Archivo del Autor: Moisés Morales Déciga

Cálculo Diferencial e Integral II: Funciones integrables con finitas discontinuidades

Por Moisés Morales Déciga

Introducción

Hasta ahora, hemos hablado de funciones integrables en un intervalo cerrado, en términos de ciertas sumas superiores e inferiores. Vimos en la entrada de Propiedades de la integral que si una función es monótona o continua, entonces su integral siempre está definida. Ahora veremos qué sucede con las funciones que tienen discontinuidades. En esta entrada trataremos a las funciones que finitas discontinuidades. En la siguiente hablaremos de funciones con una infinidad de discontinuidades.

Breve repaso de integrabilidad

Recordemos que para determinar si una función acotada $f:\mathbb{R}\to \mathbb{R}$ es integrable en cierto intervalo $[a,b]$, debemos calcular ciertas sumas superiores e inferiores con respecto a una partición. Esto es tomar algunos puntos $x_0<\ldots<x_n$ en $[a,b]$, con $x_0=a$ y $x_n=b$. Escribimos $$P=\{ x_0, x_1, … , x_n \},$$

y decimos que $P$ genera los siguientes intervalos a los que llamamos celdas

$$[x_0,x_1],[x_1,x_2],…,[x_{n-1},x_n].$$

A $[x_{k-1},x_{k}]$ le llamamos la $k$-ésima celda de $P$, cuya longitud es $\Delta x_{k}=x_k-x_{k-1}$. Si $m_k$ es el ínfimo de los valores de $f$ en la $k$-ésima celda y $M_k$ es su supremo, entonces podemos definir respectivamente la suma inferior y superior como $$\underline{S}(f,P)=\sum_{k=1}^n m_k\Delta x_k \quad \text{y} \quad \overline{S}(f,P)=\sum_{k=1}^n M_k\Delta x_k.$$

La función $f$ es integrable cuando el ínfimo de las sumas superiores (tomado sobre todas las particiones) coindice con el supremos de las sumas inferiores. Vimos que esto es equivalente a pedir que para todo $\epsilon$ haya una partición en la que la suma superior y la inferior difieran menos que $\epsilon$ (a lo que llamamos el criterio de Riemann). Probamos varias otras propiedades de esta definición, pero una que será muy importante para esta entrada es la siguiente.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Usaremos esta proposición en las siguientes secciones, pero necesitamos una versión un poco más versátil.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada y $n$ un entero positivo. Sea $P=\{x_0,\ldots,x_n\}$ una partición de $[a,b]$. Si la integral $$\int \limits_{a}^{b} f(x) \ dx$$ existe, entonces todas las integrales $$\int_{x_{k-1}}^{x_k} f(x)\, dx$$ para $k=1,\ldots,n$ existen. Y viceversa, si estas $n$ integrales existen, entonces la primera también. Cuando todas estas integrales existen, entonces $$\int \limits_{a}^{b} f(x) \ dx = \sum_{k=1} ^n \int_{x_{k-1}}^{x_k} f(x)\, dx.$$

La demostración de esta proposición no es difícil, pues se sigue de la proposición anterior y de una prueba inductiva. Por ello, la encontrarás como parte de los ejercicios.

Funciones escalonadas

Hablaremos de la integrabilidad de funciones escalonadas, para lo cual necesitaremos la siguiente definición.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es escalonada en el intervalo $[a,b]$, si existe una partición $P=\{ x_0, x_1, … , x_n\}$ del intervalo $[a,b]$, tal que $f$ es constante en cada subintervalo abierto de $P$. Es decir, para cada $k=1, 2, …, n$ existe un número real $s_k$ tal que:

$$f(x)=s_k, \quad \text{si} \quad x_{k-1} < x < x_k.$$

A las funciones escalonadas también se les conoce como funciones constantes a trozos.

Ejemplo. En algunos sistemas postales se deben poner estampillas en una carta para poderse enviar. La cantidad de estampillas que hay que poner está determinada por el peso de la carta. Supongamos que una estampilla cuesta $5$ pesos y que hay que poner una estampilla por cada $20g$ (o fracción) que pese la carta, hasta un máximo de $100g$.

Si el peso de la carta en gramos está en el intervalo $[0,20]$, entonces tienes que pagar $5$ pesos. Si está en el intervalo $(20,40]$, pagarás 10 pesos y así sucesivamente hasta que llegue a 100 gramos. Gráficamente, el costo de envío tendría el siguiente comportamiento (puedes dar clic en la imagen para verla a mayor escala).

Observa que en efecto parece ser que hay «escalones». Esta función es escalonada pues al dar la partición $P=\{0,20,40,60,80,100\}$, tenemos que la función es constante en cada intervalo abierto definido por la partición.

Si quisiéramos calcular la integral de esta función, ¿qué podríamos hacer? Podemos utilizar la proposición de separar la integral en intervalos que enunciamos arriba, usando la misma partición $P$. Como la función es constante en cada intervalo dado, entonces su integral existe. Así, la integral en todo el intervalo $[0,100]$ existirá y será la suma de las integrales en cada intervalo. Tendrás que encontrar el valor exacto como uno de los ejercicios.

$\triangle$

Integral para funciones escalonadas

Las funciones escalonadas en un cierto intervalo siempre son integrables, como lo afirma el siguiente resultado.

Teorema. Sea $f:\mathbb{R} \to \mathbb{R}$ una función. Si $f$ es escalonada en un intervalo $[a,b]$, entonces es integrable en $[a,b]$. Además, si la partición que muestra que es escalonada es $P=\{x_0,\ldots,x_n\}$, y para $x$ en el intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$) se cumple que $f(x)=s_k$, entonces se tiene que $$\int_a^b f(x)\, dx = \sum_{k=1}^n s_k (x_k-x_{k-1}).$$

El teorema nos dice entonces que el valor de la integral es la suma de los productos del valor $s_k$ (constante), por la longitud del $k$-ésimo intervalo. Esto tiene mucho sentido geométrico: cada uno de estos productos es el área de un rectángulo correspondiente a un «escalón». El teorema nos dice que el área buscada es la suma de las áreas de estos escalones.

Demostración. La demostración es consecuencia de la proposición para partir integrales en intervalos. Notemos que como $f$ es constante en cada intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$), entonces es integrable en dicho intervalo. En efecto, fijemos una $k\in \{1,\ldots,n\}$ y tomemos $Q=\{y_0,\ldots,y_m\}$ una partición de $[x_{k-1},x_k]$. En en este intervalo cualquier suma superior (o inferior) se hace tomando como supremo (o ínfimo) al valor constante $s_k$, de modo que:

\begin{align*}
\overline{S}(f,Q)&=\sum_{i=1}^m M_i \Delta y_i\\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k(x_k-x_{k-1}),\\
\underline{S}(f,Q)&= \sum_{i=1}^m m_i \Delta y_i \\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k (x_k – x_{k-1}).
\end{align*}

Así, el ínfimo de las particiones superiores y el supremo de las inferiores es $c_k(x_k-x_{k-1})$, por lo que la integral existe en cada intervalo $[x_{k-1},x_k]$ y es igual a $c_k (x_k – x_{k-1})$. Usando la proposición que enunciamos en la sección de recordatorio sobre partir la integral por intervalos, obtenemos

$$\int_a^b f(x)\, dx = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)\, dx =\sum_{k=1}^n s_k (x_k-x_{k-1}),$$

como queríamos.

$\square$

Funciones continuas a trozos

Las funciones escalonadas son muy sencillas, pero las ideas que hemos discutido respaldan una cierta intuición de que para la integrabilidad «si la función se comporta bien en cada uno de una cantidad finita de intervalos, entonces se comporta bien en todo el intervalo». Esa idea se repite a continuación.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$. Diremos que $f$ es continua a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Pareciera que estamos pidiendo continuidad en todo el intervalo $[a,b]$. Sin embargo, hay algunas excepciones. Por la manera en la que está escrita la definición, la función $f$ no necesariamente es continua en los puntos $x_1,x_2,\ldots,x_{n-1}$.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es continua a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Demostración. Nos gustaría usar la proposición de separación de la integral por intervalos. Para ello, tomemos la partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$. Si $f$ fuera continua en cada intervalo cerrado $[x_{k-1},x_k]$, podríamos usar un resultado anterior para ver que es integrable en cada uno de estos intervalos, pero aquí tenemos una hipótesis un poco más débil, pues la continuidad es sólo en el abierto.

De cualquier manera, se puede ver que $f$ es integrable en cada intervalo cerrado $[x_{k-1},x_k]$. Para ello, fijemos $k$ y tomemos $\epsilon>0$. Como $f$ es acotada, tiene supremo $M$ e ínfimo $m$ en $[a,b]$. Si $M=m$, entonces $f$ es constante y no hay nada que hacer. Así, supongamos $M\neq m$ y tomemos una $\delta>0$ tal que $2\delta(M-m)< \frac{\epsilon}{2}$, y tal que $\delta<\frac{x_k-x_{k-1}}{2}$. La segunda condición nos dice que $[x_{k-1}+\delta,x_k-\delta]$ es no vacío. Como $f$ es continua en este intervalo cerrado, es integrable ahí. Por el criterio de Riemann, hay una partición $Q=\{y_1,\ldots,y_{l-1}\}$ de dicho intervalo tal que $$\overline{S}(f,Q)-\underline{S}(f,Q)<\frac{\epsilon}{2}.$$

Si a esta partición agregamos los puntos $y_0=x_{k-1}$ y $y_l=x_k$, entonces obtenemos una partición $Q’=\{y_0,\ldots,y_l\}$ la cual su primera y última celda tienen longitud $\delta$ y cumple

\begin{align*}
\overline{S}(f,Q’)-\underline{S}(f,Q’)&=(\overline{S}(f,Q)-\underline{S}(f,Q))+(M_1-m_1)\Delta y_1 + (M_l-m_l)\Delta y_l\\
&<\frac{\epsilon}{2}+ (M-m)\delta + (M-m)\delta\\
&=\frac{\epsilon}{2}+ 2(M-m)\delta\\
&<\frac{\epsilon}{2}+\frac{\epsilon}{2}\\
&=\epsilon.
\end{align*}

Así, hemos encontrado una partición $Q’$ de $[x_{k-1},x_k]$ donde las sumas superior e inferior difieren en menos de $\epsilon$. Por el criterio de Riemann, $f$ es integrable en ese intervalo, para cada $k=1,\ldots,n$. Concluimos la demostración usando nuevamente la proposición de separación de la integral en intervalos.

$\square$

Ejemplo. La siguiente función $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$

es integrable en el intervalo $[0,4.5]$. Tendrás que calcular su integral en los ejercicios.

$\triangle$

Funciones monótonas a trozos

Para esta discusión de funciones monótonas, vale la pena que tengas presente las definiciones de funciones crecientes y decrecientes, que puedes consultar en la entrada correspondiente del curso de Cálculo Diferencial e Integral I.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es monótona a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es monótona en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Podemos pensar cómo sería la gráfica de una función así. Tendría que estar formada por un número finito de trozos monótonos. Un ejemplo de ello son las funciones escalonadas (son por ejemplo, no crecientes a trozos). Un ejemplo un poco más interesante sería el de la siguiente figura.

Monótona por trozos

Como te imaginarás, las funciones monótonas a trozos también son integrables.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es monótona a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Una vez más, la demostración usa la proposición de separación de la integral por intervalos. Pero nuevamente nos enfrentamos con una dificultad. Lo que hemos demostrado anteriormente es que si una función es monónona en un intervalo $[x_{k-1},x_k]$, entonces es integrable en dicho intervalo. ¿Pero si sólo tenemos monotonía en $(x_{k-1},x_k)$? Para atender esta dificultad, se tiene que hacer una adaptación similar a lo que hicimos en la demostración para funciones continuas a trozos. Los detalles quedan como parte de la tarea moral.

Más adelante…

En esta entrada analizamos funciones con una cantidad finita de discontinuidades. También hablamos de las funciones monótonas a trozos, que podrían tener una infinidad de discontinuidades, pero también ser integrables. En la siguiente entrada veremos qué hacer con la integrabilidad cuando tenemos una cantidad infinita de discontinuidades.

Tarea moral

  1. Calcula el valor de la integral de la función escalonada del servicio postal, con la partición dada.
  2. Integra la siguiente función: $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$
  1. Integra la siguiente función. Puedes usar fórmulas de integración que conozcas de cursos preuniversitarios, sin embargo, toma en cuenta que tu respuesta será un poco informal hasta que mostremos de dónde salen dichas fórmulas. $$ f(x)= \left\{ \begin{array}{lcc}             \sqrt x &   si  & 0 \leq x \leq 2 \\             \\ ln(x) &  si & 2 < x < 3 \\             \\ -\frac{x^2}{16} -x +5 &  si  & 3 \leq x \leq 4             \end{array}   \right. $$
  1. Demuestra por inducción la proposición de separación de la integral en intervalos que quedó pendiente en la sección de «Breve repaso de integrabilidad». Asegúrate de demostrar la ida y la vuelta.
  2. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones acotadas.
    • Muestra que si $f$ y $g$ son funciones escalonadas en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones escalonadas en $[a,b]$. Sugerencia. Usa como partición un refinamiento común a las particiones $P$ y $Q$ que muestran que $f$ y $g$ son escalonadas, respectivamente.
    • Muestra que si $f$ y $g$ son funciones continuas por trozos en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones continuas por trozos en $[a,b]$.
    • Si $f$ y $g$ son funciones monótonas por trozos en un intervalo $[a,b]$, ¿será que $f+g$ y $fg$ también lo son? ¿Bajo qué condiciones de la monotonía sí sucede esto?
  3. Da un ejemplo de una función que sea monótona por trozos, pero que no sea continua por trozos.
  4. Demuestra la proposición de que las funciones monónotas a trozos son integrables.

Entradas relacionadas

Cálculo Diferencial e Integral II: Integración directa

Por Moisés Morales Déciga

Introducción

Ahora que hemos recordado las derivadas y de haber estudiado los teoremas fundamentales, podemos definir integrales inmediatas que surgen de estos temas.

La bondad de estos teoremas es que podemos encontrar formas y métodos de integración que se desprenden directamente de los procesos de derivación.

Para facilitar la notación de esta entrada, utilicemos la integral indefinida, es decir, sin considerar los límites de integración.

Recordemos que si tenemos una integral definida, tiene la siguiente representación:

$$\int \limits_a^b f(x) \ dx = \left. F(x) \right|_a^b = F(b) \ – \ F(a).$$

Donde $F(x)$ es la integral de $f(x)$ y posteriormente se evalúa en los límites correspondientes.

En contraste con las integrales sin límites de integración o indefinidas, se verían de la siguiente manera:

$$\int f(x) \ dx = F(x) \ + \ C.$$

Ya que no tenemos límites, al momento de integrar encontramos una función que depende de nuestra variable pero podríamos tener una pérdida de información ya que, si recordamos las derivadas, la derivada de una constante es $0$, lo que, al momento de integrar esta derivada perdemos el valor de esta constante, (constante de integración).

Por ejemplo:

$$f(x) = x^2 + 3x + 5.$$

Si aplicamos derivamos esta función, tenemos lo siguiente.

$$\frac{d}{dx} f(x) = f'(x) = 2x + 3.$$

Lo que, al integrar esta derivada utilizando el teorema fundamental del cálculo, tenemos lo siguiente.

$$\int \frac{d}{dx} f(x) \ dx = f(x) = x^2 + 3x + 5. $$

Pero, si integramos tal cual la derivada que se encontró, se tiene la siguiente integral.

$$\int 2x + 3 = x^2 + 3x. $$

Vemos que no es exactamente lo mismo. En realidad, lo único que difiere es en la constante y esto no nos genera mayor problema, ya que al considerar los límites de integración se puede ajustar.

Nota: Solo se puede ajustar mediante una constante. No se pueden añadir términos que dependan de la misma variable de la función.

Si falta una constante, no hay problema. La integral quedará de la siguiente forma:

$$\int 2x + 3 = x^2 + 3x + C.$$

Donde $C$ se le conoce como la constante de integración.

Entonces, tomando el ejemplo anterior, hay que identificar el valor de $C$, y ya solo se tendría que despejar.

$$ x^2 + 3x + 5= x^2 + 3x + C.$$

$$C = 5.$$

Entonces, por practicidad en la sección, utilizaremos la notación de la integral sin límites de integración sin olvidar la constante de integración.

Integral de una constante

$$\int z \ dx = z \ x +C.$$

En particular, si $z=1$.

$$\int \ dx = x + C.$$

Integral de potencias

Tendríamos funciones del estilo $f(x) = x^n$.

$$\int x^n \ dx = \frac{x^{n+1}}{n+1}; \ n \neq -1.$$

Integral de un cociente

Tendríamos funciones del estilo $f(x) = \frac{1}{x}$.

\begin{align*}
\int x^{-1} \ dx & = \int \frac{1}{x} \ dx \\
&= ln|x| + C.
\end{align*}

Integral de una exponencial

Son funciones de la forma $f(x) = a^x; \ \ f(x) = e^x$ donde $a$ es un número real y $e$ es el número de Euler y que se utiliza para la «exponencial».

$$\int a^x \ dx = \frac{a^x}{ln \ a} + C.$$

$$\int e^x \ dx = e^x + C .$$

Integrales trigonométricas

Integrales de funciones trigonométricas.

$$\int sin(x) \ dx = -cos(x) + C.$$

$$\ \int cos(x) \ dx = sin(x) + C.$$

$$\int tan(x) \ dx = – \ ln|cos(x)| + C = ln|sec(x)| + C.$$

$$\int cot(x) \ dx = ln|sin(x)| + C.$$

$$\ \int sec(x) \ dx = ln|sec(x) + tan(x)| + C. $$

$$\int csc(x) \ dx = ln|csc(x) – cot(x)| + C.$$

Así, como algunos productos entre funciones.

$$ \int sec^2(x) \ dx = tan(x) + C.$$

$$\int csc^2(x) \ dx = -cot(x) + C.$$

$$\ \int sec(x) \ tan(x) \ dx = sec(x) + C.$$

$$\int csc(x) \ cot(x) \ dx = -csc(x) + C.$$

Integrales de la forma $x^2 \pm a^2, a^2 – x^2$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} arc \ tan(\frac{x}{a}) + C.$$

$$\ \int \frac{dx}{x^2 – a^2} = \frac{1}{2a} ln \left| \frac{x-a}{x+a} \right| + C.$$

$$\int \frac{dx}{ a^2 – x^2 } = \frac{1}{2a} ln \left|\frac{a + x}{a-x} \right| + C.$$

Integrales de la forma $\sqrt{x^2 \pm a^2} , \sqrt{a^2 – x^2}$

$$\int \frac{dx}{\sqrt{a^2 \ – \ x^2 } } \ = \ arc \ sin \left(\frac{x}{a} \right) + C.$$

$$\int \frac{dx}{\sqrt{a^2 \ \pm \ x^2 } } \ = \ ln \left(x + \sqrt{x^2 \pm a^2} \right) + C.$$

$$\ \int \frac{dx}{x \sqrt{x^2 \ – \ a^2}} \ = \ \frac{1}{a} arc \ sec \left( \frac{x}{a} \right) + C.$$

$$\int \sqrt{a^2 \ – \ x^2} dx \ = \ \frac{x}{2} \sqrt{a^2 \ – \ x^2} \ + \ \frac{a^2}{2} arc \ sin \frac{x}{a} \ + \ C.$$

$$\int \sqrt{x^2 \ \pm \ a^2} dx \ = \ \frac{x}{2} \sqrt{x^2 \pm a^2} \ \pm \ \frac{a^2}{2} ln \left( x + \sqrt{x^2 \ \pm \ a^2} \right) \ + \ C.$$

Más adelante…

A partir de ahora podemos calcular integrales de forma inmediata, solo viendo la función sin necesidad de elaborar o desarrollar la definición.

Esto considerando que las funciones cumplen con los supuestos necesarios, como la continuidad de la función sobre el intervalo de integración.

Entonces, ¿Qué pasa si al momento de integrar, nuestro dominio presenta un problema? ¿Qué se hace si nuestra función original o la que encontramos después de realizar la integral, tiene puntos conflictivos, alguna discontinuidad o el rango de integración se vuelve infinito?

En la siguiente sección se verán las integrales impropias donde se explicará cual es el tratamiento correspondiente a este tipo de funciones o que hacer en esos casos.

Tarea moral

Realice las siguientes integrales.

  1. $\int 3x^2 + x \ – \ 5 \ dx.$
  2. $\int 2 sec^2(x) \ – \ 7sin(x) + e^{x} dx .$
  3. $\ \int 3^x + \frac{1}{4x} dx.$
  4. $\int \frac{1}{1 + x^2} \ – \ \frac{2}{4 \ – \ (2x)^2} dx.$
  5. $\int \frac{3}{\sqrt{27 \ – \ 3(9x^2)}} \ dx.$

Entradas relacionadas

Cálculo Diferencial e Integral II: Intuición de los teoremas fundamentales del cálculo

Por Moisés Morales Déciga

Introducción

Para este momento, se definió la integral definida, la integral indefinida y rememoramos de forma práctica las reglas de derivación.

Adicionalmente, en algunas de las entradas anteriores se ha mencionado la relación entre la diferencial y la integral, y esta relación se hace explícita en los teoremas fundamentales del cálculo.

Para poder ver y demostrar íntegramente estos teoremas que sustentan esta relación, es importante ilustrar de forma intuitiva la motivación, así como algunos posibles uso de ellos.

Intuición a los teoremas

Los teoremas fundamentales del cálculo mencionan la relación entre la integración y la diferenciación y, hasta cierto nivel, se puede observar que la integración es la función inversa una de la otra.

Entonces, para empezar a mencionar y observar la relación entre estos procesos podemos enumerar ejemplos de cada uno de ellos y comparar sus resultados.

Si definimos a $D$ como la función diferencial que se aplica a una función $f$ y que, al momento de aplicar la diferenciación a $f$ genera una nueva función $D(f)$, por ejemplo,

\begin{align*}
D(x^4)= 4x^3; \\
D(sen(x)) = cos(x).
\end{align*}

Por otro lado, si se define la operación $\int \limits_a$ como la función integral.

En otras palabras, el símbolo $\int \limits_a$ es la representación del operador integral, así como los símbolos $+, \ – \ , \times , \div $ son los correspondientes a la operación suma, resta, multiplicación y división.

Entonces, se define $G= \int \limits_a f$ donde $G$ es la función con regla de correspondencia $G(x) = \int \limits_a^x f$.

De esta forma, el dominio de $G$ queda definido por el conjunto de todas las $x$ para las cuales la integral queda definida, en otras palabras, el dominio de $G$ es el conjunto de todas las $x$ tales que $f$ es integrable sobre $[a,x]$ teniendo que $a < x$ o sobre $[x,a]$ si $x < a$.

Podemos ver los siguientes ejemplos sobre la aplicación de la integral en funciones:

\begin{align*}
\int \limits_0^x c \ dt =cx, \\
\int \limits_0^x t \ dt = \frac{x^2}{2}, \\
\int \limits_0^x 4t^3 \ dt = x^4 .
\end{align*}

Es decir, utilizando únicamente el operador sin límites de integración o siendo una integral indefinida:

\begin{align*}
\int \limits_0 c \ dt =c \ I + C, \\
\int \limits_0 t \ dt = \frac{I^2}{2} + C, \\
\int \limits_0 4t^3 \ dt = I^4 + C .
\end{align*}

No olvidemos que en integrales indefinidas, se tiene la constante de integración.

En los ejemplos presentado podemos observar que existe uno con su contraparte en las funciones, el primero y el tercero correspondiente, esto da pie en ver la relación entre estos operadores.

\begin{align*}
D(x^4)= 4x^3; \\
\int \limits_0^x 4t^3 \ dt = x^4 .
\end{align*}

En este ejemplo se ve claramente que, al momento de integrar el resultado del valor de la integral, recuperamos la función original, previo a realizar la derivación.

Pero son funciones y procesos independientes, así que también aplica la observación de forma inversa.

Esto es que, al momento de derivar el resultado del proceso de integración, de igual forma se obtiene la función original.

Existen dos teoremas que demuestran esta relación, los cuales se desarrollarán en las siguientes entradas.

La derivada de la integral

Recordemos la notación de la integral indefinida que vimos al inicio de este capítulo. Se definió de la siguiente manera, utilizando el símbolo integral.

$$ \phi (x) =\int \limits_{\alpha}^{x} f(u) ~ du.$$

Lo que se verá en el primer teorema fundamental es que, si tenemos una función originada por una integral indefinida $ \phi (x) $ de una función continua $f(x)$, siempre existe la derivada $ \phi’ (x) $ y, además.

$$ \phi’ (x) = f(x).$$

Si se sustituyen los símbolos por la notación completa de la derivada y de la integral, se tiene lo siguiente.

$$\frac{d}{dx} \int \limits_a^x f(u)~du = f(x).$$

Aquí se puede observar que las operaciones son inversas, siempre y cuando se estén cumpliendo las hipótesis del teorema. Esto se puede demostrar utilizando el teorema del valor medio para la integral, ya que es una consecuencia de este teorema.

Demostración:

Recordando el Teorema del Valor Medio para la Integral, tenemos la siguiente afirmación.

Para cualesquiera valores de $x$ y $x + h$, siendo dominio de la función $f$, se obtiene lo siguiente.

$$\int \limits_x^{x+h} f(u) \ du = \phi(x+h) \ – \ \phi(x) = (x +h \ – \ x) \ f(\xi) = h \ f(\xi).$$

Donde $\xi$ es un punto dentro del intervalo.

Ahora, si tomamos la diferencia de la integral indefinida valuada en los puntos extremos del intervalo y la dividimos por $h$, se ve de la siguiente manera.

$$\frac{\phi(x+h) \ – \ \phi(x)}{h} = \ f(\xi).$$

Y ahora, tomemos el límite haciendo que $h$ se vaya a $0$.

$$\lim_{h \rightarrow 0} \frac{\phi(x+h) \ – \ \phi(x)}{h} = \lim_{h \rightarrow 0} f(\xi).$$

Si somos observadores, el lado izquierdo es la definición de la derivada, ya que, por hipótesis, la función $f$ es continua.

Ahora, uno pensaría que el límite en lado derecho no tiene sentido, ya que $\xi$ es un punto y $f$ solo está valuada en $\xi$ y no depende de $h$. Pero recordemos que la forma en identificar este punto $\xi$ es porque está dentro del intervalo $[x, x+h]$, de forma tal que, al considerar un limite haciendo que $h$ se vaya a $0$, el intervalo se reduce y colapsa en el punto $x$. Entonces el límite sí tiene sentido.

Y como ya vimos que el lado izquierdo es la definición de derivada y el derecho se colapsa el intervalo en $x$, lo anterior queda de la siguiente manera.

$$\phi'(x) = f(x).$$

$\square$

La función primitiva

El teorema muestra que la integral indefinida $ \phi (x) $, que es la integral de una función $f(u)$, cuyo límite superior depende de $x$ es una solución para el siguiente problema: Dada $f(x)$, determina una función $F(x)$ tal que.

$$F'(x) = f(x).$$

Para resolver este problema es necesario realizar el proceso contrario de la derivación. Con ello, se define como función primitiva de $f(x)$ o solamente primitiva de $f(x)$ a cualquier función $F(x)$ tal que $F'(x) = f(x)$.

Entonces, ocupamos la función $F(x)$ como la función primitiva de $f(x)$ y el proceso para determinar $f(x)$ es derivando la primitiva.

De forma que, tenemos la siguiente afirmación:

Toda integral indefinida $\phi(x)$ de la función $f(x)$ es una primitiva de $f(x)$.

Algo que hay que ponerle atención en la afirmación anterior es que dice «una«. Entonces se puede pensar que hay más de una función primitiva que al momento de derivar se encuentra la misma función para las diversas que hay.

Y aunque esto pueda parecer muy complicado, recordemos que la derivada de una constante se hace cero. Entonces, al momento de integrar cualquier función, se le puede adicionar la constante de integración de forma que ajuste con la información extra que nos dé el problema (esta idea se profundizará más adelante). De forma que, cada vez que se deriva una función de la misma forma excepto por una constante, se obtiene la misma función. Por poner un ejemplo:

$A_1 = x^2 + 3x + 4.$

$A_2 = x^2 + 3x \ – \ 5.$

Si nos damos cuenta, las funciones son diferentes salvo por la constante. Entonces, al momento de derivar se tiene lo siguiente.

$A’_1 = 2x +3.$

$A’_2 = 2x +3.$

Se obtiene la misma función. Entonces, si tomamos $f(x) = 2x+3$ y queremos encontrar su primitiva, esta sería:

$\phi(x) = x^2 + 3x + C.$

Pero teníamos 2 funciones, entonces.

$\phi_1(x) = x^2 + 3x + C_1.$

$\phi_2(x) = x^2 + 3x + C_2$

Por lo tanto, tenemos la siguiente afirmación.

La diferencia de dos funciones primitivas $F_1(x)$ y $F_2(x)$ de la misma función $f(x)$ siempre es una constante.

$$F_1(x) \ – \ F_2(x) = C_1 \ – \ C_2 = C.$$

Por lo tanto, si se tiene la función primitiva de una función $f(x)$, se pueden encontrar todas las demás a partir de la siguiente forma.

$$F(x) \ + \ C.$$

Por esto se dice que no hay una única forma función primitiva, con esta forma, se tienen una infinidad.

Más adelante…

Acabamos de ilustrar de forma sencilla, con ejemplos prácticos que se han visto, lo que implican los teoremas fundamentales.

En las entradas siguientes mostraremos a detalle cada uno de ellos y las aplicaciones que estos tienen.

Vale la pena mencionar que, por lo mismo que son fundamentales, su remembranza en diferentes asignaturas y áreas es basta por la importancia de los teoremas, así que escucharas de ellos un buen rato en tu carrera académica.

Tarea moral

  1. P1
  2. P2
  3. P3
  4. P4
  5. P5

Entradas relacionadas

Cálculo Diferencial e Integral II: Propiedades de la integral indefinida

Por Moisés Morales Déciga

Introducción

En la entrada anterior se dio el paso de generalizar la integral. Ya no solo considerarla como un valor, si no como una función.

Al momento de precisar esta generalización, pudimos encontrar el paralelismo que existe con la integral definida, lo podemos ver de la siguiente forma.

$$\text{Integral Definida} \Rightarrow \int \limits_a^b f(u) \ du.$$

$$\text{Integral Indefinida} \Rightarrow \int \limits_a^x f(u) \ du.$$

Como lo mencionamos anteriormente, la diferencia reside en el intervalo de integración, como se observa arriba sería el límite superior.

Pero, sin perdida de generalidad, se puede considerar el límite inferior o ambos, ya que el hecho de que sea indefinida es que no tiene un inicio o fin especifico, si no que estos dependen de una variable.

Entonces, el resultado de la integral no es un número real, ahora es una función que depende de la variable $x$, en este caso.

Y, dado que esta es nuestra única diferencia, se puede hacer analogía con las propiedades propuestas con la integral definida.

I. Aditividad

Considere un intervalo de integración $[a,x]$, y un punto $c$ dentro de este intervalo. $a<c<x.$

Entonces, la integral se puede separar de la siguiente forma.

$$ \int \limits_a^x f(u) \ du = \int \limits_a^c f(u) \ du + \int \limits_c^x f(u) \ du.$$

En este caso, se genera una integral definida y una integral indefinida.

Ejemplo:

Sea $f(u)$ la siguiente función.

$$f(u) =\left\lbrace\begin{array}{c} u^2 \ \ [0, 3] \\ sin(u) \ \ (3,10] \end{array}\right.$$

Se pueden tener diferentes casos al momento de pedir la integral de la función, ya que se puede partir el intervalo dependiendo del valor de $x$.

a) Si $ 0 \leq x \leq 3.$

Entonces, la integral de $f(u)$ se plantea como sigue.

$$\int \limits_0^x u^2 \ du.$$

Ya que es la parte donde la función tiene el dominio que se quiere integrar.

b) Si $ 3 < x \leq 10.$

Entonces la integral se ve de la siguiente manera.

$$\int \limits_3^x sin(u) \ du.$$

Y tenemos el mismo argumento que en el caso anterior.

c) Si $x \in [0,10] \ y \ x > 3.$

En este caso la $x$ corre en todo el intervalo y está condicionado que $x$ tiene que ser mayor que 3, entonces la integral se ve de la siguiente manera.

$$\int \limits_0^x f(u) \ du = \int \limits_0^3 u^2 \ du + \int \limits_3^x sin(u) \ du.$$

Y este caso, como se mencionó en la propiedad de la Aditividad, genera una integral definida y una integral indefinida.

d) Si $x \in [0,10] .$

Este caso solo condiciona a que el valor de $x$ tiene que estar dentro del dominio de la función, por lo que la integral queda de la siguiente manera.

$$ \int \limits_a^x f(u) \ du .$$

Y que se podrá dar solución en el momento en que se defina el valor de $x$.

II. Suma

Sea $h(u)$ una función tal que:

$$h(u) = f(u) + g(u).$$

Donde $f(u)$ y $g(u)$ también son funciones. Entonces, para calcular la integral de $h(x)$, tenemos la siguiente propiedad.

$$\int \limits_a^x h(u) \ du = \int \limits_a^x [f(u) \ + \ g(u)] \ du = \int \limits_a^x f(u) \ du + \int \limits_a^x g(u) \ du. $$

Entonces, la integral de una suma, es la suma de las integrales.

III. Producto por una constante

Sea $h(u)$ una función tal que $h(u)= c \cdot f(u)$, donde $c$ es cualquier real y $f(u)$ una función. Entonces,

$$\int \limits_a^x h(u) \ du = \int \limits_a^x c \cdot f(u) \ du = c \int \limits_a^x f(u) \ du.$$

Las constantes que se encuentran multiplicando a una función pueden entrar y salir de la integral.

IV. Linealidad

Sean $f(x)$ y $h(x)$ dos funciones y sean $\alpha$ y $\beta$ dos números reales. Entonces:

$$\int \limits_a^x [\alpha \ f(u) + \beta \ g(u)] \ du = \alpha \int \limits_a^x f(u) \ du + \beta \int \limits_a^x g(u) \ du.$$

Esta propiedad contiene a las dos anteriores (suma y producto), lo que la hace sumamente útil y provoca que se mencione en múltiples ocasiones.

Más adelante…

Ya que tenemos estás propiedades, podemos simplificar el proceso para desarrollar la integral y poder descomponerla en integrales más simples ó, en caso contrario, podemos aplicarlas para poder simplificarlas (reducirlas) o encontrar una sustitución adecuada para que se pueda integrar con mayor facilidad.

En la siguiente sección, tendremos un recordatorio de derivadas. Esto es necesario ya que existe una relación importante entre la derivada y la integral. Es posible que para este momento de tu formación, haz escuchado que la integral es el proceso contrario a o la inversa de la derivación.

Entonces, para poder explicar esta relación entre ambos procesos, es necesario recordar como funciona la derivada, que significa y como se calcula.

Tarea moral

  1. Utiliza la propiedad de linealidad.
    $$\int \limits_a^x \alpha \ \left[ f(u) \ – \ g(u) + 1 \right] \cdot \beta \ h(u) \ du.$$
  2. Aplique las reglas correspondientes para expandir la forma de la integral, para los diferentes casos.
    $$f(x) = \left\lbrace\begin{array}{c} 3x^2 \ – \ x + 13 \ \ [0, 5] \\ \frac{7}{x} \ \ (5,10] \end{array}\right.$$
    i) Integral indefinida para cualquier $x$ entre 5 y 9.
    ii) Integral indefinida para cualquier $x$ entre 0 y 5.
    ii) Integral indefinida para cualquier $x$ entre 3 y 8, pasando por el 5.
  3. Aplique las reglas correspondientes para dejar en una sola integral la siguiente integral.
    $$1/7 \int \limits_a^x u^6 \ du \ – \ 7 \int \limits_a^x cos(u) \ du \ + \ 8 \int \limits_a^x \frac{1}{u+1} \ du.$$

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: La integral como función del límite superior – Integral Indefinida
  • Entrada siguiente: Recordatorio de derivadas

Cálculo Diferencial e Integral II: La integral como función del límite superior, integral indefinida.

Por Moisés Morales Déciga

Introducción:

En la primera unidad del curso, hemos definido la integral mediante las sumas de Riemann considerando los distintos comportamiento que estas pueden tener.

Vimos que hacer en los casos sencillos donde se tienen funciones bien portadas como las continuas, acotadas, monótonas, etc. Pero también se vieron casos más interesantes, por ejemplo, como cuando son continuas en subintervalos, y estos podían ser finitos o infinitos, como las funciones escalonadas o la función de Dirichlet.

En estos ejemplos se mostraba la integrabilidad o la no integrabilidad de la función. Pero a pesar de que los ejemplos podían ser contrastantes entre sí, todos compartían una característica y era que se encontraban definidos dentro de un intervalo cerrado.

Esto era, que la función se encontraba dentro de un segmento del eje de las abscisas el cual tenía un inicio y un fin bien determinado.

En esta nueva unidad se tendrá una generalización de este proceso. Ya no se considerarán intervalos con un inicio y fin, ahora trabajaremos la integral en un intervalo que el inicio o el fin (o ambos) dependerán de una variable, por lo que será un intervalo no definido.

A este nuevo fenómeno de generar la integral en un intervalo no definido se le conocerá como integral indefinida.

Integral Indefinida

En la unidad anterior se determinó que el valor de la integral depende del intervalo de integración o de los límites de integración donde teníamos la siguiente representación $[a,b]$.

Y se decía que el límite inferior era el punto $a$ y el límite superior era el punto $b$ y entre esos dos puntos se tenía la curva de la función y la integral era el área contenida bajo esa curva.

Ahora, consideremos el límite inferior como un número fijo $\alpha$, que no es un número particular, es decir, que puede ser cualquiera. Y el límite superior será una variable denotada con $x$. Teniendo la siguiente notación.

$$ \phi (x) =\int \limits_{\alpha}^{x} f(u) \ du.$$

Así que la función $\phi(x)$ se denomina como la integral indefinida de la función $f(x)$.

De forma que la función $\phi(x)$, es una función que depende de $x$.

Esto cambia la percepción de la integral ya que, anteriormente, solo se concebía la integral como un número (que era el área bajo la curva). Pero ahora la integral ya no solo es un escalar, a partir de este momento, podemos mostrar que la integral también es una función que puede depender de una variable independiente.

De manera análoga, se puede hacer que el límite inferior sea variable y, por lo tanto, que ambos límites puedan variables o dependan de otra función.

De una forma geométrica, se puede ver de la siguiente manera.

Así que la integral indefinida $ \phi (x) $ está dada por el área sombreada en rojo, que se encuentra delimitada por la curva en azul $y=f(u)$ dentro del intervalo $[\alpha , x]$.

Entonces, hasta que no se determine un valor para $x$, el valor de la integral irá cambiando.

Se debe recordar que el signo del área se determina por el cuadrante en el que se encuentra, como se vio en la Unidad 1.

Observación: Cualquier integral definida es un caso particular de una integral indefinida $\phi(x)$.

En el momento en que se define el valor de $\alpha$ y de $x$, recuperamos un intervalo definido y tenemos una integral definida.

Las reglas básicas para la integral que se vieron, tienen su generalización con integrales indefinidas, por ejemplo, la suma:

\begin{align*}
\int \limits_a^b f(u) \ du & = \int \limits_a^\alpha f(u) \ du + \int \limits_\alpha^b f(u) \ du \\ &= – \int \limits_\alpha^a f(u) \ du + \int \limits_\alpha^b f(u) \ du \\ & = \phi(b) \ – \ \phi(a) .
\end{align*}

De esta forma queda una integral definida en términos de integrales indefinidas.

Así, se puede expresar cualquier integral indefinida con límite inferior $\alpha’$ en términos de $\phi(x)$:

$$ \int \limits_{\alpha’}^x f(u) \ du = \phi(x) \ – \ \phi({\alpha’}) . $$

En donde $\phi({\alpha’}) $ es una constante, así que, sin pérdida de generalidad, se puede concluir que cualquier integral definida difiere de la integral indefinida $\phi(x)$ por una constante.

$$ \int \limits^x f(u) \ du = \phi(x) + C.$$

Donde a $C$ se le conoce como la constante de integración.

Continuidad de la integral indefinida

En la unidad anterior, al momento de trabajar con funciones continuas nos era sencillo generar las sumas de Riemann ya que se encontraba la función dentro del intervalo bien definida en todo momento. No presentaba saltos extraños o, como era continua, no presentaba discontinuidades en ningún tramo del intervalo o de cualquier partición de este.

En este caso, hemos dicho que la integral indefinida también es una función. Entonces, es importante conocer cuales son las características de esta nueva función.

En este caso, vamos a mostrar que la integral de una función continua, también es continua, entonces:

Sea $f(x)$ función continua en el intervalo $[a,b]$ y sea $\alpha$ un punto dentro del intervalo, i.e. $\alpha \in [a,b]$. Se define la integral indefinida como:

$$\phi(x) = \int \limits_\alpha^x f(u) \ du.$$

Teorema: La integral indefinida $\phi(x)$ de una función $f(x)$ continua, es asimismo, continua.

Demostración:

Sea $x, y$ dos valores dentro del intervalo donde la función es continua.

Por el teorema del valor medio se tiene que:

\begin{align*}
\phi(y) \ – \ \phi(x) & = \int \limits_x^y f(u) \ du \\ &
= f(\xi) (y \ – \ x).
\end{align*}

Donde $\xi$ es algún valor en el intervalo con puntos extremos $x$ y $y$.

Ahora, por la continuidad de $f$, obtenemos lo siguiente:

\begin{align*}
\lim_{y \rightarrow x} \phi(y) & = \lim_{y \rightarrow x} [\phi(x) + f(\xi) (y \ – \ x) ] \\&
= \ \lim_{y \rightarrow x} \phi(x) + \lim_{y \rightarrow x} f(\xi) (y \ – \ x) \\ &
= \ \phi(x) \ + \ f(\xi) \ \lim_{y \rightarrow x} (y \ – \ x) \\ &
= \ \phi(x) + f(\xi) \cdot 0
\end{align*}

$$\therefore \lim_{y \rightarrow x} \phi(y) = \phi(x).$$

Lo que muestra que $\phi$ es continua.

Adicionalmente, si lo vemos dentro de cualquier intervalo cerrado, obtenemos lo siguiente:

$$|\phi(y) \ – \ \phi(x)| \leq M \ |y \ – \ x|.$$

donde $M$ es el máximo de $|f|$ en el intervalo, de modo que $\phi$ es aún Lipschitz-continua.

Si quieres recordar continuidad, sigue este link.

$\square$

Durante la demostración se recordó el teorema del valor medio, mostrando la siguiente ecuación:

\begin{align*}
\phi(y) \ – \ \phi(x) & = \int \limits_x^y f(u) \ du \\ &
= f(\xi) (y \ – \ x).
\end{align*}

Observación: Si $f(x)$ es una función positiva en todo el intervalo $[x,y]$, se obtiene que $\phi(x)$ es una función creciente.

$$\phi(y) = f(\xi) (y \ – \ x) > \phi(x).$$

Más adelante…

Teniendo definidas las integrales indefinidas, podremos revisar las propiedades que estas integrales tienen y teoremas que son de alta importancia, tanto en cálculo como en las demás asignaturas.

Este paso de trabajar con integrales indefinidas nos da una mayor libertad al momento de trabajar con funciones. Anteriormente, al trabajar con integrales definidas, teníamos plena conciencia de que punto a que punto se necesitaba integrar, lo que, al momento de evaluar o de integral solo encontramos un número; pero ahora que trabajamos con integrales indefinidas.

Y como estamos ampliando la definición de la integral, es necesario mostrar las propiedades que esta extensión genera ya que, si consideramos estas propiedades se nos podrá facilitar el manejo de de esta transformación de funciones.

Estas propiedades las veremos en la siguiente entrada.

Tarea moral

  1. Escribe las siguientes integrales definidas como integrales indefinidas.
    • $ \int \limits_3^{12} x^3 \ dx $
    • $ \int \limits_1^5 ln(t) \ dt $
    • $ \int \limits_{-\pi}^{\pi} sin(\theta) \ d \theta $
  2. Sea $f(x)$ una función continua y se cumple que $f(x) = \int \limits_0^x f(t) \ dt$.
    Demuestra que $f(x)$ es idénticamente 0.

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: Funciones que no son Riemann integrables
  • Entrada siguiente: Propiedades de la integral indefinida