Archivo del Autor: Guillermo Oswaldo Cota Martínez

Acerca de Guillermo Oswaldo Cota Martínez

Soy Guillermo. Soy pasante de la Licenciatura en Matemáticas en la Facultad de Ciencias de la UNAM, y estudiante de la Licenciatura en Ciencia de Datos del IIMAS, UNAM. Me interesan los problemas referente al análisis de datos y a la docencia.

Álgebra Superior I: Demostración de condicionales y dobles condicionales

Por Guillermo Oswaldo Cota Martínez

Introducción

Esta entrada es parte de una serie de notas introductorias sobre técnicas de demostración. En esta entrada se habla sobre demostraciones de condicionales y dobles condicionales. Cada entrada está ligeramente relacionada con las otras. Para entenderlas bien, usamos el siguiente diagrama que recopila cómo se comporta un mundo fantástico llamado Axios, en donde habitan creaturas llamadas Blorgs. Para leer más sobre ello, haz click aquí.

Para terminar nuestra sección de demostraciones (no significa que terminamos de demostrar, para nada, apenas es el comienzo), vamos a ver el caso en donde tengamos la doble implicación. Esto no va a ser difícil, pues hemos desarrollado suficientes estrategias para ello, y solo verás que la forma de demostrar estas proposiciones, es ver la doble implicación de otra manera.

La suficiencia y necesidad

Es común ver proposiciones matemáticas de la forma

$$\forall x (P(x) \Leftrightarrow Q(x)) $$

Como por ejemplo

Proposición. Un blorg come dos veces a la semana si y solo si tiene amigos amarillos y rojos.

Para este tipo de demostraciones, lo que haremos será demostrar dos cosas: la suficiencia y la necesidad. Recordemos que la doble implicación puede escribirse de la siguiente manera:

$$\forall x (P(x) \Leftrightarrow Q(x)) = \forall x ((P(x) \Rightarrow Q(x)) \land (Q(x) \Rightarrow P(x) )) $$

Es decir, para demostrar la condición, es necesario demostrar que si un blorg come dos veces a la semana entonces tiene amigos amarillos y rojos, y también será necesario mostrar que si un blorg tiene amigos amarillos y rojos come dos veces a la semana. Esto es, demostrar que las condiciones son equivalentes: un blorg solo tiene amigos amarillos y rojos si y solo si come dos veces por semana.

Demostración. Para esto, consideremos primero a un blorg $x$, para demostrar la doble implicación, es común dividir el problema en dos partes que podrás encontrar como «la ida» y «el regreso», esto hace referencia a que al demostrar la ida, demostraras que $P(x) \Rightarrow Q(x)$ y el regreso demuestra que $P(x) \Leftarrow Q(x)$. No dejes que te confunda la dirección de la flecha, simplemente es otra forma de demostrar que $Q(x) \Rightarrow P(x)$ (mira la dirección de la flecha).

Y comúnmente encontrarás en las demostraciones las notaciones de $\Rightarrow$ y $\Leftarrow$ haciendo referencia a si demostrarán la ida o el regreso, justo como lo haremos a continuación.

$\Rightarrow$

Primero demostraremos que si un $x$ come dos veces a la semana, entonces tiene amigos rojos y amarillos.

Como $x$ come dos veces a la semana, entonces es un blurg, pues es la única especie que come los Lunes y Viernes, mientras que los Blargs y Blergs comen solo los Lunes. Ahora, notemos que un blurg es amigo de los Blergs y los Blargs, cuyos respectivos colores son rojos y amarillos. Así hemos demostrado que si un $x$ come dos veces a la semana, entonces tiene amigos rojos y amarillos.

$\Leftarrow$

Ahora, para demostrar el regreso, supongamos que $x$ tiene amigos rojos y amarillos y lleguemos a la conclusión de que come dos veces a la semana.

Notemos a los amigos de cada especie de blorg. Los Blargs son amigos de los Blurgs y de los delfines, los cuales son azules, entonces no tienes amigos amarillos y rojos, por otro lado los Blergs son amigos de los Blurgs, que son azules, por lo que tampoco cumplen la condición. Mientras que los Blurgs son amigos de los Blergs y Blargs, que cumplen con ser rojos y amarillos. Entonces $x$ tiene que se un blurg. A continuación, notemos que los Blurgs comen los Lunes y Viernes, esto es, que comen dos veces por la semana, cumpliendo la proposición.

De esta forma hemos demostrado que un blorg come dos veces a la semana si y solo si tiene amigos amarillos y rojos.

Otro vistazo a la doble implicación

Para que te des una idea mejor sobre el poder de este tipo de proposiciones, recuerda lo siguiente: «La doble implicación es la forma de decir que dos cosas son equivalentes». Esto no es algo nuevo, pues ya hemos mencionado esto antes. La diferencia es que ahora ya tenemos aplicaciones prácticas de esto, ve el siguiente ejemplo:

Proposición. Un blorg come dos veces por semana si y solo si tiene un amigo de otra especie que puede comer fresas.

Demostración. Ahora, no solo vamos a usar la doble implicación para la demostración, sino que juntaremos proposiciones que hemos demostrado anteriormente. Primero que nada, notemos que la proposición se parece en parte a la pasada. Usaremos lo que sabemos de la proposición pasada. Como un blorg come dos veces por semana si y solo si tiene amigos amarillos y rojos. Ahora veamos cómo podemos usarla para demostrar esto.

Considera las proposiciones:

$$ P(x) = \text{ x come dos veces por semana},$$

$$ Q(x) = \text{ x tiene amigos rojos y amarillos},$$

$$ R(x) = \text{ x tiene un amigo de otra especie que puede comer fresas}.$$

Lo que nos pide demostrar la proposición es que

$$\forall x (P(x) \Leftrightarrow R(x)). $$

Pero sabemos que

$$\forall x (P(x) \Leftrightarrow Q(x)). $$

Y notemos que la siguiente regla de inferencia es válida

$$ \begin{array}{rl} & P \Leftrightarrow Q \\ & P \Leftrightarrow R \\ \hline \therefore & Q \Leftrightarrow R\end{array}.$$

Entonces podemos reducir esta proposición a demostrar «Un blorg tiene amigos amarillos y rojos si y solo si uno de sus amigos de otra especie puede comer fresas». Entonces demostremos esto.

Afirmación. Un blorg tiene amigos amarillos y rojos si y solo si uno de sus amigos de otra especie puede comer fresas.

Demostración de la afirmación.

$\Rightarrow$

Sea $y$ un blorg con amigos amarillos y rojos. Basta exhibir a algún amigo que pueda comer fresas, así que ingeniosamente decimos: sea $x$ un amigo rojo de $y$ (esto lo podemos hacer, ya que suponemos que el blorg tiene amigos amarillos y rojos). Como $x$ es rojo, entonces es un blerg. Además, sabemos por una proposición de la entrada anterior que existe una única raza de Blorgs que pueden comer fresas, y son precesiamente los Blergs. De esta manera $x$ puede comer fresas.

Por lo tanto $y$ tiene un amigo que puede comer fresas. Como además tiene amigos de dos colores, y la única especie que puede tener amigos amarillos y rojos son los Blurgs, entonces $y$ es un blurg. Así, $y$ tiene un amigo de otra especie que puede comer fresas.

$\Leftarrow$

Ahora supongamos que $y$ es un blorg y tiene un amigo $x$ de otra especie que puede comer fresas. Como la única especie vegetariana son los Blergs, entonces $x$ es un Blerg (supongamos que esto es cierto por ahora, más adelante lo demostrarás). De esta manera, $y$ es un blarg o blurg (pues recordemos que $x$ y $y$ son de diferentes especies). Veamos que si $y$ fuera un blarg, tendría únicamente amigos Blurgs y delfines, y no de Blergs, mientras que los Blurgs sí son amigos de los Blergs, por lo tanto $y$ es blurg.

Finalmente, nota que los Blurgs tienen amigos Blargs y Blergs, los cuales son amarillos y rojos.

De esta manera, hemos demostrado que un blorg tiene amigos amarillos y rojos si y solo si uno de sus amigos de otra especie puede comer fresas.

$\square$

Habiendo demostrado la afirmación, y sabiendo que $$ \begin{array}{rl} & P \Leftrightarrow Q \\ & P \Leftrightarrow R \\ \hline \therefore & Q \Leftrightarrow R\end{array}.$$ Entonces se cumple que Un blorg come dos veces por semana si y solo si tiene un amigo de otra especie que puede comer fresas.

$\square$

Más adelante…

El mundo de los Blorgs nos ayudó a poner un paso dentro del pensamiento matemático. Nos acompañarán solo un poco más, pero ya no estaremos enfocados en las demostraciones. Daremos pasos hacia un camino que puede resultar un poco distinto, pero verás que se parece mucho a la lógica proposicional. Algunos dicen que no puede haber una sin otra. Y este tema es la teoría de conjuntos. Si pudiéramos poner las matemáticas como un edificio, algunos dirían que la estructura estaría hecha de lógica y conjuntos. Así que exploraremos este otro «ingrediente» de las matemáticas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que la siguiente regla de inferencia es válida: $$ \begin{array}{rl} & P \Leftrightarrow Q \\ & P \Leftrightarrow R \\ \hline \therefore & Q \Leftrightarrow R\end{array}.$$
  2. Demuestra que un blorg es vegetariano si y solo si es un blerg.
  3. Usando la última proposición de la entrada, demuestra que Un blorg come dos veces por semana si y solo si tiene un amigo que puede comer alimentos con semillas.
  4. Demuestra que un blorg no es amigo de los Blergs si y solo si come los mismos días que los Blergs y es amigo de un animal marino.

Entradas relacionadas

  • Ir a Álgebra Superior I
  • Entrada anterior del curso: Problemas de demostraciones con conectores y cuantificadores
  • Siguiente entrada del curso: Problemas de demostraciones de condicionales y dobles condicionales.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Demostración de proposiciones con cuantificadores

Por Guillermo Oswaldo Cota Martínez

Introducción

Esta entrada es parte de una serie de notas introductorias sobre técnicas de demostración. En esta entrada se habla sobre demostraciones de proposiciones con cuantificadores. Cada entrada está ligeramente relacionada con las otras. Para entenderlas bien, usamos el siguiente diagrama que recopila cómo se comporta un mundo fantástico llamado Axios, en donde habitan creaturas llamadas Blorgs. Para leer más sobre ello, haz click aquí.

En esta entrada revisaremos más a fondo cómo es que los cuantificadores que repasamos antes se usan dentro de las proposiciones y cómo demostrar estas. Veremos ejemplos con cuantificadores universales y existenciales, y algunos ejemplos famosos de proposiciones que los usan.

Los cuantificadores en las demostraciones

Ya hemos trabajado antes con los cuantificadores, aunque quizás no lo hayas notado. Por ejemplo, cuando hicimos la demostración de «Los Blorgs verdes comen peces», lo que hicimos fue considerar cualquier Blorg verde e hicimos una serie de pasos lógicos para demostrarlo. En ningún lugar dice que sólo algunos Blorgs verdes comen peces, en general dice que los Blorgs verdes comen peces, es decir todos los Blorgs verdes cumplen la condición de comer peces. ¿La palabra resaltada te recuerda algo? Seguramente a lo que vimos en la entrada de cuantificadores.

Como recordatorio, para usar cuantificadores necesitamos un universo de discurso y un predicado $P(x)$, que podíamos pensar como una proposición en donde aún no decidimos quién es $x$ de entre los objetos de nuestro universo de discurso. Considerando como universo de discurso a los Blorgs, podemos tomar el predicado $P(x) = \text{$x$ come los viernes}$. Sería falso entonces afirmar que

$$\forall x: P(x),$$

pues los únicos que comen los viernes son los Blurgs. En cambio existe al menos una especie que come esos días, así que sería verdadero decir:

$$\exists x: P(x), $$

ya que al tomar un Blurg $x$, tendríamos que $P(x)$ es verdadero y por lo tanto la proposición cuantificada $\exists x: P(x)$ también.

Así que podríamos demostrar la siguiente afirmación:

Proposición. Existen Blorgs que comen los viernes.

Demostración. Para ello, notemos que un Blorg puede ser Blarg, Blerg y Blurgs. A continuación vamos a considerar a $x$ un Blorg que es Blurg. Y como sabemos, todos los Blurgs comen los lunes y viernes. En particular, comen los viernes, por lo que hemos demostrado la proposición.

$\square$

Diferencias entre cuantificadores

Vamos a detenernos y analizar cómo se diferenció la última demostración con lo que hemos estado haciendo antes. Analiza la demostración anterior con la siguiente:

Proposición. Los Blorgs comen un día antes de los Martes.

Demostración. Consideremos $x$ un blorg. Como es un blorg puede que sea un blarg, blerg o blurg.

Caso 1. $x$ es un Blarg.

Como $x$ es Blarg, entonces come los Lunes, que resulta ser un día antes de los Martes.

Caso 2. $x$ es un Blerg.

Igual que en el caso anterior, si $x$ es Blerg, entonces come los días antes de los Martes.

Caso 3. $x$ es un Blurg.

Sabemos que los Blurgs comen los Lunes y los Viernes. Si $x$ es un Blurg, entonces en particular come los lunes, y así, come los días antes de los Martes.

En cualquiera de los casos, $x$ cumple la proposición.

$\square$

Esta es una demostración que bien pudimos haber escrito como «Todos los Blorgs comen los días antes de los Martes». Sin embargo, en la práctica no es muy común ver escrito explícitamente la palabra «todos/todas», pues al hablar de «Los Blorgs», se infiere que hablamos de todos los Blorgs. Así podemos hacer notar las siguientes diferencias entre las dos demostraciones, la primera en donde usamos el cuantificador existe y en la que usamos todos.

Existen Blorgs que comen los viernes.(todos) Los Blorgs comen un día antes de los Martes.
Se puede reescribir como
$$\exists x P(x) $$
Se puede reescribir como
$$\forall x P(x) $$
Consideramos un blorg «mañoso». Es decir, dentro del «conjunto» de los Blorgs, consideramos a uno estratégicamente que nos ayudara a demostrar que al menos un blorg cumplía la condición, en este caso un blurg. Consideramos un blorg arbitrario (tuvimos que considerar distintos casos en los que el blorg fuera blarg, blerg o blurg)
Exhibimos el ejemplo de un blorg, que comía los viernes. Y con eso demostramso que la proposición se cumplía.Llegamos a la conclusión de que sin importar cómo fuera el blorg, comía un dia antes de los Martes.

Esto nos quiere decir que cuando estemos hablando del cuantificador $\exists$, no necesitamos generalizar el caso, solo necesitamos exhibir un ejemplo donde la proposición se cumpla. Mientras que cuando hablamos de $\forall$, tenemos que generalizar, es decir, tenemos que considerar todos los casos posibles para probar que una afirmación sea verdadera o no.

Tratando con la unicidad.

Vamos a ver ahora un pequeño mapa de cómo viven los Blorgs en el mundo Blorg:

Este mapa muestra cómo se dividen los Blorgs, así que cuando estuvimos haciendo la demostración de existencia de los Blorgs que comen los Viernes, elegimos alguno de estos:

Mientras que cuando hablamos de $\forall$, tuvimos que comprobar que se cumplía para cualquiera de los Blorgs, ya fueran Blergs, Blargs o Blurgs. Pero aún falta otro cuantificador, que es el $\exists !$.

Ahora lee la siguiente proposición:

Proposición. Existe una única raza de Blorgs que dentro de su dieta puede haber fresas.

Nota que ahora no estamos hablando de los Blorgs como criaturas, sino de sus especies, y solo existen tres especies de blorg: Blargs, Blergs y Blurgs. Es decir, nos piden demostrar que entre estas tres, solo existe una que come fresas.

Nuestra proposición no nos habla de los Blorgs como criaturas individuales, sino que ahora nos habla de las especies de los Blorgs. Nota que ahora la flecha señala a las especies (círculos).

Entonces para demostrar que se cumple la proposición, tendremos que primero exhibir una especie que coma fresas y después demostrar que es única.

Demostración. Solo existen tres especies de Blorgs, notemos que dentro de estas, se encuentran los Blergs que comen frutos, por lo que son los Blergs quienes pueden incluir fresas en sus dietas.

(Hasta aquí hemos probado que existe una especie que puede comer fresas)

Ahora, para demostrar que es única, veamos que las otras dos razas solo comen peces, los cuales evidentemente no pueden incluir las fresas, por tanto esta especie es única.

(Así demostramos la unicidad)

$\square$

Esta es una proposición que se puede escribir como

$$\exists ! x P(x) $$

Entonces para demostrar el cuantificador $\exists ! x P(x)$, primero debemos demostrar $\exists x P(x)$ y después que es única. Nota que demostrar la unicidad, equivale a demostrar lo siguiente:

$$\exists! x P(x) = \exists x (P(x) \land \forall y \neq x (\neg P(y))) $$

Es decir «Existe $x$ que cumple $P(x)$ y todo elemento $y$ distinto a $x$, no cumple $P(y)$»

En nuestra demostración la primera parte antes del primer paréntesis, demostramos que existe $x$ (Blergs) que cumple $P(x)$. Mientras que en la segunda parte mostramos que todo elemento $y$ distinto a $x$(Blargs y Blurgs) , no cumple $P(y)$. Para la segunda parte, vimos que si $y$ no eran los Blergs, entonces no podían comer fresas.

Nos saltamos un conector, que es el $\nexists$, para demostrar estos casos, es suficiente notar que

$$\nexists x P(x) = \forall x (\neg P(x)) $$

Por ejemplo, para demostrar que «No existen especies de Blorgs que coman los miércoles», solo basta demostrar que todas las especies de Blorgs no comen los miércoles.

Algunos ejemplos de demostraciones con los cuantificadores que utilizan

A continuación mostramos algunos ejemplos de proposiciones y de qué cuantificador hablan ayudados de su escritura como lógica proposicional. No es necesario que entiendas a qué se refiere cada uno, pero nota cómo traducimos el enunciado a lógica proposicional.

ProposiciónProposición en lógica proposicional
Para todo $a$ número real, $a \leq |a|$ y $-a \leq |a|$Sea $P(a)$ = $a \leq |a|$ y $-a \leq |a|$:
$$\forall a \text{ número real } P(a)$$
El neutro aditivo es único en los números reales.Sea $P(x)$ = $x$ es neutro aditivo:
$$\exists ! x \text{ número real } P(x)$$
Para todo binomio con coeficientes reales (es de la forma $ax^2+b^x+c$ donde $a,b,c$ son números reales), existe solución compleja. *Sea $P(p,x)$ = $p$ tiene solución compleja $x$:
$$\forall p \text{ binomio con coeficientes reales } \exists x (P(p,x)) $$

Notas

*: Esta es una consecuencia de algo que se conoce como el «Teorema fundamental del álgebra», que se usa en un segundo curso de álgebra superior (la continuación de este curso). Sólo se utiliza, más no se demuestra. La herramienta necesaria para su demostración, normalmente se puede ver en un curso de Variable Compleja I, el cual corresponde hasta el tercer año de una licenciatura en matemáticas.

Más adelante…

Antes de terminar de estudiar estas «formas» de demostrar, vamos a terminar viendo el último conector que intencionalmente nos saltamos, este es la «doble implicación», y hay un motivo para ello, pues comúnmente te vas a encontrar este tipo de demostraciones y verás la técnica que se empleará.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que existen Blorgs que no viven dentro del agua.
  2. Demuestra que todos los Blorgs comen al menos una vez a la semana.
  3. Demuestra que existe una única especie de Blorgs que habla con animales con aletas.
  4. Demuestra que no existe una especie de Blorgs que coman los miércoles.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Demostración de proposiciones con conectores

Por Guillermo Oswaldo Cota Martínez

Introducción

Esta entrada es parte de una serie de notas introductorias sobre técnicas de demostración. En esta entrada se habla sobre demostraciones de proposiciones con conectores. Cada entrada está ligeramente relacionada con las otras. Para entenderlas bien, usamos el siguiente diagrama que recopila cómo se comporta un mundo fantástico llamado Axios, en donde habitan creaturas llamadas Blorgs. Para leer más sobre ello, haz click aquí.

Hasta ahora hemos visto varias estrategias para demostrar: demostaciones directas, demostraciones indirectas y por contradicción. Ahora pensaremos en cómo realizar demostraciones de ciertas afirmaciones cuando hay conectores tanto en nuestras premisas, como en las conclusiones que queremos obtener. Veremos cómo es que se piensa al hacer estas demostraciones y algunas consideraciones que debemos tomar en cuenta.

Recordando conectores

Como breve recordatorio, tenemos los siguientes conectores lógicos:

  • Conjunción $P\land Q$, que es cierta si ambos $P$ y $Q$ lo son.
  • Disyunción $P\lor Q$, que es cierta si alguno de $P$ o $Q$ lo son.
  • Implicación $P\Rightarrow Q$, que es cierta si bien $P$ es falsa, o si $P$ y $Q$ son verdaderas simultáneamente.
  • Doble implicación $P\Leftrightarrow Q$, que es cierta si $P$ y $Q$ tienen el mismo valor de verdad.

En esta entrada veremos qué hacer con las demostraciones que tienen conjunciones y disyunciones. Más adelante hablaremos de las implicaciones y las dobles implicaciones. Los conectores lógicos pueden aparecer como las hipóteis, o como la conclusión de algo que queremos demostrar. Para realizar estas demostraciones, tomaremos en cuenta lo siguente.

  • Si una conjunción $P\land Q$ aparece como hipótesis, entonces podemos suponer tanto que $P$ como $Q$ son verdad.
  • Si una conjunción $P\land Q$ aparece como conclusión, entonces debemos mostrar, quizás por separado, que cada una de $P$ y $Q$ se siguen de las premisas.
  • Si una disyunción $P\lor Q$ aparece como hipótesis, sólo sabemos que $P\lor Q$ es cierta, no tenemos la garantía de que ninguna de ellas en específico sea cierta, solo que alguna lo es. Por ello, debemos separar en casos nuestra demostración, y argumentar por qué la conclusion se sigue tanto cuando $P$ es cierta, como cuando $Q$ es cierta. Esto típicamente llevará a dos o más subdemostraciones.
  • Si una disyunción $P\lor Q$ aparece como conclusión, entonces basta probar a partir de las hipótesis alguna de $P$ o $Q$, la que nos parezca más fácil, para concluir la demostración.

Ejemplos de demostraciones con conjunciones y disyunciones

Veamos algunos ejemplos.

Proposición: Si un Blorg es un Blarg o es un Blurg, entonces come peces.

Demostración: Aquí la disyunción está en la hipótesis. Un Blorg $x$ que cumple la hipótesis cumple que «$x$ es Blarg o $x$ es Blurg». Como no tenemos certeza de cuál de las proposiciones es cierta, debemos hacer casos.

  • Si $x$ es Blarg, entonces uno de los axiomas nos dice que $x$ come peces.
  • Si $x$ es Blurg, entonces otro de los axiomas nos dice que $x$ come peces.

En cualquier caso, concluimos que $x$ come peces.

$\square$

Veamos un ejemplo de la conjunción en la hipótesis.

Proposición. Si un Blorg que come en peces y es amigo de los delfines, entonces es un Blarg.

Demostración. Tomemos $x$ un Blorg que come peces y es amigo de los delfines. Entonces podemos usar la información de ambas proposiciones en la demostración. Como $x$ come peces, entonces $x$ es Blarg o $x$ es Blurg. Como tenemos una disyunción, hay dos posibilidades: que $x$ es Blarg o que $x$ es Blurg. Veremos que $x$ es Blarg. Para ello, procedemos por contradicción, y suponemos que $x$ no es Blarg. Como «$x$ es Blarg o $x$ es Blurg», entonces $x$ es Blurg. Pero entonces $x$ es Blurg y es amigo de los defines. Pero uno de los axiomas es que los Blurg son amigos sólo de los Blergs y los Blargs. ¡Esto es una contradicción! Así, el problema fue suponer que $x$ no es Blarg. Por lo tanto $x$ es Blarg.

$\square$

Veamos un ejemplo más, con una mezcla de conectores.

Proposición. Si un Blorg es Blerg o es Blarg, entonces come los lunes y es amigo de los Blurgs.

Demostración. Otra vez, en la hipótesis tenemos una disyunción. Tomemos un Blorg $x$ que cumple la hipótesis. Entonces «$x$ es Blerg o $x$ es Blarg». Se tienen que hacer casos.

  • Si $x$ es Blerg, entonces como axioma tenemos que $x$ come los lunes. También como axioma tenemos que $x$ es amigo de los Blurgs. Así, tenemos que «$x$ come los lunes y es amigo de los Blurgs.»
  • Si $x$ es Blarg, entonces como axioma tenemos que $x$ come los lunes. También como axioma tenemos que $x$ es amigo de los Blurgs. Así, tenemos que «$x$ come los lunes y es amigo de los Blurgs.»

En cualquier caso, ya mostramos las dos partes que conforman la conjunción de la conclusión. Por lo tanto, en cualquier caso $x$ come los lunes y es amigo de los Blurgs, como queríamos.

$\square$

Hagamos una demostración más.

Proposición: Los Blargs comen animales marinos y comen entre semana.

Demostración: Para probar la proposición, será necesario probar dos cosas: Que los Blargs comen animales marinos, y que los Blargs comen entre semana, es decir que no comen el fin de semana.

Ahora notemos que todos los Blargs comen peces, y estos son animales marinos, entonces se cumple la afirmación de que los Blargs comen animales marinos.

Como es una conjunción, ahora tenemos también que demostrar que comen entre semana. Para esto, recuerda que cada Blarg come los lunes, y como podrás imaginar, esto significa que comen entre semana, por lo que ya demostramos que «Los Blargs comen animales marinos y comen entre semana».

$\square$

Conectando conectores

Ahora podemos ir más allá y hacer otras combinaciones de conectores. Aunque al inicio parezca que se tienen enunciados complicados, basta con pensar la proposición en cada uno de sus componentes para pensar qué hacer.

Proposición: Si un Blorg no es verde, entonces come algún día entre jueves y domingo, o tiene amigos de color azul.

Antes de continuar con la demostración, vamos a desmenuzar la oración en sus partes escribiéndola con lógica proposicional. Si consideramos:

$ P(x): x$ no es verde,

$ Q(x): x$ come algún día entre jueves y domingo,

$ R(x): x$ tiene amigos de color azul,

entonces la proposición es de la forma

$\forall x (P(x) \Rightarrow (Q(x) \lor R(x))).$

De esta forma ya tenemos un poco más claro qué queremos demostrar. Empezaremos con un Blorg $x$ para el cual la proposición $P(x)$ sea válida y demostraremos que sucede $Q(x)$ o sucede $R(x)$.

Demostración: Sea $x$ un Blorg que no es verde. Esto significa que no es un Blarg, entonces tenemos dos casos:

Caso 1: $x$ es un Blerg.

Si $x$ es un Blerg, entonces es amigo de los Blurgs. Y como recordarás, los Blurgs son azules, de esta manera se cumple la proposición.

Caso 2: $x$ es un Blurg.

Si nuestro Blorg es un Blurg, entonces come los viernes, que resulta que son un día entre jueves y domingo. De esta manera la proposición también se cumple.

En cualquiera de los casos, la proposición es válida.

$\square$

Más adelante…

Ya hemos recorrido algunas de las formas de demostraciones que te encontrarás a lo largo de tu viaje matemático. Sin embargo aún hay algunas cosas que conviene que platiquemos. ¿Cómo demostramos proposiciones en las que están involucrados condicionales y cuantificadores? En la siguiente entrada comenzaremos con el caso de los cuantificadores y posteriormente hablaremos sobre los condicionales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que «Para cualquier Blorg $x$, si $x$ no es rojo y $x$ no es amigo de los delfines, entonces $x$ come los viernes».
  2. Prueba que «Para cualquier Blorg $x$, o bien $x$ es verde, o bien $x$ es amarillo, o bien $x$ es azul».
  3. Prueba que «Para cualquier Blorg $x$, o bien $x$ es amigo de los animales marinos, o bien $x$ come los viernes, o bien $x$ es rojo».
  4. Escribe con lógica proposicional la proposición: «Si un Blorg come los viernes entonces en su hábitat hay árboles y come animales marinos».
  5. Demuestra que «Si un Blorg come los viernes entonces en su hábitat hay árboles y come animales marinos».

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Demostraciones por contradicción

Por Guillermo Oswaldo Cota Martínez

Introducción

Esta entrada es parte de una serie de notas introductorias sobre técnicas de demostración. En esta entrada se habla sobre demostraciones por contradicción. Cada entrada está ligeramente relacionada con las otras. Para entenderlas bien, usamos el siguiente diagrama que recopila cómo se comporta un mundo fantástico llamado Axios, en donde habitan creaturas llamadas Blorgs. Para leer más sobre ello, haz click aquí.

Ya hemos empezado a ver algunas estrategias para empezar a demostrar cosas. Ahora veremos una siguiente que es muy común de encontrar: las demostraciones por contradicción. Comenzando con una proposición que queremos demostrar, supondremos que no es cierta. Puede sonarte que es un poco extraño, pero en esta entrada revisaremos de qué forma esta suposición nos ayudará.

La contradicción

Puede que en tu vida hayas escuchado la palabra contradicción usada en alguno u otro contexto. Podemos decir por ejemplo que una persona se contradice a sí misma cuando dice que es alérgica al camarón después de haberse comido un coctél de camarón. Esto suena poco convincente, ¿no? Pues al decir que alguien es alérgico al camarón sabemos que no puede comer camarón, al mismo tiempo que vemos a la persona haciéndolo. Esta idea va a ser similar en las matemáticas. Pero recuerda que aquí estamos en el lenguaje de las proposiciones.

Definición. Una contradicción es una fórmula proposicional en la cual sin importar la asignación de verdad de las variables proposicionales, siempre se obtiene algo falso.

Un ejemplo muy sencillo es la fórmula proposicional $(P \land \neg P)$. Si $P$ es falso, entonces la conjunción es falsa. Y si $P$ es verdadero, entonces $\neg P$ es falso y entonces también la conjunción es falsa.

Ahora observa la siguiente regla de inferencia:

\begin{array}{rl}
P \\
\neg P \\
\hline
\therefore Q.
\end{array}

Se puede probar que esta es una inferencia válida (es uno de los ejercicios al final de la entrada). Analiza un poco la regla y piensa: ¿esto qué significa? Observa que en ningún momento aparece el término $Q$ en las premisas y sin embargo es una conclusión. La parte de las premisas de la regla de inferencia sería $P\land \neg P$. En pocas palabras, esto nos quiere decir que «de una contradicción se puede deducir lo que sea». Es decir, si en algún momento llegamos a una contradicción, ya nada tiene sentido, pues cualquier cosa sería cierta. Si cambiamos $Q$ por «La luna es de queso», podemos concluirlo de una contradicción, y esto no tiene sentido. Es por eso que si en algún momento en las matemáticas llegamos a una contradicción, es que algo está raro. Bajo esta idea funcionarán las demostraciones por contradicción.

Demostraciones por contradicción

Hablemos ahora sí de la estrategia de hacer demostraciones por contradicción. Como platicamos en la sección anterior, de una contradicción podemos concluir cualquier cosa. En particular, podemos concluir lo que queremos demostrar. Esto, ¿cómo se ve en pasos específicos que tenemos que hacer? La estrategia general es la siguiente.

  1. Pensemos que de ciertas premisas $Q_1, Q_2, \ldots, Q_n$ queremos llegar a la conclusión $P$.
  2. Supongamos que además de dichas premisas, también tenemos a $\neg P$ como premisa.
  3. A partir de $Q_1,\ldots,Q_n,\neg P$, obtengamos todas las cosas ciertas que podamos, con el objetivo de simultáneamente probar que tanto cierta proposición $R$ como cierta proposición $\neg R$ son ciertas.
  4. Como ya tendremos $R$ y $\neg R$ en nuestras premisas, podremos concluir lo que sea, en particular, $P$.
  5. Otra manera de pensarlo es que en el momento en que hemos encontrado tanto $R$ como $\neg R$. En matemáticas las contradicciones nos dicen que hay algo raro, pues sabemos que una proposición no puede ser verdadera y falsa a la vez (recuerda que esto es una contradicción). Así, habremos encontrado un problema lógico. Entonces nuestra suposición de que $\neg P$ es verdadera es imposible. Por lo tanto, $P$ es verdadera.

Otra manera en la que en que te puedas imaginar la reducción al absurdo es mediante la validez de la siguiente regla de inferencia (también tendrás que justificarla como uno de los ejercicios):

$$ \begin{array}{rl} & \neg P \Rightarrow (R \land \neg R) \\ \hline \therefore & P \end{array}.$$

Esto nos dice que si $P$ es falso (es decir, que $\neg P$ es verdad) implica tanto cierta proposición $Q$, como su negación $\neg Q$, entonces en realidad $P$ no puede ser falso, y por lo tanto es verdadero. Piénsalo como mejor te acomodes.

Ejemplo de demostración por contradicción

Hagamos una prueba en el mundo Axios.

Proposición. Para todo Blurg $x$, si $x$ come un cierto día, entonces pasan como mínimo tres días antes de que $x$ vuelva a comer.

Demostración. Vamos a hacer esta prueba por contradicción. Como dijimos antes, las pruebas por contradicción se basan en que para demostrar una proposición $P$, se empieza suponiendo $\neg P$, y a partir de ahí se ven las consecuencias y se intenta llegar a una contradicción. Ahora veamos la traducción de esto a nuestra proposición.

$P$ = Para todo Blurg $x$, si $x$ come un cierto día, entonces pasan como mínimo tres días antes de que $x$ vuelva a comer.

La negación es (recuerda que la negación de $\forall x: A(x)\Rightarrow B(x)$ es $\exists x: A\land \neg B$):

$\neg P$ = Existe un Blurg $x$ que comió cierto día, y no pasaron como mínimo tres días antes que de $x$ volviera a comer.

Otra manera de escribir esto es

$\neg P$ = Existe un Blurg $x$ que comió cierto día, y pasaron máximo dos días antes que de $x$ volviera a comer.

Entonces empecemos con $ \neg P$ y veamos qué obtenemos. Tomemos dicho Blurg $x$ que existe. Uno de nuestros axiomas dice que $Q =\text {Para todo Blurg $x$, se tiene que $x$ come exactamente los lunes y los viernes}$. Así, la primera vez que $x$ comió fue o lunes, o viernes.

  • Si comió el lunes, entonces como estamos suponiendo $\neg P$, tenemos que $x$ comió máximo el martes o el jueves. Pero esto es $\neg Q$, pues existió un Blurg que no comió exactamente los lunes o viernes. Así, tendríamos $Q$ y $\neg Q$, una contradicción.
  • Si comió el viernes, entonces como estamos suponiendo $\neg P$, tenemos que $x$ comió máximo el sábado, o el domingo. Pero esto es $\neg Q$ también, pues existió un Blurg que no comió exactamente los lunes o viernes. Una vez más tenemos $Q$ y $\neg Q$, una contradicción.

En cualquiera de los casos, llegamos a una contradicción. Nuestro error fue suponer que $P$ no era cierta, por lo tanto tiene que ser cierta $P$.

$\square$

Algunos ejemplos famosos de demostraciones por contradicción.

Ahorita estamos en Axios y seguiremos en él. Pero para acercárte un poco más a cómo se usa esta estrategia en matemáticas, aquí te compartimos unos ejemplos de demostraciones por contradicción. Para fines de este curso no necesitas saber demostrar estas proposiciones, únicamente son ejemplos que podrías checar para entender mejor cómo se utiliza esta estrategia.

  • La demostración de que el $0$ es el único neutro aditivo en los números reales (es el único número que al sumarlo a otro número resulta el mismo otro número) utiliza esta estrategia, pues al suponer que no es único, se llega a una contradicción. Puedes checar la demostración aquí.
  • En geometría euclideana, existen criterios para decir si dos triángulos son congruentes (son el «mismo» triángulo salvo quizá la reflexión y rotación, es decir hay una forma de rotarlo o reflejarlo para notar que se trata del «mismo» triángulo). Uno de estos se llama el criterio LAL que nos dice que si dos triángulos tienen dos lados que miden lo mismo y comparten el ángulo entre esos lados, entonces son congruentes. Una técnica para demostrar esto es con reducción a lo absurdo y supone que dos lados y el ángulo entre ellos son iguales, pero que el lado restante es distinto. De ahí se puede llegar a una contradicción. Puedes checar la demostración aquí.
  • En el estudio de los tipos de números, se usa una prueba por contradicción para mostrar que el número $\sqrt{2}$ es irracional. Si fuera racional, se podría escribir como $\sqrt{2}=\frac{a}{b}$ con $a$ y $b$ enteros positivos que no comparten factores en común. Pero de esa igualdad se llega a $2b^2=a^2$, de donde se puede justificar con algunos pasos que tanto $a$ como $b$ son pares. Así, ¡simultáneamente $a$ y $b$ deberían y no deberían tener factores en común! Esa contradicción muestra la irracionalidad de $\sqrt{2}$.
  • También puedes ver una colección de videos con pruebas por contradicción en el siguiente enlace: Busca una contradicción.

Más adelante…

En las siguientes entradas seguiremos hablando de cómo hacer demostraciones. Más que estrategias generales, serán una guía sobre cómo demostrar proposiciones que involucran conectores lógicos o cuantificadores. Ya hemos visto algunos de estos ejemplos y ahora profundizaremos un poco más en su estructura.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Usa tablas de verdad para ver que $(P\Rightarrow Q) \land (Q\Rightarrow P) \land P \land \neg Q$ es una contradicción.
  2. Prueba que $$ \begin{array}{rl} & P \Rightarrow (R \land \neg R) \\ \hline \therefore & \neg P \end{array}$$ es una regla de inferencia válida.
  3. Prueba que
    \begin{array}{rl}
    P \\
    \neg P \\
    \hline
    \therefore R
    \end{array}
    es una regla de inferencia válida.
  4. Prueba por contradicción que «Para todo Blorg $x$, si $x$ no come fresas, ni come los viernes, entonces $x$ es un Blarg». Como ayuda, la negación es «Existe un Blorg $x$ tal que ni come fresas, ni come los viernes, ni es Blarg». Si no es Blarg, ¿qué casos hay y cómo llegas a una contradicción en cada uno de ellos?
  5. El viernes pasado iba caminando y encontré un Blorg $A$ que estaba platicando con un amigo suyo, un Blorg $B$ el cual estaba comiendo. Luego, el Blorg $B$ se encontró a un amigo suyo que estaba comiendo lo mismo. ¿Tiene sentido mi historia? ¿Qué sucedería si toda mi historia es verdadera?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Demostraciones directas e indirectas

Por Guillermo Oswaldo Cota Martínez

Introducción

Esta entrada es parte de una serie de notas introductorias sobre técnicas de demostración. En esta entrada se habla sobre demostraciones directas e indirectas. Cada entrada está ligeramente relacionada con las otras. Para entenderlas bien, usamos el siguiente diagrama que recopila cómo se comporta un mundo fantástico llamado Axios, en donde habitan creaturas llamadas Blorgs. Para leer más sobre ello, haz click aquí.

Hasta ahora hemos introducido algunos conceptos introductorios de lo que es una demostración matemática, pero apenas estamos por iniciar este recorrido hacia lo que son estas. Ahora, empezaremos por ver dos formas de pensar al demostrar que son las demostraciones directas e indirectas.

Demostraciones directas

Ahora vamos a explorar un poco más esto de las demostraciones, qué son y cómo nos ayudan. ¿Recuerdas nuestro ejemplo de que todos los Blorgs verdes comían peces? Este es un ejemplo de lo que llamamos demostraciones directas. Este nombre viene del hecho de que partimos de una lista de proposiciones válidas y vamos obteniendo más proposiciones válidas a través de reglas de inferencia básicas hasta que tenemos la conclusión deseada. En general este tipo de demostraciones van a ser cadenas de implicaciones. Por ejemplo partiendo de

$P_0 \Rightarrow P_1, P_1\Rightarrow P_2, P_2 \Rightarrow P_3, \dots, P_{n-1} \Rightarrow P_{n} $

concluiremos que $P_0 \Rightarrow P_{n}$. Esto en términos sencillos quiere decir: las demostraciones directas van a ser aquellas que podemos dar «el paso claro». Retomando nuestra analogía con las piezas Leog, si sabemos que con madera podemos construir las patas y el asiento, y con patas y el asiento podemos construir una silla, entonces ya sabríamos que con madera podemos construir una silla, pues decimos: «Primero con la madera construimos las patas y el asiento, y después con las patas y el asiento construimos la silla». Cuando veamos otros tipos de demostraciones, verás más fácilmente porqué tienen este nombre. Mientras tanto veamos otro ejemplo.

Proposición. Si un Blorg vive en las montañas, entonces come los lunes.

Demostración. Recordemos cómo empezamos la demostración de la entrada pasada, empezamos con un Blorg que vive en las montañas y veremos poco a poco que come los lunes. Para empezar, nota que con las siguientes proposiciones:

$P(x) = x \text{ vive en las montañas} $

$Q(x) = x \text{ es un Blerg},$

tenemos como axioma (y por lo tanto como cierto) que

$$P(x) \Rightarrow Q(x).$$

Además, sabemos que todos los Blergs comen los lunes, es decir, suponiendo que $R(x) = x \text{ come los lunes}$ entonces es cierto que

$$Q(x) \Rightarrow R(x).$$

Y la siguiente regla de inferencia es válida:

\begin{array}{rl}
& P \Rightarrow Q \\
& Q \Rightarrow R \\
\hline
\therefore & P \Rightarrow R.
\end{array}

Entonces podemos aplicar esta regla de inferencia a nuestro problema, dando como resultado que

$$P(x) \Rightarrow R(x).$$

Ahora recuerda que en las demostraciones nuestro objetivo va a ser «generalizar». No basta con que un Blorg en las montañas coma los lunes, si no quisieramos que siempre que veamos a un Blorg en las montañas, sepamos que come los lunes.

Para esto, empezaremos con un Blorg a quien le llamaremos $x$ y lo único que sabemos de este Blorg es que vive en las montañas, es decir $P(x)$. Ahora, aplicando las reglas de inferencia, sabemos que si $P(x)$ entonces también $R(x)$. Esto quiere decir que sabiendo que un Blorg vive en las montañas, ya sabemos que también come los lunes. Recuerda que para hacer este paso aplicamos las reglas de inferencia. De esta manera, $x$ come los lunes.

Por lo tanto, los Blorgs que viven en las montañas comen los lunes.

$\square$

Demostraciones indirectas

Otra estrategia para demostrar cosas va a ser mediante lo que se conoce como demostraciones indirectas. Esta forma de demostrar proposiciones va a usar la siguiente regla de inferencia:

\begin{array}{rl}
& P \Rightarrow Q \\
\hline
\therefore &(\neg Q) \Rightarrow (\neg P).
\end{array}

¿Recuerdas que la premisa es equivalente a la conclusión? Pues el que sea equivalente es suficiente para que sea una regla de inferencia válida. Puedes verificarlo haciendo la tabla de verdad.

¿Por qué usaremos esta regla de inferencia? Porque a veces queremos mostrar $P\Rightarrow Q$, pero es mucho más «tangible» mostrar la contrapositiva $\neg Q\Rightarrow \neg P$ pues a veces $\neg Q$ nos da más sustancia matemática con la cual trabajar. Por ejemplo, quizás $Q$ tiene un cuantificador universal, y al negarlo se convierte en un cuantificador existencial, que nos permite tomar a un objeto matemático que no tenga cierta propiedad y de ahí mostrar $P$.

Veamos un ejemplo en donde puede aplicarse una demostración indirecta.

Proposición. Si un Blorg come peces, entonces tiene dos tipos de amigos.

Demostración. Aquí podríamos intentar proceder directamente. Tomar un Blorg que coma peces. Pero esto nos lleva a un pequeño problema: al hacer esto la demostración se divide en dos casos: que el Blorg sea Blarg, o que sea Blurg. Podríamos hacer cada caso, y platicaremos de eso más adelante. Pero pensemos en por qué una demostración indirecta nos ayudaría a argumentar más fácilmente. Tomemos las siguientes proposiciones:

$P(x) = x \text{ es come peces}$

$Q(x) = x \text{ tiene dos tipos de amigos}.$

Queremos mostrar que $P(x)\Rightarrow Q(x)$. Pero lo que nos dice la regla de inferencia de arriba es que esto es lo mismo que demostrar que $\neg Q \Rightarrow \neg P$. Ahora notemos que

$\neg Q(x) = x \text{ no tiene dos tipos de amigos} = x \text{ tiene un tipo de amigos}$
$\neg P(x) = x \text{ no come peces} = x\text{ come frutos rojos}.$

Podemos argumentar entonces como sigue. Tomemos $x$ un Blorg que tiene un tipo de amigos. Por ello, $x$ es un Blerg. Además sabemos que «si $x$ es Blerg, entonces come frutos rojos». Por lo tanto, $x$ come frutos rojos.

Hemos mostrado entonces la contrapositiva «Si $x$ tiene un tipo de amigos, entonces $x$ come frutos rojos». Por la equivalencia entre una implicación y su contrapositiva, hemos demostrado que «Si $x$ come peces, entonces tiene dos tipos de amigos.»

$\square$

Algunas notas sobre las demostraciones anteriores

Vamos a hacer algunas observaciones sobre la forma en que demostramos nuestras proposiciones.

  1. En la primera demostración usamos nuevamente una cadena de implicaciones, como en la entrada anterior. Observa que aunque estamos demostrando cosas distintas, en el fondo estamos usando exactamente el mismo tipo de inferencias matemáticas.
  2. En la segunda demostración podíamos, alternativamente, intentar proceder directamente. Si un Blorg come peces, entonces puede ser Blarg o Blurg. Pero este «o» nos lleva a dos posibilidades. Tenemos que cubrir ambas posibilidades mediante una demostración por casos, de la cual hablaremos más adelante. La manera indirecta de proceder nos permitió evitar los casos.

Más adelante…

Hasta ahora tenemos dos formas de demostrar: demostraciones directas e indirectas. En pocas palabras las directas usan sucesiones de proposiciones que ya sabemos para llegar a una conclusión, mientras que las indirectas no empiezan por lo que quiere demostrar, sino que muestran que si la conclusión no es cierta, entonces la premisa no lo es.

Continuando con nuestras estrategias, la siguiente consistirá en hacer demostraciones por contradicción. En pocas palabras para demostrar que una proposición es verdadera, supondremos que no lo es. Y en una serie de pasos lógicos, veremos que habrá proposiciones que son falsas y verdaderas a la vez (esto no puede pasar), llamándose esto una contradicción.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra directamente que los blorgs rojos comen frutas.
  2. Demuestra directamente que los blorgs rojos comen frutas los lunes.
  3. Demuestra indirectamente que si un blorg no come peces, entonces es un blerg.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»