Archivo del Autor: Gabriela Hernández Aguilar

Teoría de los conjuntos I: Funciones (parte II)

Por Gabriela Hernández Aguilar

Introducción

En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de cómo se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

Propiedades de la imagen de un conjunto

A continuación enunciamos algunas propiedades de la imagen de conjuntos bajo una función.

Teorema. Sean $X$ y $Y$ conjuntos y sea $f:X\to Y$ una función. Sean $X_1,X_2\subseteq X$ y $Y_1, Y_2\subseteq Y$. Entonces se cumplen las siguientes propiedades:

  1. Si $X_1\subseteq X_2$, entonces $f[X_1]\subseteq f[X_2]$,
  2. $f[X_1\cup X_2]=f[X_1]\cup f[X_2]$,
  3. $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$,
  4. $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$,
  5. Si $Y_1\subseteq Y_2$, entonces $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$,
  6. $f^{-1}[Y_1\cup Y_2]=f^{-1}[Y_1]\cup f[Y_2]$.

Demostración.

1) Supongamos que $X_1\subseteq X_2$ y veamos que $f[X_1]\subseteq f[X_2]$.
Sea $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Dado que $X_1\subseteq X_2$, entonces $x\in X_2$ cumple $f(x)=y$, esto es $y\in f[X_2]$.
Por lo tanto, $f[X_1]\subseteq f[X_2]$.

2) Veamos que $f[X_1\cup X_2]=f[X_1]\cup f[X_2]$.

$\subseteq$] Sea $y\in f[X_1\cup X_2]$, entonces existe $x\in X_1\cup X_2$ tal que $f(x)= y$. Entonces $x\in X_1$ o $x\in X_2$ cumple $f(x)=y$.

  • Si $x\in X_1$, f(x)=y entonces $y\in f[X_1]$ y por lo tanto $y\in f[X_1]\cup f[X_2]$.
  • Si $x\in X_2$, f(x)=y entonces $y\in f[X_2]$ y por lo tanto $y\in f[X_1]\cup f[X_2]$.

Por lo tanto, $f[X_1\cup X_2]\subseteq f[X_1]\cup f[X_2]$.

$\supseteq$] Sea $y\in f[X_1]\cup f[X_2]$, entonces $y\in f[X_1]$ o $y\in f[X_2]$.

Si $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Luego, como $X_1\subseteq X_1\cup X_2$, tenemos que $x\in X_1\cup X_2$. Por lo tanto, existe $x\in X_1\cup X_2$ tal que $f(x)=y$, esto es $y\in f[X_1\cup X_2]$.

Si $y\in f[X_2]$, entonces existe $x\in X_2$ tal que $f(x)=y$. Luego, como $X_2\subseteq X_1\cup X_2$, tenemos que $x\in X_1\cup X_2$. Por lo tanto, existe $x\in X_1\cup X_2$ tal que $f(x)=y$, esto es $y\in f[X_1\cup X_2]$.

Por lo tanto, $f[X_1]\cup f[X_2]\subseteq f[X_1\cup X_2]$.

De las contenciones que demostramos tenemos que $f[X_1]\cup f[X_2]=f[X_1\cup X_2]$.

3) Ahora veamos que $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$.

Sea $y\in f[X_1\cap X_2]$, entonces existe $x\in X_1\cap X_2$ tal que $f(x)= y$. Entonces $x\in X_1$, y $x\in X_2$ y cumple $f(x)=y$.

De donde $y\in f[X_1]$ y $y\in f[X_2]$. Por lo tanto, $y\in f[X_1]\cap f[X_2]$.

Así, $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$.

4) A continuación mostraremos que $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$.

Sea $y\in f[X_1]\setminus f[X_2]$, entonces $y\in f[X_1]$ y $y\notin f[X_2]$.

Dado que $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Luego, como $y\notin f[X_2]$ entonces para cualquier $a\in X_2$, $f(a)\not=y$. Resulta que $x\notin X_2$ pues de lo contrario $f(x)\not=y$ lo cual no puede ocurrir.

Por lo tanto, $x\in X_1\setminus X_2$ y cumple $f(x)=y$, esto es, $y\in f[X_1\setminus X_2]$.

5) Supongamos que $Y_1\subseteq Y_2$ y veamos que $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$.
Sea $x\in f^{-1}[Y_1]$, entonces existe $y\in Y_1$ tal que $f(x)=y$. Dado que $Y_1\subseteq Y_2$, entonces $y\in Y_2$ y se cumple $f(x)=y$, esto es $x\in f^{-1}[Y_2]$.
Por lo tanto, $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$.

6) Finalmente veamos que $f^{-1}[Y_1\cup Y_2]=f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

Sea $x\in f^{-1}[Y_1\cup Y_2]$, entonces existe $y\in Y_1\cup Y_2$ tal que $f(x)=y$. Luego, como $y\in Y_1\cup Y_2$ se tiene que $y\in Y_1$ o $y\in Y_2$.

Si $y\in Y_1$, tenemos que $x\in f^{-1}[Y_1]$. Por lo tanto $x\in f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

Si $y\in Y_2$, tenemos que $x\in f^{-1}[Y_2]$. Por lo tanto $x\in f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

$\square$

¿Será cierto que $f[X_1\cap X_2]=f[X_1]\cap f[X_2]$?

Ya vimos que $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$, por lo que, al igual que con la unión, podríamos pensar que se cumple la igualdad entre los conjuntos. Sin embargo, vamos a ver que en ocasiones $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

Ejemplo.

Sean $X=\set{0,1,2}$ y $Y=\set{1,2,3}$ conjuntos y sea $f:X\to Y$ una función dada por el conjunto $f(x)=2$. Sean $X_1=\set{0,1}$ y $X_2=\set{2}$ subconjuntos de $X$.

Por un lado tenemos que $X_1\cap X_2=\set{0,1}\cap \set{2}=\emptyset$, por lo que $f[X_1\cap X_2]=f[\emptyset]= \emptyset$.

Por otro lado, $f[X_1]=f[\set{0,1}]=\set{2}$ y $f[X_2]=f[\set{2}]=\set{2}$. Así, $f[X_1]\cap f[X_2]=\set{2}$.

Por lo tanto, $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

$\square$

¿Será cierto que $f[X_1\setminus X_2]=f[X_1]\setminus f[X_2]$?

Ya vimos que $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$, pero veremos que la contención de regreso no siempre es posible, es decir, $f[X_1\setminus X_2] \not\subseteq f[X_1]\setminus f[X_2]$. Un ejemplo de esto se muestra a continuación.

Ejemplo.

Sean $X=\set{0,1,2}$ y $Y=\set{1,2,3}$ conjuntos y sea $f:X\to Y$ una función dada por $f(x)=2$ Sean $X_1=\set{0,1}$ y $X_2=\set{1,2}$ subconjuntos de $X$.

Por un lado tenemos que $X_1\setminus X_2=\set{0,1}\setminus \set{1,2}=\set{0}$, por lo que $f[X_1\setminus X_2]=f[\set{0}]= \set{2}$.

Por otro lado, $f[X_1]=f[\set{0,1}]=\set{2}$ y $f[X_2]=f[\set{1,2}]=\set{2}$. Así, $f[X_1]\setminus f[X_2]=\emptyset$.

Por lo tanto, $f[X_1\setminus X_2]\not\subseteq f[X_1]\setminus f[X_2]$.

$\square$

Restricción de una función

Si ya tenemos una función que va de un conjunto $X$ a un conjunto $Y$, podemos «limitar» a la función a un subconjunto de $X$ mediante la siguiente definición.

Definición. Sea $f:X\to Y$ una función y sea $A\subseteq X$. Decimos que la restricción de $f$ en $A$ es la función $f\upharpoonright_{A} :A\to Y$ dada por $f\upharpoonright_{A} (x)= f(x)$ para todo $x\in A$.

Aunque las funciones $f$ y $f\upharpoonright$ tengan la misma regla de correspondencia, típicamente son funciones distintas pues casi siempre tienen dominios distintos (a menos que $X=A$).

Ejemplo.

Sean $X=\set{1,2,3,4}$ y $Y=\set{1,2,3,4,5}$. Sea $f:X\to Y$ la función dada por $\set{(1,1), (2,2), (3,3), (4,1)}$. Si restringimos $f$ al subconjunto ${1,2,3}$ obtenemos la función identidad en este subconjunto. En efecto, $f\upharpoonright_A=\set{(1,1), (2,2), (3,3)}$.

$\square$

Composición de funciones

Recuerda que podemos pensar a una función $f:X\to Y$ como una «regla de correspondencia» que manda a cada elemento de $X$ a uno y sólo un elemento de $Y$. Si tenemos otra función $g:Y\to Z$ entonces también $g$ da una «regla de correspondencia», pero para mandar elementos de $Y$ a $Z$. Entonces, suena a que podríamos combinar a $f$ con $g$ de alguna manera para enviar elementos de $X$ a $Z$. Esto lo hará la composición de funciones. Reescribamos la definición que teníamos de relaciones, pero ahora para funciones.

Definición. Sean $f:X\to Y$ y $g:Y\to Z$. Definimos a la composición de $f$ con $g$ como el siguiente conjunto:

$g\circ f=\set{(x,z): \exists y\in Y \text{ tal que } f(x)=y \text{ y } g(y)=z}$.

Observa que estamos pidiendo que si estas dos igualdades pasan, entonces $g\circ f$ tiene a la pareja $(x,z)$. Como enuncia el siguiente teorema, esto impicará que $g\circ f$ es función, y que su regla de correspondencia será $(g\circ f)(x)=g(f(x))$.

Proposición. Si $f:X\to Y$ y $g:Y\to Z$ son funciones, entonces $g\circ f:X\to Z$ es función. Además, cumplirá que $(g\circ f)(x)=g(f(x))$ para toda $x\in X$.

Demostración.

En la sección de composición de relaciones vimos que si $f$ y $g$ son relaciones, entonces $g\circ f$ es relación, por lo que resta ver que $g\circ f$ es funcional y total.

Para ver que es funcional, supongamos que hay parejas $(x,z)$ y $(x,z’)$ en $g\circ f$. Por definición, esto implica que existen $y$ y $y’$ en $Y$ tales que $(x,y),(x,y’)\in f$ y $(y,z), (y’,z’) \in g$. Como $f$ es funcional, se tiene $y=y’$. Así, $(y,z), (y,z’)\in g$. Como $g$ es funcional, se tiene $z=z’$.

Para ver que es total, como $f$ es total, existe $y\in Y$ con $(x,y)\in f$. Como $g$ es total, existe $z$ con $(y,z)\in g$. Así, por definición de composisión tenemos $(x,z)\in g\circ f$ y por lo tanto $g\circ f$ es total.

El párrafo anterior justo nos dice que si $f(x)=y$ y $g(y)=z$, entonces $$(g\circ f)(x)=z=g(y)=f(g(x)).$$

$\square$

Ejemplo.

Sean $f:\set{1,2}\to \set{2,4}$ y $g:\set{2,4}\to \set{3,5}$ las funciones dadas por $f(x)= 2x$ y $g(x)=x+1$ respectivamente (con tu entendimiento actual de $2x$ y $x+1$, posteriormente formalizaremos estas operaciones). Entonces $g\circ f:\set{1,2}\to \set{3,5}$ está dada por:

$(g\circ f)(x)=g(f(x))=g(2x)=2x+1$.

Por lo que,

  • $(g\circ f)(1)=2(1)+1=2+1=3$,
  • $(g\circ f)(2)= 2(2)+1=4+1=5$.

De modo que los elementos de $g\circ f$ son $(1,3)$ y $(2,5)$.

$\square$

Tarea moral

  1. Demuestra que si $X$ y $Y$ son conjuntos, $X_1\subseteq X$, $Y_1, Y_2\subseteq Y$ y $f:X\to Y$ una función, entonces se cumplen las siguientes propiedades:
    • $f^{-1}[Y_1\cap Y_2]=f^{-1}[Y_1]\cap f^{-1}[Y_2]$,
    • $f^{-1}[Y_1\setminus Y_2]=f^{-1}[Y_1]\setminus f{-1}[Y_2]$,
    • $X_1\subseteq f^{-1}[f[X_1]]$,
    • $f[f^{-1}[B_1]]\subseteq B_1$.
  1. Demuestra que la composición de funciones es asociativa.
  2. ¿Será cierto que si $R$ es una función, entonces la relación inversa $R^{-1}$ también es función?
  3. ¿Será cierto que si $R$ de $A$ en $B$ y $S$ de $B$ en $C$ son relaciones tal que ninguna de ellas es función, entonces $S\circ R$ nunca es función?

Más adelante…

La siguiente sección estará dedicada a funciones inyectivas. Este tipo de funciones empezarán a estudiar cómo se comportan los elementos del codominio de una función. Específicamente, las funciones inyectivas serán aquellas para las que cada elemento del codominio viene de a lo más un elemento del dominio. Este tema será de gran importancia pues en muchas ocasiones tendremos que verificar si se satisface esta propiedad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Funciones

Por Gabriela Hernández Aguilar

Introducción

Esta entrada estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema es de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora. Por ello, dedicaremos una serie de entradas para tratarlas. En esta primera parte abordaremos la definición de función, algunas de sus propiedades y ejemplos.

¿Qué es una función?

La motivación de la definición de función es la siguiente. Tomemos conjuntos $A$ y $B$. Queremos poder asignar a cualquier elemento de $A$ uno y sólo un elemento de $B$, de manera que inequívocamente para cada $a\in A$ podamos hablar de él elemento que se le asignó en $B$. Las relaciones ayudan a emparejar elementos de $A$ y $B$, pero podemos tener dos problemas 1) Que no todo elemento de $A$ esté en alguna pareja de la relación o 2) Que algún elemento de $A$ quede emparejado con más de un elemento de $B$. Las siguientes definiciones nos permiten evitar estos problemas.

Definición. Sean $A$ y $B$ conjuntos y $f$ una relación de $A$ en $B$.

  • Diremos que $f$ es total si para cada $a\in A$ existe por lo menos un $b\in B$ tal que $(a,b)\in R$.
  • Diremos que $f$ es funcional si para cada $a\in A$ existe a lo más un $b\in B$ tal que $(a,b)\in R$.
  • Diremos que $f$ es una función de $A$ en $B$ si $f$ es total y funcional.

Otra manera de decir que $f$ es total es que su dominio activo sea igual a su dominio. Así mismo, notemos que $f$ es funcional si y sólo si para todo $a\in A$ y $b,c\in B$, se tiene que $(a,b)\in f$ y $(a,c)\in f$ implican que $b=c$.

La definición de función nos dice que dados dos conjuntos y una relación $f$ de $A$ en $B$, podremos decir que la relación es función si y sólo si a cada uno de los elementos $a\in A$ le corresponde (bajo la relación) a uno y sólo un elemento $b\in B$. A este elemento $b$ lo denotamos por $f(a)$

El siguiente diagrama muestra cómo podría verse una función.

Los siguientes ejemplos ayudarán a entender mejor cada uno de los conceptos anteriores.

Ejemplo.

Sea $A=\set{1,2}$ y $B=\set{1,2,3}$. Sea $r$ la relación de $A$ en $B$ dada por $r=\set{(1,1), (1,2), (2,1)}$.

Resulta que $r$ no es función pues $(1,1)\in r$ y $(1,2)\in r$, sin embargo no es cierto que $1=2$. Aquí el problema es entonces que la relación no es funcional. Puedes verificar por tu cuenta que $f$ sí es total.

Sea $g$ la relación de $A$ en $B$ dada por $g=\set{(1,2)}$.

Resulta que $g$ no es función pues no tiene parejas de la forma $(2,b)$ con $b\in B$. Aquí el problema es entonces que la relación no es total. Puedes verificar por tu cuenta que $g$ sí es funcional.

Finalmente, sea $h$ la relación de $A$ en $B$ dada por $h=\{(1,3),(2,3)\}$. Aquí la relación sí es total, pues para $1\in A$ existe $3\in B$ con $(1,3)\in h$ y para $2\in A$ existe $3\in B$ con $(2,3)\in h$. La relación también es funcional, pues para $1\in A$ el único $b\in B$ con $(1,3)\in h$ es $b=3$ y para $2\in A$ el único $b\in B$ con $(2,b)\in h$ es $b=3$. Podemos decir entonces que $h(1)=3$ y que $h(2)=3$.

$\square$

Veamos otro ejemplo de una relación que sí es función.

Ejemplo.

Sea $A=\set{1,2,3}$ y $B=\set{1,2}$. Sea $f$ la relación de $A$ en $B$ dada por $f=\set{(1,1), (2,1), (3,1)}$.

En este ejemplo tenemos que $f$ es función pues cada elemento de $A$ está relacionado con uno y sólo uno de $B$.

$\square$

Después de revisar estos ejemplos es importante mencionar que aunque no toda relación es función, siempre ocurrirá que una función es una relación.

Algunas funciones importantes

Ahora discutiremos algunos ejemplos importantes de funciones.

  1. Función vacía
    Observa que si $X=\emptyset$ y $Y$ un conjunto cualquiera, entonces el conjunto vacío es una función de $X$ en $Y$. En la sección de relaciones vimos que el conjunto vacío en efecto es una relación. Además, como $X$ es vacío se cumple por vacuidad que esta relación es total y funcional. Por lo tanto, la relación vacía es función.
  2. Función constante
    Sean $X$, $Y$ conjuntos y $c\in Y$. Definimos la función constante $f_c$ de $X$ en $Y$ como $f_c= X\times \set{c}$. Nuestra función se verá de la siguiente forma:
  1. Función identidad
    Sea $X$ un conjunto. La relación identidad en $X$ es función. Recordemos que la relación identidad $Id_X$ esta definida como sigue:

$Id_X=\set{(x,y)\in X\times X: x=y}$

Por esta definición, para cada $x\in X$ el único elemento relacionado con $x$ es $x$ mismo. Así concluimos que $Id_X$ es función.

  1. Función característica
    Sean $A$ y $X$ conjuntos tales que $A\subseteq X$. Definimos a la función característica $\chi_A$ de $A$ en $\set{0,1}$

$\chi_A=\set{(x,1):x\in A}\cup \set{(x,0):x\in X\setminus A}$.

Recuerda que $0=\emptyset$ y $1=\{\emptyset\}$. Debemos tener un poco de cuidado con las definiciones por casos, pues si una $x$ cae en dos casos cuyas evaluaciones son distintas, podría pasarnos que perdamos la funcionalidad. La función característica sí es función pues para cualquier $x\in X$ pasa uno y sólo uno de los casos $x\in A$ y $x\not \in A$.

  1. Función inclusión. Sea $X$ un conjunto cualquiera y $A\subseteq X$. Definimos a la función inclusión como el siguiente conjunto:

$\iota_A= \set{(x,x):x\in A}$.

Debido a que las funciones serán recurrentes en las entradas subsecuentes es adecuado adoptar alguna notación para estos conceptos. Dada una relación $f$ de $A$ en $B$ utilizaremos la notación $f:A\to B$ para indicar que $f$ es una función. Ahora bien, si $f:A\to B$ y $x\in A$ y $y\in B$, escribiremos $f(x)=y$ si $(x,y)\in f$.

Dominio activo, imagen e imagen de un subconjunto

Ahora que conocemos el concepto de función y que hemos adoptado las notaciones anteriores para funciones, podemos describir el dominio y la imagen de una función, recordando las definiciones de dominio e imagen que ya conocemos, de la siguiente manera:

Definición. Si $f:A\to B$, definimos el dominio activo de $f$ como:

$\text{DomAct}(f)=\set{x\in A:\exists y\in B\ tal\ que\ f(x)=y}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{1,2,3,4}$. Sea $f:A\to B$ la función dada por el conjunto $f=\set{(1,1), (2,2), (3,3), (4,4)}$.

Tenemos que,

$\text{DomAct}(f)=\set{x\in \set{1,2,3,4}:\exists y\in \set{1,2,3,4}\ tal\ que\ f(x)=y}=\set{1,2,3,4}$.

$\square$

Así como en el ejemplo anterior, el dominio activo de una función siempre coincide con el dominio, pues recordemos que por definición una función es total. Es por esta razón que para funciones prácticamente nunca usamos el término dominio activo y decimos simplemente dominio de $f$.

Definición. Si $f:A\to B$, definimos la imagen de $f$ como:

$\text{Im}(f)=\set{y\in B:\exists x\in A\ tal\ que\ f(x)=y}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{1,2,3}$. Sea $f:A\to B$ la función dada por $f(x)=1$ para todo $x\in A$.

Tenemos que,

$\text{Im}(f)=\set{y\in B: \exists x\ tal\ que\ f(x)=y}=\set{1}$.

$\square$

Observa que en este caso la imagen y el codominio de la función $f$ no coinciden. En general, para una función no es cierto que la imagen y el codominio coincidan. Las funciones para las cuales ocurre esto son especiales y las definiremos y estudiaremos posteriormente.

Definición. Si $f:A\to B$ y $C\subseteq A$, definimos la imagen de $C$ bajo $f$ como el conjunto:

$f[C]=\set{y\in B: \exists x\in C\ tal\ que\ f(x)=y}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{2,4,6,8}$. Sea $f:A\to B$ la función dada por $f(x)=2x$ para todo $x\in A$. Sea $C=\set{2,4}\subseteq A$.

Tenemos que,

$f[C]=\set{y\in B: \exists x\in C\ tal\ que\ f(x)=y}=\set{4,8}$.

$\square$

En este ejemplo estamos siendo un poco informales, pues estrictamente hablando, todavía no hemos definido quién es ni $6$, ni $8$, ni qué quiere decir la expresión $2x$. Pero probablemente a partir de las definiciones de $0,1,2,3,4$ que dimos en la entrada del axioma del par y de la unión puedas imaginarte quiénes serán $6$ y $8$. La expresión $2x$ puedes pensarla de momento que quiere decir que la función tiene a las parejas $(1,2),(2,4),(3,6),(4,8)$. Esto mismo te ayudará a formalizar el ejemplo después de la siguiente definición.

Definición. Sea $f:A\to B$ y $D\subseteq B$, definimos la imagen inversa de $D$ bajo $f$ como el conjunto:

$f^{-1}[D]=\set{x\in A: \exists y\in D\ tal\ que\ f(x)=y}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{2,4,6,8}$. Sea $f:A\to B$ la función dada por $f(x)=2x$ para todo $x\in A$. Sea $D=\set{2,4}\subseteq B$.

Tenemos que,

$f^{-1}[D]=\set{x\in A: \exists y\in D\ tal\ que\ f(x)=y}=\set{1,2}$.

$\square$

Tarea moral

Los siguientes ejercicios te ayudarán a reforzar los conceptos de función, dominio e imagen.

  • Así como anteriormente definimos $0,1,2,3,4$, define también $5,6,7,8,9$.
  • Sea $f$ una función de $\set{1,2}$ en $\set{2.4,5}$ dada por $f=\set{(1,2), (2,4)}$. Describe al dominio y la imagen de $f$.
  • Sean $A=\set{1,2,3,4,5,6,7,8}$ y $B=\set{1,2,3,4,5,6,7}$ conjuntos. Responde si las siguientes relaciones son o no funciones de $A$ en $B$:
    1. $f_1=\set{(1,1), (1,2), (2,1), (3,4)}$,
    2. $f_2=\set{(1,1), (2,2), (3,3), (4,4) (5,5)}$,
    3. $f_3=\set{(1,1), (2,1), (3,1), (4,1), (5,1),(6,2),(7,3),(8,3)}$.

Más adelante…

La siguiente entrada estará dedicada a hablar acerca de algunas de las propiedades que tiene la imagen de un conjunto bajo una función respecto a la unión, la intersección y la diferencia. Además, hablaremos acerca de la composición de funciones, por lo que retomaremos el concepto de composición de relaciones.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Clases de equivalencia y particiones

Por Gabriela Hernández Aguilar

Introducción

En la entrada anterior definimos a las relaciones de equivalencia, con lo cual ahora tenemos las bases para definir otros conceptos. Esta entrada estará dedicada a dos nociones nuevas a las que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán agrupar a los elementos de un conjunto.

Clases de equivalencia

En la entrada anterior hemos usado la notación de pares para referirnos a los elementos de una relación. En esta entrada será más conveniente cambiar a la notación en la que ponemos a la relación entre dos elementos. Como recordatorio, esto quiere decir que para un conjunto $A$ y una relación $R$ en $A$, en vez de escribir $(a,b)\in R$, simplemente escribiremos $aRb$. Una versión abreviada de las propiedades de relación de equivalencia en esta notación es la siguiente:

  1. Para todo $a\in A$ se tiene $aRa$.
  2. Para $a,b\in X$ si $aRb$, entonces $bRa$.
  3. Para $a,b,c\in A$ si $aRb$ y $bRc$, entonces $aRc$.

La primera noción nueva que estudiaremos es la siguiente.

Definición. Sea $R$ una relación de equivalencia en $A$. Dado $a\in A$, definimos la clase de equivalencia de $a$ con respecto a $R$, como:

$[a]_R=\set{x\in A: aRx}$.

Observación. Si $A$ es un conjunto no vacío, entonces, para cada $a\in A$ se tiene $[a]_R\not=\emptyset$ pues $aRa$ (por reflexividad de $R$).

Ejemplo.

Consideremos al conjunto $A=\set{a,b,c}$ y $R$ la relación de equivalencia en $A$ dada por $R=\set{(a,a), (b,b),(c,c), (a,b), (b,a)}$. Veamos cuáles son las clases de equivalencia de cada uno de los elementos de $A$.

Tenemos que:

\begin{align*}
[a]_R&= \set{x\in A: aRx}\\
&= \set{x\in \set{a,b,c}: aRx}\\
&=\set{a,b}.
\end{align*}

\begin{align*}
[b]_R&= \set{x\in A: bRx}\\
&= \set{x\in \set{a,b,c}: bRx}\\
&=\set{a,b}.
\end{align*}

\begin{align*}
[c]_R&= \set{x\in A: cRx}\\
&= \set{x\in \set{a,b,c}: cRx}\\
&=\set{c}.
\end{align*}

$\square$

Conjuntos completos de representantes

Del ejemplo anterior podemos notar que es posible que dos clases de equivalencia sean iguales. En ese ejemplo, tenemos que $[a]_{R}=[b]_{R}$, por lo que podemos considerar únicamente a un representante para estás clases, es decir, las clases distintas de $R$ estarán dadas por $[a]_R$ y $[c]_R$, pues $[a]_R$ representa tanto a $[a]_R$ como a $[b]_R$. Para formalizar estas ideas, podemos introducir la siguiente definición.

Definición. Sea $R$ una relación de equivalencia en $A$. Decimos que $S\subseteq A$ es un conjunto completo de representantes con respecto a $R$, si se satisfacen las siguientes condiciones:

  1. Para cualesquiera $a,b\in S$, se tiene que $[a]_R\cap [b]_R=\emptyset$ si $a\not=b$,
  2. $\bigcup_{a\in S}[a]_R=A$.

Ejemplo.

Sea $X=\set{1,2}$. Consideremos las relaciones $R_1=\set{(1,1),(2,2)}$ y $R_2=\set{(1,1),(2,2),(1,2),(2,1)}$ en $X$. Las relaciones $R_1$ y $R_2$ son relaciones de equivalencia en $X$. Luego, un conjunto completo de representantes con respecto a $R_1$ es $S_1=\set{1,2}$ y un conjunto completo de representantes con respecto a $R_2$ es $S_2=\set{1}$.

Ejemplo.

Sea $X$ un conjunto no vacío y consideremos la relación $R=\set{(x,x):x\in X}$. Ciertamente $R$ es una relación de equivalencia en $X$, y un conjunto completo de representantes respecto a $R$ es $S=X$.

¿Será que para cualquier relación de equivalencia podremos encontar un conjunto completo de representantes? La respuesta es que sí, pero todavía no podemos demostrarlo. Se logrará hasta que introduzcamos el axioma de elección. Para seguir desarrollando tu intuición de por qué, piensa en qué sucedería si el conjunto $A$ en donde está la relación de equivalencia $R$ es infinito, y se tiene que todas las clases de equivalencia tienen dos elementos (digamos). Nuevamente, tenemos que elegir una infinidad de veces uno de los dos elementos. Para hacer estas elecciones infinitas es que se necesita el axioma de elección.

Teorema. Sea $R$ una relación de equivalencia en $A$ y sean $a,b\in A$. Las siguientes propiedades son equivalentes:

  1. $aRb$,
  2. $[a]_R=[b]_R$,
  3. $[a]_R\cap[b]_R\not=\emptyset$.

Demostración.

$1)\rightarrow 2)$ Supongamos que $aRb$. Veamos que $[a]_R=[b]_R$.

$\subseteq]$ Sea $x\in [a]_R$, entonces $aRx$. Luego, como $aRb$ y $R$ es una relación simétrica entonces $bRa$. Así, $bRa$ y $aRx$ y por la transitividad de $R$ se tiene que $bRx$ y así, $x\in [b]_R$.

Por lo tanto, $[a]_R\subseteq [b]_R$.

$\supseteq]$ Sea $x\in [b]_R$, entonces $bRx$. Luego, como $aRb$ y $bRx$ se tiene por transitividad de $R$ que $aRx$ y así, $x\in [a]_R$.

Por lo tanto, $[b]_R\subseteq [a]_R$. Concluimos entonces que si $aRb$ entonces $[a]_R=[b]_R$.

$2)\rightarrow 3)$ Supongamos que $[a]_R=[b]_R$ entonces $[a]_R\cap[b]_R=[a]_R\not=\emptyset$ pues por la observación, $a\in [a]_R$.

$3)\rightarrow 1)$ Supongamos que $[a]_R\cap[b]_R\not=\emptyset$. Veamos que $aRb$.

Dado que $[a]_R\cap [b]_R\not=\emptyset$, existe $x\in [a]_R\cap[b]_R$, es decir existe $x$ tal que $x\in[a]_R$ y $x\in [b]_R$. Entonces $aRx$ y $bRx$. Por lo tanto, $aRx$ y $xRb$ por la propiedad simétrica. Luego, $aRb$ por transitividad.

Por lo tanto, si $[a]_R\cap[b]_R\not=\emptyset$ entonces $aRb$.

Por lo tanto, $1)$, $2)$ y $3)$ son enunciados equivalentes.

$\square$

Particiones

A continuación definiremos qué es una partición de un conjunto. A grandes rasgos, se refiere a «fragmentar» un conjunto. Este concepto estará muy relacionado con el de las clases de equivancia de un conjunto completo de representantes.

Definición. Sean $A$ un conjunto no vacío y $P\subseteq \mathcal{P}(A)$. Decimos que $P$ es una partición de $A$ si cumple las siguientes condiciones:

  1. $B\not=\emptyset$ para todo $B\in P$,
  2. $B\cap C=\emptyset$ para cualesquiera $B,C\in P$ si $B\not=C$,
  3. $\bigcup P=A$.

Ejemplo.

Sea $X=\set{1,2,3,4}$. Consideremos a la siguiente colección de subconjuntos de $X$, $P=\set{\set{x}:x\in X}$.

Veamos que $P$ es una partición de $X$:

  1. Dado que para todo $x\in X$ se cumple que $x\in \set{x}$ tenemos que $\set{x}\not=\emptyset$.
  2. Ahora, como $P=\set{\set{x}:x\in X}=\set{\set{1},\set{2}, \set{3}, \set{4}}$ se cumple que para cualquier $x,y\in X$ tales que $\set{x}\not=\set{y}$, $\set{x}\cap\set{y}=\emptyset$.
  3. Tenemos que:

$\bigcup P=\set{1}\cup\set{2}\cup\set{3}\cup\set{4}=\set{1,2,3,4}=X$.

$\square$

A continuación se muestra el primero de varios resultados que vinculan a las relaciones de equivalencia con las particiones.

Teorema. Sea $R$ una relación de equivalencia en $A$ un conjunto no vacío. Si $S$ es un conjunto completo de representantes respecto a la relación $R$, entonces $\set{[a]_R: a\in S}$ es una partición de $A$.

Demostración.

Veamos que $\set{[a]_R:a\in S}$ es una partición de $A$. En efecto,

  1. Sea $a\in S\subseteq A$, entonces $aRa$ por reflexividad de $R$ y por lo tanto $a\in [a]_R$. De este modo, para cualquier $a\in S$ se cumple que $[a]_R\not=\emptyset$.
  2. Ahora, sean $a,b\in S$ tales que $a\not=b$. Por definición de conjunto completo de representantes se sigue que $[a]_R\cap [b]_R=\emptyset$.
  3. Finalmente, tenemos por definición que $\bigcup_{a\in S}[a]_R=A$.

Por lo tanto, $\set{[a]_R:a\in S}$ es una partición de $A$.

$\square$

Tarea moral

  1. Sea $A=\set{1,2,3,4}$. Da una partición del conjunto $A$ y verifica que en efecto es una partición.
  2. Sea $A=\set{1,2,3,4,5}$ y sea $R$ una relación de equivalencia en $A$ dada por $R=\set{(1,1), (2,2), (3,3), (4,4), (5,5)}$. Escribe las clases de equivalencia de $A$ con respecto a $R$.
  3. Sea $A=\set{1,2,3}$ y sea $R$ una relación de equivalencia en $A$ dada por $R=\set{(1,1), (2,2), (3,3), (1,2), (2,1)}$. Encuentra a un conjunto completo de representantes.
  4. Sean $R$ y $S$ relaciones de equivalencia en $X$. Demuestra que para cada $x\in X$ se tiene que $[x]_{R\cap S}=[x]_R\cap [x]_S$.

Más adelante…

En la siguiente entrada estableceremos otas conexiones de relaciones de equivalencia con particiones. Lo haremos a través de definir a una nueva noción llamada conjunto cociente.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Relaciones de equivalencia

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca de un tipo de relaciones especiales a las que llamaremos relaciones de equivalencia. Veremos algunos ejemplos de relaciones que son de equivalencia, y algunos ejemplos de otras que no lo son.

Relaciones de equivalencia

Definición. Sea $R$ una relación en $A$. Decimos que $R$ es una relación de equivalencia si se satisfacen las siguientes condiciones:

  1. Para cualquier $a\in A$, se tiene que $(a,a)\in R$ (reflexividad),
  2. Para cualesquiera $a,b\in A$, se tiene que si $(a,b)\in R$, entonces $(b,a)\in R$ (simetría),
  3. Para cualesquiera $a,b,c\in A$, se tiene que si $(a,b)\in R$ y $(b,c)\in R$, entonces $(a,c)\in R$ (transitividad).

Algunos ejemplos

Ejemplo.

Sea $A=\set{a,b}$. La relación $R=\set{(a,a), (b,b), (a,b), (b,a)}$ es relación de equivalencia. En efecto, podemos verificar que $R$ es una relación en $A$ y se verifican las propiedades. En este caso es sencillo demostrarlo. Las propiedades que piden la reflexividad, simetría y transitividad son que alguna pareja esté en $R$. Pero $R$ es todo el producto cartesiano $A\times A$, así que cualquier pareja estará.

$\square$

Ejemplo.

Sea $A=\set{1,2,3}$. La relación $R=\set{(1,1),(2,2),(3,3),(1,3),(3,1)}$ es relación de equivalencia. Veamos que cumple cada una de las propiedades.

  1. Reflexividad.
    Los elementos de $A$ son $1,2,3$ y en efecto $(1,1),(2,2),(3,3)$ son elementos de $R$.
  2. Simetría.
    Verifiquemos que se cumple para cada uno de los pares en $R$.
    – $(1,1)\in R$ y en efecto $(1,1)\in R$.
    – $(2,2)\in R$ y en efecto $(2,2)\in R$.
    – $(3,3)\in R$ y en efecto $(3,3)\in R$.
    – $(1,3)\in R$ y en efecto $(3,1)\in R$.
    – $(3,1)\in R$ y en efecto $(1,3)\in R$.
  3. Transitividad.
    Aquí tenemos muchas posibilidades por verificar. Estrictamente hablando, hay que verificar todas las siguientes posibilidades.
    -$(1,1)\in R$ y $(1,1)\in R$ y, en efecto, $(1,1)\in R$.
    -$(1,1)\in R$ y $(1,3)\in R$ y, en efecto, $(1,3)\in R$.
    -$(2,2)\in R$ y $(2,2)\in R$ y, en efecto, $(2,2)\in R$.
    -$(3,3)\in R$ y $(3,3)\in R$ y, en efecto, $(3,3)\in R$.
    -$(3,3)\in R$ y $(3,1)\in R$ y, en efecto, $(3,1)\in R$.
    -$(1,3)\in R$ y $(3,3)\in R$ y, en efecto, $(3,3)\in R$.
    -$(1,3)\in R$ y $(3,1)\in R$ y, en efecto, $(1,1)\in R$.
    -$(3,1)\in R$ y $(1,1)\in R$ y, en efecto, $(3,1)\in R$.
    -$(3,1)\in R$ y $(1,3)\in R$ y, en efecto, $(3,3)\in R$.

Así, $R$es relación de equivalencia en $X=\emptyset$.

$\square$

Ejemplo.

Sea $R=\emptyset$ la relación vacía pensada como una relación en $X=\emptyset$. Veamos que $R$ es relación de equivalencia. En efecto, podemos verificar las propiedades:

  1. Reflexividad.
    No existe $x\in X$, así que por vacuidad para todo $x\in X$ se cumple que $(x,x)\in R$.
  2. Simetría.
    Como la $R$ es la relación vacía, no hay $(x,y)\in R$. Así, por vacuidad $(x,y)\in \emptyset$ implica que $(y,x)\in R$.
  3. Transitividad.
    También se cumple por vacuidad, pues no es posible encontrar $(x,y)\in R$ y $(y,z)\in R$.

Por lo tanto, $R$ es relación de equivalencia en $X=\emptyset$.

$\square$

En este último ejemplo fue muy importante que $X=\emptyset$. Una de las propiedades falla si no es el caso. ¿Cuál?

Relaciones casi de equivalencia

La definición de relación de equivalencia nos pide verificar tres propiedades: reflexividad, simetría y transitividad. Uno podría preguntarse si es necesario pedir las tres propiedades o si dos de ellas ya implican la tercera. Los siguientes ejemplos muestran que pedir cada cosa es necesario, pues para cualquier combinación de dos propiedades y la negación de la tercera, podemos encontrar un ejemplo.

Ejemplo. (Simétrica y transitiva pero no reflexiva).

Sea $X$ un conjunto no vacío. La relación vacía en $X$ no es relación de equivalencia. En efecto, podemos verificar que $\emptyset$ es simétrica y transitiva por un argumento por vacuidad (como hicimos arriba), pero $\emptyset$ no es una relación reflexiva, dado que al tomar $x\in X$ arbitrario,se tiene que $(x,x)\not \in \emptyset$.

$\square$

Ejemplo. (Reflexiva y simétrica pero no transitiva).

Sea $X=\set{a,b,c}$ y sea $R=\set{(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a)}$. Tenemos que $R$ no es relación de equivalencia, pues aunque es reflexiva y simétrica no es transitiva. La razón por la cual no es transitiva es que $(c,a)\in R$ y $(a,b)\in R$, pero $(c,b)\notin R$.

$\square$

Ejemplo. (Reflexiva, transitiva pero no simétrica).

Sea $X=\set{a,b,c}$ y sea $R=\set{(a,a), (b,b), (c,c), (a,b)}$. Tenemos que $R$ no es relación de equivalencia, pues aunque es reflexiva y transitiva no es simétrica. Para ver esto último, notamos que $(a,b)\in R$, pero $(b,a)\not\in R$.

$\square$

Algunas propiedades de relaciones de equivalencia

Proposición. Sean $R_1$ y $R_2$ relaciones de equivalencia en $A$. Se tiene que $R_1\cap R_2$ es relación de equivalencia.

Demostración.

Supongamos que $R_1$ y $R_2$ son relaciones de equivalencia en $A$. Veamos que $R_1\cap R_2$ es una relación de equivalencia en $A$, para ello debemos verificar que $R_1\cap R_2$ es reflexiva, simétrica y transitiva.

Afirmación 1. $R_1\cap R_2$ es reflexiva.

Sea $a\in A$, veamos que $(a,a)\in R_1\cap R_2$.
Como $a\in A$ y $R_1$ es relación de equivalencia en $A$, entonces en particular es reflexiva, de modo que $(a,a)\in R_1$.

Luego, como $a\in A$ y $R_2$ es reflexiva por ser relación de equivalencia se cumple que $(a,a)\in R_2$. Por lo tanto, $(a,a)\in R_1$ y $(a,a)\in R_2$, esto es $(a,a)\in R_1\cap R_2$.

Por lo tanto, $R_1\cap R_2$ es reflexiva.

Afirmación 2. $R_1\cap R_2$ es simétrica.

Sea $(a,b)\in R_1\cap R_2$, veamos que $(b,a)\in R_1\cap R_2$.

Como $(a,b)\in R_1\cap R_2$, entonces $(a,b)\in R_1$ y $(a,b)\in R_2$. Luego, $(b,a)\in R_1$ y $(b,a)\in R_2$ por ser $R_1$ y $R_2$ relaciones simétricas respectivamente. Por lo tanto, $(b,a)\in R_1\cap R_2$.

Por lo tanto, $R_1\cap R_2$ es simétrica.

Afirmación 3. $R_1\cap R_2$ es transitiva.

Sean $(a,b), (b,c)\in R_1\cap R_2$, veamos que $(a,c)\in R_1\cap R_2$.

Como $(a,b)\in R_1\cap R_2$, entonces $(a,b)\in R_1$ y $(a,b)\in R_2$. Luego, como $(b,c)\in R_1\cap R_2$ entonces $(b,c)\in R_1$ y $(b,c)\in R_2$.

Así, $(a,b)\in R_1$ y $(b,c)\in R_1$ y por la transitividad de $R_1$ se sigue que $(a,c)\in R_1$.

De forma similar, como $(a,b)\in R_2$ y $(b,c)\in R_2$ se sigue que $(a,c)\in R_2$ por transitividad de $R_2$.

De los argumentos anteriores se tiene que $(a,c)\in R_1\cap R_2$.

Por lo tanto, $R_1\cap R_2$ es transitiva.

De la Afirmación 1, Afirmación 2 y Afirmación 3 concluimos que $R_1\cap R_2$ es relación de equivalencia en $A$.

$\square$

Proposición. Si $R$ es una relación sobre un conjunto $X$ que cumple con las propiedades

  1. $(x,x)\in R$ para todo $x\in X$ y
  2. Si $(x,y)\in R$ y $(y,z)\in R$, entonces $(z,x)\in R$,

entonces $R$ es relación de equivalencia.

Demostración.

Supongamos que $R$ es una relación tal que $(x,x)\in R$ para todo $x\in X$ y si $(x,y)\in R$ y $(y,z)\in R$, entonces $(z,x)\in R$. Veamos que $R$ es relación de equivalencia.

Tenemos que $R$ es reflexiva pues por hipótesis $(x,x)\in R$ para todo $x\in X$. Luego, si $(x,y)\in R$, veamos que $(y,x)\in R$ para probar que $R$ es simétrica. Dado que $(x,y)\in R$ entonces $x,y\in X$ y por reflexividad $(y,y)\in R$. Así, por hipótesis tenemos que $(y,x)\in R$.

Ahora veamos que $R$ es transitiva. Supongamos que $(x,y)\in R$ y $(y,z)\in R$ y mostremos que $(x,z)\in R$. Como $(x,y)\in R$ y $(y,z)\in R$, entonces $(z,x)\in R$ y por simetría de $R$ se tiene que $(x,z)\in R$.

$\square$

Tarea moral

La siguiente lista de ejercicios te será útil para verificar por tu cuenta que ciertas relaciones son de equivalencia:

  1. Demuestra que $Id_A$ es una relación de equivalencia para $A$ un conjunto cualquiera.
  2. En el texto tomamos como ejemplo a $X=\set{a,b,c}$ y $R=\set{(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a)}$ y mencionamos que $R$ era reflexiva y simétrica. Demuéstralo explícitamente.
  3. También tomamos $X=\set{a,b,c}$ y $R=\set{(a,a), (b,b), (c,c), (a,b)}$ y mencionamos que era reflexiva y transitiva. Haz todos los casos para mostrar que esto es cierto.
  4. Construye $R$ una relación tal que $R$ sea reflexiva pero no sea ni simétrica ni transitiva.
  5. Demuestra o da un contraejemplo a las siguientes afirmaciones:
    • Si $R_1$ y $R_2$ son relaciones de equivalencia en $A$, entonces $R_1\cup R_2$ es relación de equivalencia en $A$.
    • Si $R_1$ es relación de equivalencia en $A$, $R_2$ es relación de equivalencia en $B$ y $A\cap B=\emptyset$, entonces $R_1\cup R_2$ es relación de equivalencia en $A\cup B$.
  6. Un clásico argumento falso para demostrar que la reflexividad no es necesaria en la definición de relación de equivalencia es «argumentar» que si tenemos $(x,y)$ en la relación, por simetría tenemos $(y,x)$ y entonces por transitividad al tener $(x,y)$ y $(y,x)$ podemos deducir que tenemos $(x,x)$. ¿Cuál es el problema con este argumento?
  7. Sea $X$ un conjunto y $R$ una relación simétrica y transitiva en $X$, tal que para todo $x\in X$ se tenga que exista un $y$ tal que $(x,y)\in R$. Demuestra que $R$ es relación de equivalencia.

Más adelante…

En la siguiente entrada seguiremos tratando a las relaciones de equivalencia. Esta vez hablaremos acerca de los elementos del conjunto en el cual hay una relación de equivalencia y cómo podemos estudiarlos según estén relacionados con otros elementos. Definiremos una nueva noción llamada clase de equivalencia. En una clase de equivalencia se encontrarán todos aquellos elementos que estén relacionados con un mismo elemento bajo la relación de equivalencia dada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Composición de relaciones

Por Gabriela Hernández Aguilar

Introducción

En esta entrada retomaremos el tema de relaciones que vimos anteriormente. Esta vez definiremos una nueva relación a partir de dos relaciones: la composición. Veremos si la composición de dos relaciones tiene propiedades como la conmutatividad o la asociatividad.

Definamos la composición

Definición. Sean $R_1$ y $R_2$ relaciones de $A$ en $B$ y de $C$ en $D$ respectivamente. Definimos a la composición de $R_1$ con $R_2$ como el siguiente conjunto:

$R_2\circ R_1=\set{(a,c): \exists b\ tal\ que\ (a,b)\in R_1\ y\ (b,c)\in R_2}$.

En otros símbolos, si $a,b,c$ son elementos tales que $aR_1b$ y $bR_2c$, entonces se cumplirá que $a (R_2\circ R_1) c$.

Ejemplo.

Sean $X=\set{0,1}$ y $Y=\set{1,2}$ y $Z=\set{1,2,3,4}$ conjuntos. Sean $R_1$ y $R_2$ relaciones de $X$ en $Y$ y de $Y$ en $Z$ definidas como sigue:

$R_1=\set{(0,1), (0,2)}\ y\ R_2=\set{(1,3), (1,4)}$.

Podemos hacer diagramas de ambas relaciones en una misma figura como sigue:

Luego, la composición de $R_2\circ R_1$ resulta ser el siguiente conjunto:

$R_2\circ R_1=\set{(0, 3), (0,4)}$.

Para leerlo en el diagrama, podemos ver que hay un «camino» de $0$ a $3$ que usa las flechas de $0$ a $1$, y de $1$ a $3$. También hay un «camino» de $0$ a $4$ que usa las flechas de $0$ a $1$, y de $1$ a $4$.

Además de notarlo en el diagrama, podemos verificar mediante la definición. La pareja $(0,3)$ está pues $1\in Y$ tal que $(0,1)\in R_1$ y $(1,3)\in R_2$. Por su parte, la pareja $(0,4)$ está pues existe $1\in Y$ tal que $(0,1)\in R_1$ y $(1,4)\in R_2$.

$\square$

Algunos resultados

A continuación hablaremos de algunos resultados de la composición, la relación inversa y la relación identidad.

Proposición. Si $R$ es una relación en $A$, entonces $R\circ Id_{A}=R$.

Demostración.

Sea $R$ una relación en $A$. Veamos que $R\circ Id_{A}=R$.

$\subseteq$] Sea $(x,z)\in R\circ Id_{A}$, entonces existe $y$ tal que $(x,y)\in Id_{A}$ y $(y,z)\in R$.
Luego, como $(x,y)\in Id_{A}$ se sigue que $x=y$ y así $(y,z)=(x,z)\in R$.

$\supseteq$] Sea $(a,c)\in R$. Como $a,c\in A$, se sigue que $(a,a)\in Id_{A}$. Por lo que existe $a$ tal que $(a,a)\in Id_{A}$ y $(a,c)\in R$. Por lo tanto, $(a,c)\in R\circ Id_{A}$.

Por lo tanto, $R\circ Id_{A}=R$.

$\square$

Proposición. Si $R$ es una relación de $A$ en $B$, entonces $Id_{Im\ R}\subseteq R\circ R^{-1}$.

Demostración.

Sea $y\in Im(R)$. Como $y\in Im\ R$ existe $a\in A$ tal que $(a,y)\in R$, y por definición de relación inversa tenemos que $(y,a)\in R^{-1}$.

Encontramos $a\in A$ tal que $(y,a)\in R^{-1}$ y $(a,y)\in R$, esto es $(y,y)\in R\circ R^{-1}$. Así, $Id_{Im\ R}\subseteq R\circ R^{-1}$.

$\square$

Propiedades de la composición

Hemos dicho hasta ahora que la composición es una operación entre dos conjuntos que son relaciones. Por ello, podemos preguntarnos qué pasa con la conmutatividad y la asociatividad de dicha operación.

En general, no es cierto que $R_1\circ R_2=R_2\circ R_1$, es decir, la composición no es conmutativa.

Ejemplo.

Consideremos $X=\set{1,2}$. Sean $R_1=\set{(1,1), (1,2)}$ y $R_2=\set{(1,2),(2,1)}$ relaciones en $X$.

Por un lado tenemos que

$R_1\circ R_2=\set{(2,1), (2,2)}$

y por otro lado

$R_2\circ R_1=\set{(1,2),(1,1)}$.

De modo que $R_1\circ R_2\not=R_2\circ R_1$.

$\square$

El segundo resultado que tenemos es que la asociatividad siempre se cumple.

Proposición. Si $R_1$, $R_2$ y $R_3$ son relaciones, entonces, $(R_3\circ R_2)\circ R_1=R_3\circ (R_2\circ R_1)$.

Demostración.

Sean $R_1$, $R_2$ y $R_3$ relaciones, tenemos que $(x,z)\in (R_3\circ R_2)\circ R_1$ si y sólo si existe $y$ tal que $(x,y)\in R_1$ y $(y,z)\in R_3\circ R_2$ si y sólo si $(x,y)\in R_1$ y existe $w$ tal que $(y,w)\in R_2$ y $(w,z)\in R_3$ para algún $y$ si y sólo si existe $w$ tal que $(x,w)\in R_2\circ R_1$ y $(w,z)\in R_3$ si y sólo si $(x,z)\in R_3\circ(R_2\circ R_1)$.

Por lo tanto, $(R_3\circ R_2)\circ R_1=R_3\circ (R_2\circ R_1)$.

$\square$

Hemos probado que la composición de relaciones es asociativa y a su vez concluimos que en general no conmuta.

Tarea moral

  1. Demuestra que si $R$ es una relación arbitraria, $R\circ \emptyset=\emptyset=\emptyset\circ R$.
  2. Prueba que si $R$ es una relación en $A$, entonces $R=Id_{A}\circ R$.
  3. Sea $R$ una relación de $A$ en $B$. Demuestra que $Id_{\text{DomAct} R}\subseteq R^{-1}\circ R$.
  4. Sean $A= \set{1,2,3}$, $B=\set{1,2}$ y $C=\set{1,2,3,4}$. Sean $R_1=\set{(1,2), (3,1)}$ y $R_2=\set{(1,4), (2,1), (2,3)}$ relaciones de $A$ en $B$ y de $B$ en $C$ respectivamente. Calcula $R_2\circ R_1$.

Más adelante…

Ya hemos hablado de relaciones en general, y de cómo componerlas. A partir de ahora comenzaremos a pedirle más propiedades a nuestras relaciones para que se conviertan en algunos tipos de relaciones muy especiales: funciones, relaciones de equivalencia, órdenes, etc. Comenzaremos a hacer esto en la siguiente entrada, en donde veremos qué se le debe pedir a una relación para que sea una función. Así, todas las funciones son relaciones, sin embargo, no toda relación será función.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»