$ podemos pensar en un «fuego virtual», que es el reflejado de $\mathbf{q}$ en $\mathcal{l}$, llamémosle $\mathbf{q}_{0}$, que cumple que $\mathrm{d}(\mathbf{x}, \mathbf{q})=\mathrm{d}\left(\mathbf{x}, \mathbf{q}_{0}\right)$ para todo $\mathbf{x} \in \mathcal{l}$, (para $\mathbf{q}$ y $\mathbf{q}_{0}$, \mathcal{l} es su mediatriz). La solución es, por el caso anterior, $\mathbf{x}_{0}=\ell \cap \overline{\mathbf{p q}_{0}}$.

Pero observa cómo además de que el ángulo $\alpha$ con el que llega el bombero a $\mathcal{l}$ es igual al ángulo de «de reflexión» con el que sale corriendo al fuego (ya con la cubeta llena), e igual al ángulo con el que seguiría su trayecto al fuego virtual; y que esta propiedad determina el punto de mínimo recorrido $\mathbf{x}_{0}$; es fácil convencerse de que para cualquier otro punto de $\mathcal{l}$ los ángulos de llegada y de salida son distintos. Si los bomberos fueran fotones que salen de $\mathbf{p}$ y $\mathcal{l}$ es un espejo, el único que llega a $\mathbf{q}$ es el fotón de recorrido mínimo.

Para aterrizar nuestro problema del bombero al caso de las elipses, considera ahora que $\mathbf{p}$ y $\mathbf{q}$ son los focos de una elipse y $\mathbf{x}_{0}$ un punto en ella. Sea $\mathcal{l}$ la recta que pasa por $\mathbf{x}_{0}$ y bisecta (por fuera) los segmentos de $\mathbf{p}$ y $\mathbf{q}$ a $\mathbf{x}_{0}$. Por construcción, y considerando la solución al problema del bombero, cualquier otro punto $\mathbf{x} \in \mathcal{l}$ tiene mayor suma de distancias a los focos y por tanto está fuera de la elipse. Esto demuestra que $\mathcal{l}$ es la tangente a la elipse en el punto $\mathbf{x}_{0}$, y por lo tanto, queda demostrada la propiedad focal de la elipse.

Antes de dar por terminada esta sección, te invito a que experimentes con el siguiente recuadro interactivo de GeoGebra: en él podrás ver cómo funciona esta propiedad focal de las elipses para elipses de diferentes tamaños y posiciones. ¿Puedes ver qué pasa con esta propiedad para el caso degenerado de la elipse? ¿Qué pasa si los focos son el mismo punto?

Propiedades métricas de la elipse

Tocaremos brevemente el tema de las propiedades métricas de la elipse; lo haremos sólo superficialmente pues una demostración formal se escapa de lo que planeamos cubrir en este curso. Si no estás familiarizado con los términos que aparecen en esta sección, no te preocupes, enfócate en entender cómo se llegó a los resultados y tenlos como referencia por si los ocupas en algún otro curso un poco más enfocado a las aplicaciones de las elipses.

La primera de sus propiedades métricas que vamos a abordar es el área de la elipse: considera que esta propiedad se refiere a la elipse con ecuación:

\begin{equation}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{equation}

La ecuación anterior, puede ser reescrita como

\begin{equation}
y(x)=b \sqrt{1-x^{2} / a^{2}}.
\end{equation}

Para toda $x \in[-a, a]$, esta curva es la mitad superior de la elipse. Entonces, el doble de la integral $y(x)$ sobre le intervalo $[-a, a]$ será el área de la elipse:

\begin{equation}
\begin{aligned}
A_{\text {ellipse }} &=\int_{-a}^{a} 2 b \sqrt{1-\frac{x^{2}}{a^{2}}} d x \
&=\frac{b}{a} \int_{-a}^{a} 2 \sqrt{a^{2}-x^{2}} d x .
\end{aligned}
\end{equation}

La segunda integral es el área del círculo con radio $a$, la cual vale $\pi a^{2}$. Entonces,

\begin{equation}
A_{\text {ellipse }}=\frac{b}{a} \pi a^{2}=\pi a b.
\end{equation}

La circunferencia de una elipse, es decir, el análogo del perímetro para las circunferencias presenta un problema: ¡es bastante difícil de obtener! pues hay que calcular una integral que no puede ser evaluada en términos de funciones elementales. De momento, pondremos sólo la fórmula, pues es un resultado bastante útil. Si te interesa ver cómo se llegó a este resultado, puedes revisar la siguiente fuente.

\begin{equation}
C \approx \pi[3(a+b)-\sqrt{(3 a+b)(a+3 b)}]=\pi\left[3(a+b)-\sqrt{10 a b+3\left(a^{2}+b^{2}\right)}\right]
\end{equation}

La última de estas propiedades métricas que veremos superficialmente será la curvatura; esto te podría resultar especialmente útil si por ejemplo quisieras calcular la curvatura de la trayectoria para una partícula que se mueve trazando una parábola. La curvatura para una elipse con ecuación canónica $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ será:

\begin{equation}
\kappa=\frac{1}{a^{2} b^{2}}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}\right)^{-\frac{3}{2}}.
\end{equation}

Más adelante…

En esta entrada y en la anterior profundizamos en las propiedades de la elipse. Seguiremos nuestro estudio de las secciones cónicas definiendo a las hipérbolas, veremos que a pesar de ser figuras muy distintas, guardan una relación estrecha con los círculos y las elipses. Al igual que para las figuras que hemos visto hasta el momento, entenderemos cómo llegar a una expresión analítica y aprenderemos a leer toda la información geométrica que contiene.

Tarea moral

  • Demuestra la propiedad focal de la elipse sin resolver el problema del bombero. Sugerencia. toma el círculo de radio $2\mathbf{a}$ centrado en un foco $\mathbf{p}$ y luego ve que para los puntos de este círculo, su mediatriz con $\mathbf{q}$ es tangente a una elipse.
  • Halle la ecuación de la elipse con centro en el origen que satisface las condiciones dadas; construya la curva:
  1. La longitud del eje mayor es $10$ y l del eje menor $8$; los focos están sobre el eje $y$.
  2. El eje menor mide $10$ y un vértice es $(6,0)$.
  3. El lado recto mide $\frac{32}{7}$ y uno de los extremos del eje menor está en $(4,0)$.
  • Obten el área de la elipse que tiene la siguiente ecuación:

$$
\frac{x^{2}}{16}+\frac{y^{2}}{25}=1
$$

  • Obtenga una aproximación del perímetro de la siguiente elipse:

$$
\frac{x^{2}}{25}+\frac{y^{2}}{225}=1
$$

  • Obtenga la curvatura de la siguiente elipse en el punto $(3,2)$:

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

Entradas relacionadas

Geometría Analítica I: Elipses

Por Héctor Morales

Introducción

Probablemente recuerdas un ejercicio muy común que se hace en las primarias en México: cuando se enseña a los niños sobre el Sistema Solar, comúnmente se les pide hacer una maqueta con esferas de unicel. Si alguna vez hiciste este ejercicio, tal vez recuerdas que las supuestas trayectorias de estos planetas en nuestra maqueta se distribuían como una serie de círculos concéntricos que iban aumentando en tamaño, con el «Sol» en su centro.

Por otro lado, si te interesa la astronomía, seguramente estás familiarizado con las Leyes de Kepler, una de ellas nos dice «Todos los planetas se mueven alrededor del Sol siguiendo órbitas elípticas. El Sol está en uno de los focos de la elipse.» Entonces, resulta que las trayectorias de los planetas no son círculos, si no «elipses», y todo este tiempo nuestra maqueta estuvo mal (¿o no tanto?). Si las elipses son tan importantes como para permitirnos visualizar el movimiento de un planeta, podrás darte cuenta de la importancia de tener una descripción analítica de esta figura; y por qué nos interesa estudiarla a fondo.

En esta entrada haremos justo eso: discutiremos desde cómo trazar una elipse en papel, pasando por su definición formal hasta obtener una expresión analítica que nos permitirá leer toda la información geométrica de la figura.

Dibujando y definiendo una elipse

Si alguna vez has visto un arbusto con forma elíptica (algo así como un círculo achatado), tal vez te has preguntado ¿cómo obtuvo esa forma? El método más sencillo para dibujar una elipse consiste en fijar dos tachuelas a una superficie de papel, amarrar holgadamente un hilo entre ellas y luego, manteniendo la tensión del hilo, girar el lápiz. Si intentas por tu cuenta este procedimiento, podrás ver que obtuviste una figura como la siguiente:

Elipse dibujada con el «Método del
Jardinero»

Esta figura es una de las secciones cónicas que estudiaremos durante el curso; como ya lo sugiere el método que usamos para dibujarla («Método del jardinero»), su definición tiene tres elementos importantes: dos puntos fijos y un tercer punto que se mueve manteniendo una suma de distancias totales constante. Sin más preámbulos, abordemos la definición de elipse con la que trabajaremos.

Definición. Las elipses son el lugar geométrico de los puntos cuya suma de distancias a dos puntos fijos llamados focos es constante. De tal manera que una elipse $\mathcal{E}$ queda totalmente determinada por la ecuación:

\begin{equation}
d(\mathbf{x}, \mathbf{p})+d(\mathbf{x}, \mathbf{q})=2 a
\end{equation}

donde $\mathbf{p}$ y $\mathbf{q}$ son los focos y $a$ es una constante positiva, llamada semieje mayor, tal que 2 a>d(\mathbf{p}, \mathbf{q}).

Un pregunta natural que te puede surgir al considerar esta definición es el por qué incluir el coeficiente $2$. La respuesta es que se incluye para que quede claro que si los focos coinciden, $\mathbf{p}=\mathbf{q}$, entonces se obtiene un círculo de radio $a$ y centro en el foco; dicho de una forma más explícita ¡Resulta que los círculos son un tipo especial de elipse!

Antes de continuar te invito a que manipules el siguiente recuadro interactivo de GeoGebra para familiarizarte con las elipses. Observa cómo cambiar el eje mayor y el eje menor la redefine totalmente; además cómo la figura es totalmente dependiente de la posición de sus focos.

Ahora, debes considerar que esta ecuación, poniéndole coordenadas a los focos, incluye raíces cuadradas por las distancias, lo cual la hace ver un poco intimidante. Veamos un caso especial que nos permitirá escribir a la ecuación de la elipse de una forma más agradable. Con este desarrollo, queremos llegar a la ecuación canónica de la elipse.

Supongamos que el centro de la elípse $\mathcal{E}$, i.e., el punto medio entre los focos, está en el origen y que además los focos están en el eje $x .$ Entonces tenemos que $\mathbf{p}=(c, 0)$ y $\mathbf{q}=(-c, 0)$ para alguna $c$ tal que $0<c<a$ (donde ya suponemos que la elipse no es un círculo al pedir $0<c$ ). Es fácil ver que entonces la intersección de $\mathcal{E}$ con el eje $x$ consiste de los puntos $(a, 0) \mathrm{y}$ $(-a, 0)$, pues la ecuación $(2.8)$ para puntos $(x, 0)$ es

\begin{equation}
|x-c|+|x+c|=2 a
\end{equation}

que sólo tiene las soluciones $x=a$ y $x=-a$, y de aquí el nombre de «semieje mayor» para la constante $a$. Como el eje $y$ es ahora la mediatriz de los focos, en él, es decir en los puntos $(0, y)$, la ecuación se vuelve:

\begin{equation}
\sqrt{c^{2}+y^{2}}=a
\end{equation}

que tiene soluciones $y=\pm b$, donde $b>0$, llamado el semieje menor de la elipse $\mathcal{E}$. es tal que:

\begin{equation}
b^{2}=a^{2}-c^{2} .
\end{equation}

Puedes guiarte con la siguiente figura para entender el desarrollo que acabamos de hacer:

Semieje mayor y semieje menor de una elipse.

Ahora sí, consideremos la ecuación $(2.8)$, que $\operatorname{con} \mathrm{x}=(x, y) \mathrm{y}$ la definición de nuestros focos se expresa:

$$
\sqrt{(x-c)^{2}+y^{2}}+\sqrt{(x+c)^{2}+y^{2}}=2 a
$$

Si elevamos al cuadrado directamente a esta ecuación, en el lado izquierdo nos quedaría un incomodo término con raíces. Así que conviene pasar a una de las dos raíces al otro lado, para obtener

$$
\sqrt{(x-c)^{2}+y^{2}}=2 a-\sqrt{(x+c)^{2}+y^{2}}
$$

Elevando al cuadrado se tiene

$$
(x-c)^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x+c)^{2}+y^{2}}+(x+c)^{2}+y^{2}
$$

$$
x^{2}-2 c x+c^{2}=4 a^{2}-4 a \sqrt{(x+c)^{2}+y^{2}}+x^{2}+2 c x+c^{2}
$$

$$
4 a \sqrt{(x+c)^{2}+y^{2}}=4 a^{2}+4 c x
$$

$$
a \sqrt{(x+c)^{2}+y^{2}}=a^{2}+c x
$$

Elevando de nuevo al cuadrado, nos deshacemos de la raíz, y después, agrupando términos, obtenemos

$$
a^{2}\left((x+c)^{2}+y^{2}\right)=a^{4}+2 a^{2} c x+c^{2} x^{2}
$$

$$
a^{2} x^{2}+2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2}=a^{4}+2 a^{2} c x+c^{2} x^{2}
$$

$$
\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right)
$$

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

que, dividiendo entre $a^{2} b^{2}$, se escribe finalmente como

\begin{equation}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{equation}

llamada la ecuación canónica de la elipse centrada en el origen.

Después de este largo desarrollo pudimos llegar a una ecuación sencilla que nos permite leer toda la información geométrica de la elipse: su centro y la magnitud de su semieje mayor y semieje menor. Observa cómo ahora podemos demostrar sencillamente una de las afirmaciones que hicimos en esta entrada: si en la ecuación canónica de la elipse centrada en el origen hacemos $a=b$, es decir, forzamos a que la figura tenga el semieje mayor y el semieje menor iguales obtenemos la ecuación $x^2+y^2=a^2$ que es la expresión analítica de una circunferencia centrada en el origen.

Con estas herramientas estamos listos para realizar algunos ejercicios. En el primero obtendremos la ecuación de la elipse a partir de la definición, y en el segundo veremos cómo podemos extraer toda la información geométrica de la elipse a partir de su ecuación.

Ejercicio. Encuentra la ecuación de la elipse con fonoces en $(0,3)$ y $(0,-3)$ para la cual la suma de las distancias del foco a cada uno de sus puntos es $6\sqrt{3}$.

Utilizando la definición propuesta al inicio de esta entrada, nuestra elipse será el conjunto de puntos que cumplen la condición:

$$
d(\mathbf{x}, \mathbf{p})+d(\mathbf{x}, \mathbf{q})=2 a
$$

Aplicando la fórmula de la distancia que utilizando en la primera unidad del curso y considerando el valor de la constante $2a$ tenemos que

$$
\sqrt{x^{2}+(y-3)^{2}}+\sqrt{x^{2}+(y+3)^{2}}=6 \sqrt{3}
$$

Esto, lo podemos reescribir como

$$
\sqrt{x^{2}+(y-3)^{2}}=6 \sqrt{3}-\sqrt{x^{2}+(y+3)^{2}}
$$

Si elevamos ambos lados al cuadrado, llegamos a que

$$
x^{2}+(y-3)^{2}=108-12 \sqrt{3} \sqrt{x^{2}+(y+3)^{2}}+x^{2}+(y+3)^{2}
$$

Si te das cuenta, podemos cancelar algunos términos; y en nuestro caso nos conviene dividir ambos lados de la ecuación anterior entre $12$.Si reducimos la expresión anterior, tenemos que

$$
\sqrt{3} \sqrt{x^{2}+(y+3)^{2}}=9+y
$$

Una vez más elevamos ambos lados al cuadrado y llegamos a que

$$
3 x^{2}+2 y^{2}=54
$$

Lo cual es lo mismo a

$$
\frac{x^{2}}{27}+\frac{y^{2}}{18}=1
$$

que es la ecuación de la elipse en su forma canónica.

Ejercicio. ¿Cuál es la ecuación canónica de la elipse que tiene como vértices a los puntos $(\pm 8,0)$ y como focos a $(\pm 5,0)$?

Los focos están en el eje $x$, entonces el eje mayor estará también sobre el eje $x$. Así, la ecuación tendrá esta forma

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Como los vértices son $(\pm 8,0)$, entonces $a=8$ y $a^{2} = 64$. Y puesto que los focos son $(\pm 5,0)$, entonces $c=5$ y $c^2 = 25$. Ahora, sabemos que los focos y los vértices están relacionados por la siguiente ecuación $c^{2}=a^{2}-b^{2}$. Si resolvemos para $b^2$ tenemos que $b^2=39$. Por lo tanto, la ecuación canónica de esta elipse será:

$$
\frac{x^{2}}{64}+\frac{y^{2}}{39}=1
$$

Más adelante…

En esta entrada aprendimos lo básico sobre una elipse: su definición, sus elementos y la ecuación canónica que la representa. Nos falta hablar de sus propiedades focales y del concepto de excentricidad, estos términos serán el tema de la siguiente entrada. Una vez que hayamos concluido nuestro estudio de las elipses, empezaremos a hablar de hipérbolas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Dibuja la elipse $\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$ en algún programa de computadora e identifica sus elementos. Sugerencia: puedes utilizar GeoGebra, Mathematica, Matlab, Python o GNU plot.
  • Considera la siguiente ecuación de elipse $9 x^{2}+4 y^{2}=36$; encuentra sus focos, su semieje mayor, su semieje menor y dibújala.
  • Encuentra el área de una elipse con semieje mayor $a$ y semieje menor $b$. Sugerencia: Considera la ecuación canónica de una elipse centrada en el origen, despeja para $x$ e integra sobre $x$ sólo un cuadrante; eligiendo correctamente los límites de integración. El resultado de la integral multiplícalo por $4$. Cuidado, la integral es trigonométrica.

Entradas relacionadas