Archivo del Autor: Gabriela Hernández Aguilar

Teoría de los Conjuntos I: Funciones inversas

Por Gabriela Hernández Aguilar

Introducción

En la entrada de composición de relaciones vimos que al componer una relación $R$ con la relación $Id$ obtenemos la relación $R$. Lo mismo ocurre para funciones. Ahora podríamos preguntarnos si dada una función $f$ existe alguna función que al componerla con $f$ nos devuelva la función identidad. Veremos que no siempre es posible y analizaremos cuáles condiciones se requieren para que sí ocurra. Funciones que satisfagan la propiedad de que al componerlas con alguna otra función el resultado sea la identidad les llamaremos funciones invertibles o diremos que tienen una inversa. Como la composición de funciones no es conmutativa, esto nos lleva a tres preguntas: ¿cuándo una función tiene inversa izquierda? ¿cuándo tiene inversa derecha? ¿cuándo tiene una función que sirva de inversa por ambos lados?

En esta entrada exploramos estas preguntas en las siguientes secciones, y las conectamos con las nociones de inyectividad, suprayectividad y biyectividad que trabajamos previamente.

Inversa izquierda

Estudiemos primero la noción de invertibilidad por la izquierda.

Definición. Sea $f:X\to Y$ una función. Si $g:Y\to X$ es una función tal que $g\circ f=Id_X$, entonces decimos que $g$ es inversa izquierda de $f$.

Ejemplo.

Sean $X=\set{1,2}$ y $Y=\set{1,2,3}$ conjuntos. Sea $f:X\to Y$ la función dada por el conjunto $f=\set{(1,1), (2,2)}$.

Luego, si tomamos $g:Y\to X$ definida como $g=\set{(1,1), (2,2), (3,2)}$ es inversa izquierda de $f$. En efecto, tenemos que $g\circ f=Id_X$ pues:

$(g\circ f)(1)= g(f(1))= g(1)=1= Id_X(1)$ y $(g\circ f)(2)= g(f(2))= g(2)=2= Id_X(2)$.

Por lo tanto, $g\circ f=Id_X$ y así $g$ es inversa izquierda de $f$.

$\square$

La invertibilidad por la izquierda está conectada con la inyectividad, como lo afirma la siguiente proposición.

Proposición. Sea $f:X\to Y$ una función, se tiene que $f$ es inyectiva si y sólo si $f$ tiene inversa izquierda.

Demostración. Un caso aparte sencillo es qué sucede si el conjunto $X$ es vacío. En este caso, cualquier función $f:\emptyset \to Y$ es vacía y por lo tanto inyectiva por vacuidad, y $f\circ f = \emptyset =Id_{\emptyset}$, es decir, $f$ es inversa izquierda de sí misma. Así que supondremos que $X\neq \emptyset$.

Supongamos que $f$ es inyectiva, es decir, para cualesquiera $x,y\in X$ se tiene que $f(x)= f(y)$ implica $x=y$. Vamos a demostrar que existe $g:Y\to X$ función tal que $g\circ f= Id_X$.

Para ello, como $X\neq \emptyset$, podemos tomar un $x_0\in X$ cualquiera y definir la siguiente función de $Y$ en $X$:

$$g(y)=\begin{cases} x & \text{si $y\in \text{Im}(f)$ y $f(x)=y$}\\ x_0 & \text{si $y\not \in \text{Im}(f)$}\end{cases}.$$

Veamos primero que $g$ en efecto está bien definida. Esta forma de asignar sí es total, pues para cualquier $y\in Y$ se tiene que o bien $y\in \text{Im}(f)$ o bien $y \not \in \text{Im}(f)$. En el primer caso, por definición existe un $x$ tal que $f(x)=y$ y entonces podemos usar la primera parte de la definición. En el segundo caso usamos la segunda parte de la definición. Además, esta forma de asignar sí es funcional. Cualquier $y\in Y$ está en uno y sólo uno de los casos de arriba. Si está en el primer caso, existe una y sólo una $x$ que cumple $f(x)=y$, pues $f$ es inyectiva. Si está en el segundo caso, $f(y)$ sólo puede valer $x_0$.

Ahora veamos que $g$ es inversa izquierda de $f$. En efecto, sea $x\in X$, entonces

$(g\circ f)(x)=g(f(x))= x=Id_X(x)$.

Ahora, supongamos que $f$ es una función invertible por la izquierda, es decir, existe $g$ tal que $g\circ f=Id_X$. Veamos que $f$ es inyectiva. Sean $x_1, x_2$ tales que $f(x_1)=f(x_2)$. Tenemos que

\begin{align*}
x_1&=Id_X(x_1)\\
&=(g\circ f)(x_1)\\
&=g(f(x_1))\\
&=g(f(x_2))\\
&=(g\circ f)(x_2)\\
&=Id_X(x_2)\\
&=x_2.
\end{align*}

Por lo tanto, $f$ es inyectiva.

$\square$

Inversa derecha

Una noción parecida a la invertibilidad por la izquierda es la invertibilidad por la derecha.

Definición. Sea $f:X\to Y$ una función. Si $g:Y\to X$ es una función tal que $f\circ g=Id_Y$, entonces decimos que $g$ es inversa derecha de $f$.

Ejemplo.

Sean $X=\set{1,2,3}$ y $Y=\set{1,2}$ conjuntos. Sea $f:X\to Y$ la función dada por el conjunto $f=\set{(1,1), (2,2), (3,1)}$.

Luego, se tiene que $g:Y\to X$ definida como $g=\set{(1,1), (2,2)}$ es inversa derecha de $f$. En efecto, tenemos que $f\circ g=Id_Y$ pues:

$(f\circ g)(1)= f(g(1))= f(1)=1= Id_Y(1)$ y $(f\circ g)(2)= f(g(2))= f(2)=2= Id_Y(2)$.

Por lo tanto, $f\circ g=Id_Y$ y así $g$ es inversa derecha de $f$.

$\square$

Del ejemplo anterior podrás notar que $f$ es suprayectiva pero no inyectiva por lo que $f$ no puede tener ninguna inversa izquierda. En general, el siguiente resultado nos dice que $f$ es invertible por la derecha justo cuando es suprayectiva.

Teorema. Sea $f:X\to Y$ una función, se tiene que $f$ es suprayectiva si y sólo si $f$ tiene inversa derecha.

Demostración (parcial).

Ahora, supongamos que $f$ tiene inversa derecha, digamos $g$. Sea $y\in Y$, veamos que existe $x\in X$ tal que $f(x)=y$.
Dado que $g$ es inversa derecha de $f$, entonces $f\circ g=Id_Y$, por lo que para cualquier $y\in Y$, $(f\circ g)(y)= Id_Y(y)=y$, por lo que al tomar $x= g(y)\in X$, se cumple que $f(x)=f(g(y))=y$. Por lo tanto, $f$ es suprayectiva.

Nos faltaría demostrar que si $f$ es suprayectiva, entonces tiene inversa derecha. Esto no lo podemos hacer ahora y postergamos la demostración para la última parte del curso, cuando hablemos del axioma de elección.

$\square$

¿Por qué no podemos hacer la demostración todavía? Un poco más adelante hablaremos de cómo incluir axiomáticamente a los números naturales en todo lo que estamos construyendo, así que en nuestra teoría tendremos conjuntos infinitos. La razón por la que no podemos hacer la demostración anterior es que los axiomas de teoría de conjuntos que hemos presentado hasta ahora no nos dicen cómo le podemos hacer para tomar «una infinidad de decisiones» para crear un conjunto, y justo necesitamos esto en este momento. ¿Por qué? Sabemos que $f:X\to Y$ es una función suprayectiva, y que entonces todos los elementos de $f$ vienen de por lo menos un elemento de $X$. Pero si cada elemento de $Y$ viene de dos elementos de $X$ (digamos) y $Y$ es infinito, ¿cómo construimos la inversa derecha $g$ de $f$? Tendríamos que decidir para cada $y\in Y$ el valor de $g(y)$ entre dos posibilidades. Esto lo resolveremos incluyendo otro axioma que nos permita tomar una infinidad de decisiones, conocido como Axioma de elección, el cual veremos en entradas posteriores.

Inversa izquierda pero no derecha y viceversa

Podemos preguntarnos por qué hasta este momento tenemos dos conceptos: uno de inversa izquierda y otro de inversa derecha. La respuesta es que en ocasiones la inversa izquierda no será inversa derecha y viceversa. Además habrá veces en las que una función sólo tenga inversa izquierda y no derecha, así como funciones que solo tengan inversa derecha pero no izquierda. Retomemos los ejemplos anteriores para ver esto último.

Ejemplo.

Sean $X=\set{1,2}$ y $Y=\set{1,2,3}$ conjuntos. Sea $f:X\to Y$ la función dada por el conjunto $f=\set{(1,1), (2,2)}$. Antes vimos que $g=\set{(1,1), (2,2), (3,2)}$ es inversa izquierda de $f$, sin embargo, $g$ no es inversa derecha pues $f\circ g= \set{(1,1), (2,2), (3, 2)}$ y $f\circ g\not= Id_Y$ pues $(f\circ g)(3)= 2\not= 3=Id_Y(3)$. Además $f$ no tiene inversa derecha pues $g$ debe enviar a $3$ a un elemento de $X$, en este caso las únicas posibilidades son $1$ o $2$. En cualquiera de los casos al componer a la función $g$ con $f$, la composición resulta ser distinta de la función identidad.

Ahora, sean $X=\set{1,2,3}$ y $Y=\set{1,2}$ conjuntos. Sea $f:X\to Y$ la función dada por el conjunto $f=\set{(1,1), (2,2), (3,1)}$. Vimos que $g=\set{(1,1), (2,2)}$ es inversa derecha de $f$. Sin embargo, $g$ no es inversa izquierda de $f$ pues $g\circ f=\set{(1,1), (2,2), (3,1)}$ y $g\circ f\not=Id_X$. De hecho, no podría tener inversa izquierda pues como ya demostramos arriba, $f$ tendría que ser inyectiva, pero no lo es pues $f(1)=1=f(3)$.

$\square$

Inversa de una función

La tercera noción que estudiaremos es la siguiente.

Definición. Sea $f:X\to Y$ una función. Si existe $g:Y\to X$ tal que $g$ es inversa izquierda e inversa derecha de $f$, entonces decimos que $g$ es una inversa de $f$. En este caso, diremos que $f$ es invertible.

Ejemplo.

Sea $X$ un conjunto, consideremos $Id_X$. Resulta que $Id_X$ es invertible. En efecto, si consideramos la función $g=Id_X$ tenemos $g\circ Id_X=Id_X\circ Id_X=Id_X=Id_X\circ Id_X=Id_X\circ g$. Por tanto, $g=Id_X$ es una inversa de $Id_X$.

$\square$

Ejemplo.

Sea $X=\set{0,1}$. Cualquier función inyectiva en $X$ es una función invertible. Para mostrar esto, notemos que las únicas funciones inyectivas en $X$ son $f_1=Id_X$ y $f_2=\set{(0,1),(1,0)}$. Luego, una inversa de $f_1$ es $f_1$ como lo vimos en el ejemplo anterior y, una inversa de $f_2$ es $f_2$ ya que $(f_2\circ f_2)(0)=f_2(f_2(0))=f_2(1)=0$ y $(f_2\circ f_2)(1)=f_2(f_2(1))=f_2(0)=1$, es decir, $f_2\circ f_2=Id_X$.

El siguiente resultado conecta varias propiedades de las que hemos platicado.

Teorema. Sea $f:X\to Y$. Las siguientes tres cosas son equivalentes:

  1. $f$ es biyectiva.
  2. $f$ tiene inversa.
  3. $f$ tiene inversa derecha y $f$ tiene inversa izquierda.

Demostración.

$1)\rightarrow 2)$. Supongamos que $f$ es biyectiva, entonces $f$ es inyectiva y suprayectiva. Para definir $g:Y\to X$ su inversa, notamos que para cada $y\in Y$ existe un único $x\in X$ tal que $f(x)=y$ y entonces definimos $g(y)=x$. Debemos ver que dicha $g$ compuesta tanto por la derecha como por la izquierda con $f$ nos da la identidad. Por un lado, para cualquier $x\in X$ tenemos que $g(f(x))=x$ por cómo definimos $g$, así que $g\circ f = Id_X$.

Tomemos ahora $y\in Y$ y estudiemos $f(g(y))$. Como $f$ es suprayectiva, existe un $x$ tal que $y=f(x)$. Por definición de $g$, tenemos $f(g(y))=f(g(f(x))=f(x)$. Y como $f$ es inyectiva, tenemos que $g(y)=x$. Así, $f(g(y))=f(x)=y$. Concluimos entonces que $f\circ g=Id_Y$. Con esto concluimos la prueba de que $g$ es inversa de $f$.

$2)\rightarrow 3)$. Si $f$ tiene inversa $g$, entonces $g\circ f = Id_X$ y $f\circ g = Id_Y$, que es justo lo que se pide para que $g$ sea inversa izquierda y derecha respectivamente.

$3)\rightarrow 1)$. Esto es conclusión de lo que ya mostramos anteriormente. Como $f$ tiene inversa derecha, entonces es suprayectiva. Como $f$ tiene inversa izquierda, entonces $f$ es inyectiva. Así, $f$ es biyectiva.

$\square$

Observa que en la demostración del resultado anterior estamos usando que si $f$ tiene inversa derecha, entonces es suprayectiva. Esto es algo que sí pudimos demostrar en esta entrada y por lo tanto la demostración que acabamos de hacer no necesita del axioma de elección. Por otro lado, observa que el teorema anterior nos da una condición necesaria y suficiente para determinar cuándo una función posee inversa, incluso sabemos que ésta es única y por ello podemos adoptar una notación para la inversa de una función; si existe la inversa de una función $f$, la denotaremos por $f^{-1}$, notación que coincide con la de la inversa de una relación.

Tarea moral

La siguiente lista de ejercicios te permitirá identificar cuándo una función tiene inversa ya sea izquierda o derecha

  • Sea $f:X\to Y$ una función inyectiva. Da un ejemplo en donde la relación inversa de $f$ no es total y por lo tanto no es función.
  • En la definición de función inversa para una función $f:X\to Y$ le llamamos a su inversa $f^{-1}$. Pero aquí implícitamente ya estamos suponiendo que la inversa es única. Demuestra que, en efecto, si una función $f:X\to Y$ tiene inversa, entonces dicha inversa es única.
  • Las inversas derechas e izquierdas no necesariamente son únicas. Para pensar en esto, haz lo siguiente:
    • Da una función que tenga dos inversas derechas distintas.
    • Da una función que tenga dos inversas izquierdas distintas.
  • Sean $f:X\to Y$ y $g:Y\to Z$ funciones biyectivas. Demuestra que $g\circ f$ es invertible, más aún que $(g\circ f)^{-1}= f^{-1}\circ g^{-1}$.

Más adelante…

En la siguiente sección comenzaremos con el tema de relaciones de equivalencia. En esta parte retomaremos el concepto de relación, sin embargo nos enfocaremos en las relaciones de un conjunto $A$ que cumplen determinadas propiedades, lo que las hará especiales y recibirán el nombre de relaciones de equivalencia.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Funciones suprayectivas y biyectivas

Por Gabriela Hernández Aguilar

Introducción

Si tenemos dos conjuntos $X$ y $Y$ y se nos pide definir una función $f:X\to Y$ lo que debemos hacer es relacionar a cada uno de los elementos de $X$ con un único elemento de $Y$. Esta forma de proceder no garantiza que cualquier elemento de $Y$ se encuentra relacionado con algún elemento de $X$. Aquellas funciones que sí cumplan esto último les llamaremos funciones suprayectivas y será el tema que trataremos en esta entrada.

Función suprayectiva

Definición. Sea $f:X\to Y$ una función. Si $f[X]=Y$, entonces decimos que $f$ es suprayectiva.

$\square$

Teorema. Sea $f:X\to Y$ una función. Entonces los siguientes enunciados son equivalentes:

  1. $f$ es suprayectiva.
  2. Para cualquier $y\in Y$, existe $x\in X$ tal que $f(x)=y$.
  3. Para cualesquiera $h,k:Y\to Z$ tales que $h\circ f= k\circ f$, se tiene que $h=k$.

Demostración.

$1)\rightarrow 2)$

Supongamos que $f$ es suprayectiva, es decir que $f[X]=Y$. Sea $y\in Y$, entonces $y\in f[X]$ por lo que existe $x\in X$ tal que $f(x)=y$. Por lo tanto, para cualquier $y\in Y$ existe $x\in X$ tal que $f(x)=y$.

$2)\rightarrow 3)$

Sean $h,k:Y\to Z$ tales que $h\circ f=k\circ f$. Veamos que $h=k$. Sea $y\in Y$, veamos que $h(y)=k(y)$. Dado que $y\in Y$, por hipótesis tenemos que existe $x\in X$ tal que $f(x)=y$, por lo que $h(y)= h(f(x))$ y $k(y)= k(f(x))$. Luego, como $(h\circ f)(x)= h(f(x))= k(f(x))= (k\circ f)(x)$, tenemos que $h(y)= k(y)$.

$3)\rightarrow 1)$

Observemos que $f[X]\subseteq Y$, por lo que resta probar que $Y\subseteq f[X]$. Definamos $h: Y\to \set{0,1}$ y $k: Y\to \set{0,1}$ funciones dadas por $h(y)=0$ para todo $y\in Y$ y

\begin{align*}
k(y) = \left\{ \begin{array}{lcc}
0 &  \text{si} & y\in f[X]\\
1 &  \text{si}  & y \notin f[X] \\
\end{array}
\right.
\end{align*}

respectivamente.

Sea $x\in X$, entonces $f(x)\in Y$ y así, $(h\circ f)(x)= h(f(x))=0$ y $(k\circ f)(x)= k(f(x))=0$. Por lo tanto, $h\circ f=k\circ f$ y, por hipótesis $h=k$.

Si tomamos $y\in Y$, $h(y)=k(y)$. Esto significa que $k(y)=0$, por lo tanto, debe ocurrir que $y\in f[X]$.

Algunas funciones suprayectivas

Ejemplo.

La función identidad es suprayectiva. En efecto, sea $Id_X:X\to X$ la función identidad y sea $y\in X$, entonces $y\in X$ satisface $Id_X(y)= y$.

Por lo tanto, $Id_X$ es suprayectiva.

$\square$

Ejemplo.

Sea $X$ un conjunto no vacío y $f:X\to \set{c}$ una función dada por $f(x)=c$ para todo $x\in X$. Tenemos que $f$ es suprayectiva.

Dado que $c$ es el único elemento de $\set{c}$, debemos encontrar que existe $x\in X$ tal que $f(x)=c$. Como $X$ no es vacío, existe $x\in X$ y es tal que que $f(x)=c$.

$\square$

Ejemplo.

Sea $X$ un conjunto y $A\subseteq X$ un subconjunto propio de $X$ (distinto de $X$ y no vacío). La función característica de $A$ es una función suprayectiva.

Deseamos ver que para cualquier $y\in \set{0,1}$ existe $x\in X$ tal que $\chi_A(x)=y$.

Caso 1: Si $y=0$, entonces tomemos $x\in X\setminus A$ de modo que $\chi_A(x)=0$.

Caso 2: Si $y=1$, entonces tomemos $x\in A$, de modo que $\chi_A(x)=1$.

Por lo tanto, $\chi_A$ es suprayectiva.

$\square$

Composición de funciones y suprayectividad

Así como lo hicimos en la entrada anterior con respecto a la inyectividad, también podemos averiguar qué pasa con la composición de funciones con respecto a la suprayectividad. Tenemos el siguiente teorema.

Teorema. Sean $f:X\to Y$ y $g:Y\to Z$ funciones suprayectivas, $g\circ f$ es suprayectiva.

Demostración.

Sea $z\in Z$, y veamos que existe $x\in X$ tal que $(g\circ f)(x)=z$.
Dado que $g$ es suprayectiva y $z\in Z$, entonces existe $y\in Y$ tal que $g(y)=z$. Luego, como $f$ es suprayectiva y $y\in Y$, entonces existe $x\in X$ tal que $f(x)=y$, así $z=g(y)=g(f(x))$. Por lo tanto, $g\circ f$ es suprayectiva.

$\square$

Funciones biyectivas

Definición. Decimos que $f:X\to Y$ es una función biyectiva si y sólo si $f$ es inyectiva y suprayectiva.

Ejemplo.

La función identidad es biyectiva.

Verificamos en la entrada de funciones inyectivas que la función identidad es una función inyectiva, además de que en esta entrada verificamos que es suprayectiva.

$\square$

Ejemplo.

Sean $X=\set{1,2,3}$ y $Y=\set{2,4,6}$ y sea $f:X\to Y$ la función dada por $f(x)=2x$. Tenemos que $f$ es inyectiva pues es una función uno a uno, es decir, elementos distintos van a dar a elementos distintos. Más explícitamente $1$ va a dar a $2$, $2$ a $4$ y $3$ a $6$.

Además $f$ es suprayectiva, pues para cualquier $y\in Y$, existe $x\in X$ tal que $f(x)=y$. En efecto, esto sucede ya que para $2\in Y$ existe $1\in X$ tal que $f(1)=2$; para $4\in Y$ existe $2\in X$ tal que $f(2)=4$ y por último para $6\in Y$ existe $3\in X$ tal que $f(3)=6$.

$\square$

Tarea moral

Realiza la siguiente lista de ejercicios que te ayudará a fortalecer los conceptos de función inyectiva, suprayectiva y biyectiva.

  1. Sean $f:X\to Y$ y $g:Y\to Z$ funciones. Demuestra que si $g\circ f$ es suprayectiva, entonces $g$ es suprayectiva.
  2. Demuestra o da un contraejemplo del siguiente enunciado: Si $f:X\to Y$ y $g:Y\to Z$ son funciones tales que $g\circ f$ es suprayectiva, entonces $f$ es suprayectiva.
  3. Sean $X=\set{1,2,3, \cdots}$ y $Y=\set{3,4,5,\cdots}$ y sea $f:X\to Y$ dada por $f(x)=2x+3$. ¿$f$ es suprayectiva? Argumenta tu respuesta. Quizás a estas alturas tengas que ser un poco informal en términos de teoría de conjuntos, pero usa lo que conoces de las operaciones de números.

Más adelante…

Ahora que aprendimos el concepto de función inyectiva y suprayectiva tenemos las bases suficientes para hablar de funciones invertibles. Veremos funciones invertibles por la derecha e invertibles por la izquierda, cuyos conceptos resultarán equivalentes al de función suprayectiva y función inyectiva respectivamente.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Funciones inyectivas

Por Gabriela Hernández Aguilar

Introducción

En esta entrada abordaremos el concepto de función inyectiva. Una función inyectiva será aquella que relacione elementos distintos del dominio con elementos distintos del codominio.

Función inyectiva

Definición. Sea $f: X \to Y$. Decimos que $f$ es una función inyectiva si para cualesquiera $x_1$, $x_2 \in X$ tales que $x_1\not=x_2$, se tiene que $f(x_1)\not= f(x_2)$.

Ejemplo.

Sean $X=\set{1,2,3,4}$ y $Y=\set{1,2,3,4,5}$ y sea $f:X\to Y$ una función dada por $f=\set{(1,2), (2,1), (3,3), (4,5)}$. Decimos que $f$ es inyectiva pues cada elemento de $X$ bajo la función va a dar a un elemento distinto de $Y$, como se muestra en la siguiente imagen:

Ejemplo.

La función identidad es una función inyectiva.

En efecto, dado que $Id_X:X\to X$ esta dada por $Id_X(x)=x$, entonces si $x_1,x_2\in X$ son tales que $Id_X(x_1)=Id_X(x_2)$, entonces tendríamos $x_1=Id_X(x_1)=Id_X(x_2)=x_2$. Así, $x_1=x_2$ y por lo tanto $Id_X$ es inyectiva.

$\square$

Ejemplo.

La función constante no es inyectiva.

Consideremos $X=\set{1,2,3}$ y $Y=\set{1}$. Sea $f:X\to Y$ la función dada por $f(x)=1$ para toda $x\in X$. Consideremos $x_1=1$ y $x_2=2$ elementos de $X$. Sabemos que $1\not=2$ por lo que para que nuestra función sea inyectiva esperamos que $f(x_1)\not=f(x_2)$, sin embargo, $f(1)=1=f(2)$. Esto demuestra que, en general, las funciones constantes no son inyectivas.

$\square$

Equivalencias de inyectividad

Aunque la definición de inyectividad es muy intuitiva («mandar elementos distintos a elementos distintos»), en la práctica nos conviene tener una serie de equivalencias de esta definición que podamos usar en situaciones variadas.

Teorema. Sea $f:X\to Y$ una función tal que $X\not=\emptyset$. Entonces los siguientes enunciados son equivalentes:

  1. $f$ es inyectiva.
  2. Para cualesquiera $x_1,x_2\in X$ si $f(x_1)=f(x_2)$, entonces $x_1=x_2$.
  3. Para cualesquiera $h,k:Z\to X$ si $f\circ h= f\circ k$, entonces $h=k$.
  4. Para cualesquiera $A,B$ subconjuntos de $X$, se cumple que $f[B\setminus A]= f[B]\setminus f[A]$.
  5. Para cualesquiera $A,B$ subconjuntos de $X$ se cumple que $f[A\cap B]= f[A]\cap f[B]$.

Demostración.

$1)\rightarrow 2)$
Supongamos que $f$ es inyectiva, esto es, para cualesquiera $x_1, x_2\in X$ tales que $x_1\not=x_2$ se tiene que $f(x_1)\not=f(x_2)$. Luego, sabemos que la implicación es equivalente a la contrapositiva por lo que podemos concluir que para cualesquiera $x_1, x_2\in X$, si $f(x_1)=f(x_2)$ entonces $x_1=x_2$.

$2)\rightarrow 3)$
Supongamos que para cualesquiera $x_1, x_2\in X$ si $f(x_1)=f(x_2)$, entonces $x_1= x_2$ y supongamos que $h,k:Z\to X$ son funciones tales que $f\circ h= f\circ k$ y veamos que $h=k$.

Sea $z\in Z$, entonces $h(z)\in X$ y $k(z)\in X$, luego como $f\circ h=f\circ k$ tenemos que $(f\circ h)(z)= (f\circ k)(z)$, de donde $f(h(z))= f(k(z))$ y como $f$ es inyectiva entonces $h(z)=k(z)$. Por lo tanto, $h(z)=k(z)$ para todo $z\in Z$. Para concluir que $h=k$ notemos lo siguiente: $(z,y)\in h$ si y sólo si $h(z)=y$, lo cual ocurre si y sólo si $k(z)=y$, es decir, si y sólo si $(z,y)\in k$.

$3)\rightarrow 4)$

Supongamos que para cualesquiera $h,k:Z\to X$ se cumple que si $f\circ h= f\circ k$, entonces $h=k$. Sean $A,B$ conjuntos tales que $A\subseteq B\subseteq X$ y veamos que $f[B\setminus A]= f[B]\setminus f[A]$.

En la entrada de funciones vimos que siempre ocurre que $f[B]\setminus f[A]\subseteq f[B\setminus A]$ por lo que basta ver la otra contención.

Sea $y\in f[B\setminus A]$, entonces existe $x\in B\setminus A$ tal que $f(x)=y$. Tenemos que $x\in B$ y $x\notin A$, de modo que $f(x)\in f[B]$. Resta ver que $f(x)\notin f[A]$. Supongamos que sí ocurre, es decir que $f(x)\in f[A]$. Entonces existe $z\in A$ tal que $f(z)=f(x)$.

Definamos $h:X\to X$ dada por $h(a)=x$ para todo $a\in X$ y $k:X\to X$ dada por $k(a)=z$ para todo $a\in X$. Notemos que $h\not=k$ pues $z\not=x$ ya que $z\in A$ y $x\notin A$. Luego, $(f\circ h)(a)=f(h(a))= f(x)$ y $(f\circ k)(a)= f(k(a))= f(z)=f(x)$ para cada $a\in A$, por lo que $f\circ h=f\circ k$. Así, por hipótesis se sigue que $h=k$ lo cuál es una contradicción, por lo tanto, no debe ocurrir que $f(x)\in f[A]$. Así, $f(x)\in f[B]\setminus f[A]$.

$4)\rightarrow 5)$

Supongamos que para cualesquiera $A, B$ subconjuntos de $X$, se cumple que $f[B\setminus A]=f[B]\setminus f[A]$. Veamos que $f[A\cap B]= f[A]\cap f[B]$.

En la entrada de funciones probamos que $f[A\cap B]\subseteq f[A]\cap f[B]$, por lo que basta ver que $f[A]\cap f[B]\subseteq f[A\cap B]$.

Sea $y\in f[A]\cap f[B]$, entonces $y\in f[A]$ y $y\in f[B]$, así existe $x\in A$ tal que $f(x)=y$. Queremos demostrar que $x\in B$. Supongamos que no es así, es decir $x\notin B$. Por lo tanto, $x\in A\setminus B$ y $y=f(x)\in f[A\setminus B]= f[A]\setminus f[B]$.

Se sigue que $y\in f[A]$ y $y\notin f[B]$ lo cual es una contradicción. Por lo tanto, debe ocurrir que $x\in B$, así existe $x\in A\cap B$ tal que $f(x)=y$.

Por lo tanto, $f[A]\cap f[B]= f[A\cap B]$.

$5)\rightarrow 1)$

Supongamos que para cualesquiera $A, B\subseteq X$ se cumple que $f[A]\cap f[B]= f[A\cap B]$.

Sean $x_1, x_2\in X$ tales que $x_1\not= x_2$, veamos que $f(x_1)\not= f(x_2)$.

Consideremos $\set{x_1}$ y $\set{x_2}$ subconjuntos de $X$. Luego,

\begin{align*}
\emptyset&=f[\emptyset]\\
&=f[\set{x_1}\cap \set{x_2}]\\
&=f[\set{x_1}]\cap f[\set{x_2}]\ \text{por hipótesis}\\
&=\set{f(x_1)}\cap \set{f(x_2)}.
\end{align*}

Luego, como $\set{f(x_1)}\cap \set{f(x_2)}=\emptyset$, se tiene $\set{f(x_1)}\not=\set{f(x_2)}$ y por lo tanto, $f(x_1)\not=f(x_2)$.

Por lo tanto, $f$ es inyectiva.

Por lo tanto, todos los enunciados anteriores son equivalentes.

$\square$

Aunque existen muchas equivalencias de función inyectiva, para estas notas usaremos con mayor frecuencia la equivalencia dos del resultado anterior.

¿Qué pasa con la composición y la inyectividad?

Anteriormente vimos que la composición de funciones (pensándolas como relaciones) resulta ser una función. Podemos preguntarnos qué ocurre si las funciones que conforman a la composición son inyectivas. ¿Será que eso implica que la composición es inyectiva? Esto lo responde el siguiente teorema.

Teorema. Sean $f:X\to Y$ y $g:Y\to Z$ funciones inyectivas. Se cumple que $g\circ f$ es inyectiva.

Demostración.

Sean $f$ y $g$ funciones inyectivas y sean $x_1, x_2\in X$ tales que $(g\circ f)(x_1)= g(f(x_1))=g(f(x_2))= (g\circ f)(x_2)$. Dado que $f(x_1), f(x_2)\in Y$ y $g$ es inyectiva, entonces $ g(f(x_1))=g(f(x_2)) $ implica que $f(x_1)=f(x_2)$. Por la inyectividad de $f$ podemos concluir que $x_1=x_2$. Por lo tanto, $g\circ f$ es una función inyectiva.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el tema de funciones inyectivas.

  • Demuestra que la función inclusión es inyectiva.
  • Sean $A=\set{1,2,3}$, $B=\set{1,2}$ y $C=\set{1,2}$ conjuntos. Sean $f:A\to B$ y $g:B\to C$ funciones dadas por $f=\set{(1,1), (2,1), (3,2)}$ y $g=\set{(1,2), (2,1)}$ respectivamente. Escribe al conjunto $g\circ f$ y ve si la función correspondiente es inyectiva. Argumenta tu respuesta.
  • Si $f\circ g$ es inyectiva, ¿es cierto que $f$ y $g$ son inyectivas? ¿Será cierto que por lo menos una de ellas siempre es inyectiva?
  • Demuestra que la función $\emptyset$ es inyectiva.
  • Demuestra que $f:X\to Y$ una función constante es inyectiva si y sólo si $X=\set{x}$ para algún conjunto $x$.

Más adelante…

En la siguiente entrada abordaremos el tema de funciones suprayectivas. Con este tema tendremos los conceptos necesarios para comenzar a hablar acerca de funciones biyectivas e invertibles.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los conjuntos I: Funciones (parte II)

Por Gabriela Hernández Aguilar

Introducción

En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de cómo se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

Propiedades de la imagen de un conjunto

A continuación enunciamos algunas propiedades de la imagen de conjuntos bajo una función.

Teorema. Sean $X$ y $Y$ conjuntos y sea $f:X\to Y$ una función. Sean $X_1,X_2\subseteq X$ y $Y_1, Y_2\subseteq Y$. Entonces se cumplen las siguientes propiedades:

  1. Si $X_1\subseteq X_2$, entonces $f[X_1]\subseteq f[X_2]$,
  2. $f[X_1\cup X_2]=f[X_1]\cup f[X_2]$,
  3. $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$,
  4. $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$,
  5. Si $Y_1\subseteq Y_2$, entonces $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$,
  6. $f^{-1}[Y_1\cup Y_2]=f^{-1}[Y_1]\cup f[Y_2]$.1

Demostración.

1) Supongamos que $X_1\subseteq X_2$ y veamos que $f[X_1]\subseteq f[X_2]$.
Sea $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Dado que $X_1\subseteq X_2$, entonces $x\in X_2$ cumple $f(x)=y$, esto es $y\in f[X_2]$.
Por lo tanto, $f[X_1]\subseteq f[X_2]$.

2) Veamos que $f[X_1\cup X_2]=f[X_1]\cup f[X_2]$.

$\subseteq$] Sea $y\in f[X_1\cup X_2]$, entonces existe $x\in X_1\cup X_2$ tal que $f(x)= y$. Entonces $x\in X_1$ o $x\in X_2$ cumple $f(x)=y$.

  • Si $x\in X_1$, f(x)=y entonces $y\in f[X_1]$ y por lo tanto $y\in f[X_1]\cup f[X_2]$.
  • Si $x\in X_2$, f(x)=y entonces $y\in f[X_2]$ y por lo tanto $y\in f[X_1]\cup f[X_2]$.

Por lo tanto, $f[X_1\cup X_2]\subseteq f[X_1]\cup f[X_2]$.

$\supseteq$] Sea $y\in f[X_1]\cup f[X_2]$, entonces $y\in f[X_1]$ o $y\in f[X_2]$.

Si $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Luego, como $X_1\subseteq X_1\cup X_2$, tenemos que $x\in X_1\cup X_2$. Por lo tanto, existe $x\in X_1\cup X_2$ tal que $f(x)=y$, esto es $y\in f[X_1\cup X_2]$.

Si $y\in f[X_2]$, entonces existe $x\in X_2$ tal que $f(x)=y$. Luego, como $X_2\subseteq X_1\cup X_2$, tenemos que $x\in X_1\cup X_2$. Por lo tanto, existe $x\in X_1\cup X_2$ tal que $f(x)=y$, esto es $y\in f[X_1\cup X_2]$.

Por lo tanto, $f[X_1]\cup f[X_2]\subseteq f[X_1\cup X_2]$.

De las contenciones que demostramos tenemos que $f[X_1]\cup f[X_2]=f[X_1\cup X_2]$.

3) Ahora veamos que $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$.

Sea $y\in f[X_1\cap X_2]$, entonces existe $x\in X_1\cap X_2$ tal que $f(x)= y$. Entonces $x\in X_1$, y $x\in X_2$ y cumple $f(x)=y$.

De donde $y\in f[X_1]$ y $y\in f[X_2]$. Por lo tanto, $y\in f[X_1]\cap f[X_2]$.

Así, $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$.

4) A continuación mostraremos que $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$.

Sea $y\in f[X_1]\setminus f[X_2]$, entonces $y\in f[X_1]$ y $y\notin f[X_2]$.

Dado que $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Luego, como $y\notin f[X_2]$ entonces para cualquier $a\in X_2$, $f(a)\not=y$. Resulta que $x\notin X_2$ pues de lo contrario $f(x)\not=y$ lo cual no puede ocurrir.

Por lo tanto, $x\in X_1\setminus X_2$ y cumple $f(x)=y$, esto es, $y\in f[X_1\setminus X_2]$.

5) Supongamos que $Y_1\subseteq Y_2$ y veamos que $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$.
Sea $x\in f^{-1}[Y_1]$, entonces existe $y\in Y_1$ tal que $f(x)=y$. Dado que $Y_1\subseteq Y_2$, entonces $y\in Y_2$ y se cumple $f(x)=y$, esto es $x\in f^{-1}[Y_2]$.
Por lo tanto, $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$.

6) Finalmente veamos que $f^{-1}[Y_1\cup Y_2]=f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

Sea $x\in f^{-1}[Y_1\cup Y_2]$, entonces existe $y\in Y_1\cup Y_2$ tal que $f(x)=y$. Luego, como $y\in Y_1\cup Y_2$ se tiene que $y\in Y_1$ o $y\in Y_2$.

Si $y\in Y_1$, tenemos que $x\in f^{-1}[Y_1]$. Por lo tanto $x\in f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

Si $y\in Y_2$, tenemos que $x\in f^{-1}[Y_2]$. Por lo tanto $x\in f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

$\square$

¿Será cierto que $f[X_1\cap X_2]=f[X_1]\cap f[X_2]$?

Ya vimos que $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$, por lo que, al igual que con la unión, podríamos pensar que se cumple la igualdad entre los conjuntos. Sin embargo, vamos a ver que en ocasiones $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

Ejemplo.

Sean $X=\set{0,1,2}$ y $Y=\set{1,2,3}$ conjuntos y sea $f:X\to Y$ una función dada por el conjunto $f(x)=2$. Sean $X_1=\set{0,1}$ y $X_2=\set{2}$ subconjuntos de $X$.

Por un lado tenemos que $X_1\cap X_2=\set{0,1}\cap \set{2}=\emptyset$, por lo que $f[X_1\cap X_2]=f[\emptyset]= \emptyset$.

Por otro lado, $f[X_1]=f[\set{0,1}]=\set{2}$ y $f[X_2]=f[\set{2}]=\set{2}$. Así, $f[X_1]\cap f[X_2]=\set{2}$.

Por lo tanto, $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

$\square$

¿Será cierto que $f[X_1\setminus X_2]=f[X_1]\setminus f[X_2]$?

Ya vimos que $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$, pero veremos que la contención de regreso no siempre es posible, es decir, $f[X_1\setminus X_2] \not\subseteq f[X_1]\setminus f[X_2]$. Un ejemplo de esto se muestra a continuación.

Ejemplo.

Sean $X=\set{0,1,2}$ y $Y=\set{1,2,3}$ conjuntos y sea $f:X\to Y$ una función dada por $f(x)=2$ Sean $X_1=\set{0,1}$ y $X_2=\set{1,2}$ subconjuntos de $X$.

Por un lado tenemos que $X_1\setminus X_2=\set{0,1}\setminus \set{1,2}=\set{0}$, por lo que $f[X_1\setminus X_2]=f[\set{0}]= \set{2}$.

Por otro lado, $f[X_1]=f[\set{0,1}]=\set{2}$ y $f[X_2]=f[\set{1,2}]=\set{2}$. Así, $f[X_1]\setminus f[X_2]=\emptyset$.

Por lo tanto, $f[X_1\setminus X_2]\not\subseteq f[X_1]\setminus f[X_2]$.

$\square$

Restricción de una función

Si ya tenemos una función que va de un conjunto $X$ a un conjunto $Y$, podemos «limitar» a la función a un subconjunto de $X$ mediante la siguiente definición.

Definición. Sea $f:X\to Y$ una función y sea $A\subseteq X$. Decimos que la restricción de $f$ en $A$ es la función $f\upharpoonright_{A} :A\to Y$ dada por $f\upharpoonright_{A} (x)= f(x)$ para todo $x\in A$.

Aunque las funciones $f$ y $f\upharpoonright$ tengan la misma regla de correspondencia, típicamente son funciones distintas pues casi siempre tienen dominios distintos (a menos que $X=A$).

Ejemplo.

Sean $X=\set{1,2,3,4}$ y $Y=\set{1,2,3,4,5}$. Sea $f:X\to Y$ la función dada por $\set{(1,1), (2,2), (3,3), (4,1)}$. Si restringimos $f$ al subconjunto ${1,2,3}$ obtenemos la función identidad en este subconjunto. En efecto, $f\upharpoonright_A=\set{(1,1), (2,2), (3,3)}$.

$\square$

Composición de funciones

Recuerda que podemos pensar a una función $f:X\to Y$ como una «regla de correspondencia» que manda a cada elemento de $X$ a uno y sólo un elemento de $Y$. Si tenemos otra función $g:Y\to Z$ entonces también $g$ da una «regla de correspondencia», pero para mandar elementos de $Y$ a $Z$. Entonces, suena a que podríamos combinar a $f$ con $g$ de alguna manera para enviar elementos de $X$ a $Z$. Esto lo hará la composición de funciones. Reescribamos la definición que teníamos de relaciones, pero ahora para funciones.

Definición. Sean $f:X\to Y$ y $g:Y\to Z$. Definimos a la composición de $f$ con $g$ como el siguiente conjunto:

$g\circ f=\set{(x,z): \exists y\in Y( f(x)=y \text{ y } g(y)=z)}$.

Observa que estamos pidiendo que si estas dos igualdades pasan, entonces $g\circ f$ tiene a la pareja $(x,z)$. Como enuncia el siguiente teorema, esto impicará que $g\circ f$ es función, y que su regla de correspondencia será $(g\circ f)(x)=g(f(x))$.

Proposición. Si $f:X\to Y$ y $g:Y\to Z$ son funciones, entonces $g\circ f:X\to Z$ es función. Además, cumplirá que $(g\circ f)(x)=g(f(x))$ para toda $x\in X$.

Demostración.

En la sección de composición de relaciones vimos que si $f$ y $g$ son relaciones, entonces $g\circ f$ es relación, por lo que resta ver que $g\circ f$ es funcional y total.

Para ver que es funcional, supongamos que hay parejas $(x,z)$ y $(x,z’)$ en $g\circ f$. Por definición, esto implica que existen $y$ y $y’$ en $Y$ tales que $(x,y),(x,y’)\in f$ y $(y,z), (y’,z’) \in g$. Como $f$ es funcional, se tiene $y=y’$. Así, $(y,z), (y,z’)\in g$. Como $g$ es funcional, se tiene $z=z’$.

Para ver que es total, como $f$ es total, existe $y\in Y$ con $(x,y)\in f$. Como $g$ es total, existe $z$ con $(y,z)\in g$. Así, por definición de composisión tenemos $(x,z)\in g\circ f$ y por lo tanto $g\circ f$ es total.

El párrafo anterior justo nos dice que si $f(x)=y$ y $g(y)=z$, entonces $$(g\circ f)(x)=z=g(y)=f(g(x)).$$

$\square$

Ejemplo.

Sean $f:\set{1,2}\to \set{2,4}$ y $g:\set{2,4}\to \set{3,5}$ las funciones dadas por $f(x)= 2x$ y $g(x)=x+1$ respectivamente (con tu entendimiento actual de $2x$ y $x+1$, posteriormente formalizaremos estas operaciones). Entonces $g\circ f:\set{1,2}\to \set{3,5}$ está dada por:

$(g\circ f)(x)=g(f(x))=g(2x)=2x+1$.

Por lo que,

  • $(g\circ f)(1)=2(1)+1=2+1=3$,
  • $(g\circ f)(2)= 2(2)+1=4+1=5$.

De modo que los elementos de $g\circ f$ son $(1,3)$ y $(2,5)$.

$\square$

Tarea moral

  1. Demuestra que si $X$ y $Y$ son conjuntos, $X_1\subseteq X$, $Y_1, Y_2\subseteq Y$ y $f:X\to Y$ una función, entonces se cumplen las siguientes propiedades:
    • $f^{-1}[Y_1\cap Y_2]=f^{-1}[Y_1]\cap f^{-1}[Y_2]$,
    • $f^{-1}[Y_1\setminus Y_2]=f^{-1}[Y_1]\setminus f{-1}[Y_2]$,
    • $X_1\subseteq f^{-1}[f[X_1]]$,
    • $f[f^{-1}[B_1]]\subseteq B_1$.
  1. Demuestra que la composición de funciones es asociativa.
  2. ¿Será cierto que si $R$ es una función, entonces la relación inversa $R^{-1}$ también es función?
  3. ¿Será cierto que si $R$ de $A$ en $B$ y $S$ de $B$ en $C$ son relaciones tal que ninguna de ellas es función, entonces $S\circ R$ nunca es función?

Más adelante…

La siguiente sección estará dedicada a funciones inyectivas. Este tipo de funciones empezarán a estudiar cómo se comportan los elementos del codominio de una función. Específicamente, las funciones inyectivas serán aquellas para las que cada elemento del codominio viene de a lo más un elemento del dominio. Este tema será de gran importancia pues en muchas ocasiones tendremos que verificar si se satisface esta propiedad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

  1. Puedes encontrar una prueba similar de este teorema en Gómez L. C, Álgebra Superior Curso Completo. Publicaciones Fomento Editorial, 2014, p. 49-50 ↩︎

Teoría de los Conjuntos I: Funciones

Por Gabriela Hernández Aguilar

Introducción

Esta sección estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema será de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora, es por ello que dedicaremos una serie de entradas para tratarlas. En esta primera parte abordaremos la definición de función, algunas de sus propiedades y ejemplos.

¿Qué es una función?

La motivación de la definición de función es la siguiente. Tomemos $A$ y $B$ conjuntos. Queremos poder asignar a cualquier elemento de $A$ uno y sólo un elemento de $B$, de manera que inequívocamente para cada $a\in A$ podamos hablar del elemento que se le asignó en $B$. Las relaciones ayudan a emparejar elementos de $A$ y $B$, pero podemos tener dos problemas 1) Que no todo elemento de $A$ esté en alguna pareja de la relación o 2) Que algún elemento de $A$ quede emparejado con más de un elemento de $B$. Por ello, la definición de función queda establecida de la siguiente manera.

Definición. Sean $A$ y $B$ conjuntos. Una función $f$ de $A$ en $B$ es una relación $f\subseteq A\times B$ que satisface:

  1. Para cualquier $x\in A$, existe $y\in B$ tal que $(x,y)\in f$.
  2. Para cualesquiera $a\in A$ y $b,c\in B$, si $(a,b)\in f$ y $(a,c)\in f$, entonces $b=c$.

La definición anterior nos dice que dados dos conjuntos y una relación $R$ de $A$ en $B$, esta es una función si y sólo si cada elemento del $dom(R)$ esta relacionado con uno y sólo uno de $B$. Como se muestra en la siguiente imagen:

Para abordar la definición desde otra perspectiva revisaremos el siguiente ejemplo que nos muestra que no toda relación es función.

Ejemplo.

Sea $A=\set{1,2}$ y $B=\set{1,2,3}$. Sea $R$ una relación de $A$ en $B$ dada por $R=\set{(1,1), (1,2), (2,1)}$.

Resulta que $R$ no es función pues $(1,1)\in R$ y $(1,2)\in R$, sin embargo no es cierto que $1=2$.

$\square$

Ahora veamos el ejemplo de una relación que si es función.

Ejemplo.

Sea $A=\set{1,2,3}$ y $B=\set{1,2}$. Sea $f$ una relación de $A$ en $B$ dada por $f=\set{(1,1), (2,1), (3,1)}$.

En este ejemplo tenemos que $f$ es función pues cada elemento de $A$ está relacionado con uno y sólo uno de $B$, es decir, para cualesquiera $(a,b)\in f$ y $(a,c)\in f$ se cumple que $b=c$.

$\square$

Después de revisar estos ejemplos es importante mencionar que aunque no toda relación es función, siempre ocurrirá que una función es una relación, este último hecho se sigue de la definición de función.

Función vacía

Observa que si $X=\emptyset$ y $Y$ es un conjunto cualquiera, entonces el conjunto vacío es una función de $X$ en $Y$. En la sección de relaciones vimos que el conjunto vacío en efecto es una relación, nos resta ver que para cualesquiera $(a,b)\in f$ y $(a,c)\in f$ se cumple que $b=c$, sin embargo este enunciado se cumple por un argumento por vacuidad.

Por lo tanto, la relación vacía es función.

Función constante

Sean $X$, $Y$ conjuntos y $c\in Y$. Definimos la función $f_c$ de $X$ en $Y$ como $f_c=X\times \{c\}$. Nuestra función se verá de la siguiente forma:

Función identidad

Sea $X$ un conjunto, la relación identidad es función. Recordemos que la relación identidad $Id_X$ esta definida como sigue:

$Id_X=\set{(x,y)\in X\times Y: x=y}$

Dado que para cualesquiera $(x,y)\in Id_X$ y $(x,w)\in Id_X$ tenemos que $x=y$ y $x=w$ por definición de la relación $Id_X$, por lo tanto, $y=w$ y así concluimos que $Id_X$ es función.

Función característica

Sean $A$ y $X$ conjuntos tales que $A\subseteq X$, definimos a la función característica $\chi_A$ de $A$ en $\set{\emptyset, \set{\emptyset}}$ como $\chi_A=\{(x, \{\emptyset\}):x\in A \}\cup \{(x, \emptyset):x\in X\setminus A\}$.

Función inclusión

Sea $X$ un conjunto cualquiera, definimos a la función inclusión como el siguiente conjunto:

$\iota_A= \set{(x,x):x\in A}$.

Debido a que las funciones serán recurrentes en las entradas subsecuentes, es necesario adoptar alguna notación para estos conceptos. Dada una relación $f$ de $A$ en $B$ utilizaremos la notación $f:A\to B$ para indicar que $f$ es una función. Ahora bien, si $f:A\to B$ y $x\in A$ y $y\in B$, escribiremos $f(x)=y$ si $(x,y)\in f$.

Dominio e imagen

De manera similar que con las relaciones trataremos las definiciones de dominio, imagen e imagen inversa, sin embargo ahora lo haremos para funciones.

Definición. Sea $f$ una función de A en B, definimos el dominio de la $f$ como:

$dom(f)=\set{x\in A:\exists y\in B(f(x)=y)}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{1,2,3,4}$. Sea $f:A\to B$ una función dada por el conjunto $f=\set{(1,1), (2,2), (3,3), (4,4)}$.

Tenemos que,

$dom(f)=\set{x\in \set{1,2,3,4}:\exists y\in \set{1,2,3,4}(f(x)=y)}=\set{1,2,3,4}$.

$\square$

Definición. Sea $f$ una función de A en B, definimos la imagen de la función $r$ como:

$im(f)=\set{y\in B:\exists x\in A(f(x)=y)}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{1}$. Sea $f:A\to B$ una función dada por $f(x)=1$ para todo $x\in A$.

Tenemos que,

$im(f)=\set{y\in B: \exists x(f(x)=y)}=\set{1}$.

$\square$

Definición. Sea $f$ una función de $A$ en $B$ y sea $D\subseteq A$. Definimos la imagen de $D$ bajo la función $f$ como el conjunto:

$f[D]=\set{f(x)\in B: \exists x\in D(f(x)=y)}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{2,4,6,8}$. Sea $f:A\to B$ una función dada por $f(x)=2x$ para todo $x\in A$. Sea $A’=\set{2,4}\subseteq A$.

Tenemos que,

$f[A’]=\set{f(x)\in B: \exists x\in A'(f(x)=y)}=\set{4,8}$.

$\square$

Definición. Sea $f$ una función de $A$ en $B$ y sea $B’\subseteq B$. Definimos la imagen inversa de $B’$ bajo la función $f$ como el conjunto:

$f^{-1}[B’]=\set{x\in A: \exists y\in B'(f(x)=y)}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{2,4,6,8}$. Sea $f:A\to B$ una función dada por $f(x)=2x$ para todo $x\in A$. Sea $B’=\set{2,4}\subseteq B$.

Tenemos que,

$f^{-1}[B’]=\set{x\in A: \exists y\in B'(f(x)=y)}=\set{1,2}$.

$\square$

Tarea moral

Los siguientes ejercicios te ayudarán a reforzar los conceptos de función, dominio e imagen.

  • Sea $f$ una función de $\set{1,2}$ en $\set{2.4,5}$ dada por $f=\set{(1,2), (2,4)}$. Describe al dominio y la imagen de $f$.
  • Sean $A=\set{1,2,3,4,5,6,7,8,9}$ y $B=\set{1,2,3,4,5,6,7}$ conjuntos. Responde si las siguientes relaciones son o no funciones:
    1. $f_1=\set{(1,1), (1,2), (2,1), (3,4)}$,
    2. $f_2=\set{(1,1), (2,2), (3,3), (4,4) (5,5)}$,
    3. $f_3=\set{(1,1), (2,1), (3,1), (4,1), (5,1)}$.

Más adelante…

La siguiente sección estará dedicada a hablar acerca de algunas de las propiedades que tiene la imagen de un conjunto bajo una función respecto a la unión, la intersección y la diferencia. Además hablaremos acerca de la composición de funciones, en esta parte retomaremos el concepto de composición de relaciones.

Entradas relacionadas