Álgebra Lineal I: Propiedades de determinantes

Por Ayax Calderón

Introducción

Para esta entrada enunciaremos y demostraremos algunas de las propiedades más importantes de los determinantes tanto para transformaciones lineales como para matrices. Estas propiedades de determinantes y en general el concepto de determinante tiene numerosas aplicaciones en otras áreas de las matemáticas como el cálculo de volúmenes ndimensionales o el wronskiano en ecuaciones diferenciales, sólo por mencionar algunos, por eso es importante analizar a detalle el determinante de los distintos tipos de matrices y transformaciones lineales que conocemos.

Como recordatorio, veamos qué hemos hecho antes de esta entrada. Primero, transformaciones multilineales. De ellas, nos enfocamos en las que son alternantes y antisimétricas. Definimos el determinante para un conjunto de vectores con respecto a una base, y vimos que, en cierto sentido, son las únicas formas n-lineal alternantes en un espacio vectorial de dimensión n. Gracias a esto, pudimos mostrar que los determinantes para transformaciones lineales están bien definidos, y con ellos motivar la definición de determinante para matrices.

El determinante es homogéneo

La primera de las propiedades de determinantes que enunciaremos tiene que ver con «sacar escalares» del determinante.

Teorema. Sea A una matriz en Mn(F).

  1. Si multiplicamos un renglón o una columna de A por un escalar λ, entonces su determinante se multiplica por λ.
  2. Se tiene que det(λA)=λnA.

Demostración. 1. Sea Aj la matriz obtenida me multiplicar el j-ésimo renglón por λ. Siguiendo la definición de determinante vista en la entrada de ayer (determinantes de matrices) vemos que
detAj=σSnsign(σ)a1σ(1)λajσ(j)anσ(n)=σSnsign(σ)λa1σ(1)anσ(n)=λdetA.

La demostración para la j-ésima columna queda como tarea moral.

2. Sea \lamdaA=[λaij], entonces por definición tenemos

det(λA)=σSnsign(σ)(λa1σ(1))(λanσ(n))=σSnsign(σ)λna1σ(1)anσ(n)=λndetA

De manera alternativa, podemos aplicar el primer inciso n veces, una por cada renglón.

◻

Aquí arriba hicimos la prueba explícita a partir de la definición. Una forma alternativa de proceder es notar que el determinante de una matriz es precisamente el determinante det (de vectores) con respecto a la base canónica de Fn evaluada en los renglones de A. Al multiplicar uno de los renglones por λ, el vector entrada de det se multiplica por λ. El resultado se sigue inmediatamente de que det es una forma n-lineal.

El determinante es multiplicativo

Quizás de entre las propiedades de determinantes, la más importante es que es multiplicativo. Mostraremos esto a continuación.

Teorema. Sea V un espacio vectorial de dimensión finita y transformaciones lineales T1:VV, T2:VV. Se tiene que det(T1T2)=detT1detT2.

Demostración. Sea (v1,,vn) una base cualquiera de V. Del resultado visto en la entrada anterior y la definición de determinante, se sigue que
det(T1T2)=det(v1,,vn)(T1(T2(v1)),,T1(T2(vn)))=detT1det(v1,,vn)(T2(v1),,T2(vn))=detT1detT2.

◻

Observa cómo la demostración es prácticamente inmediata, y no tenemos que hacer ningún cálculo explícito en términos de coordenadas. La demostración de que el determinante es multiplicativo para las matrices también es muy limpia.

Teorema. Sean A y B matrices en Mn(F). Se tiene que det(AB)=detAdetB.

Demostración. Sean V=Fn, T1:VV la transformación lineal definida por xAx y similarmente T2:VV la transformación lineal definida por xBx. Sabemos que A,B,AB son las matrices asociadas a T1,T2,T1T2 con respecto a la base canónica, respectivamente.

Recordemos que para una transformación lineal T en V, detT=detAT, para una matriz que la represente en cualquier base. Entonces

det(AB)=detAT1T2=detT1T2=detT1detT2=detAT1detAT2=detAdetB.

◻

Nota que hubiera sido muy complicado demostrar que el determinante es multiplicativo a partir de su definición en términos de permutaciones.

El determinante detecta matrices invertibles

Otra de las propiedades fundamentales del determinante es que nos ayuda a detectar cuándo una matriz es invertible. Esto nos permite agregar una equivalencia más a la lista de equivalencias de matrices invertibles que ya teníamos.

Teorema. Una matriz A en Mn(F) es invertible si y sólo si detA0.

Demostración. Supongamos que A es invertible, entonces existe BMn(F) tal que AB=In=BA.
Así,

1=detIn=det(AB)=detAdetB.

Como el lado izquierdo es 1, ambos factores del lado derecho son distintos de 0. Por lo tanto detA0. Nota que además esta parte de la prueba nos dice que detA1=(detA)1.

Ahora supongamos que detA0. Sea (e1,,en) la base canónica de Fn y C1,,Cn las columnas de A. Como det(e1,,en) es una forma lineal alternante, sabemos que si C1,,Cn fueran linealmente dependientes, la evaluación daría cero. Ya que la columna Ci es la imagen bajo A de ei, entonces

detA=det(e1,,en)(C1,,Cn)0.

Por lo tanto los vectores C1,,Cn son linealmente independientes y así rank(A)=n. Se sigue que A es una matriz invertible.

◻

Determinante de transformación y matriz transpuesta

Una cosa que no es totalmente evidente a partir de la definición de determinante para matrices es que el determinante no cambia si transponemos una matriz o una transformación lineal. Esta es la última de las propiedades de determinantes que probaremos ahora.

Teorema. Sea A una matriz en Mn(F). Se tiene que det(tA)=detA.

Demostración. Por definición

det(tA)=σSnsign(σ1)aσ1(1)1aσ1(n)n.

Luego, para cualquier permutación σ se tiene

aσ(1)1aσ(n)n=a1σ1(1)anσ1(n)

pues aiσ1(i)=aσ(j)j, donde j=σ1(i).
También vale la pena notar que sign(σ1)=sign(σ)1=sign(σ).

De lo anterior se sigue que

det(tA)=σSnsign(σ1)a1σ1(1)anσ1(n)=σSnsign(σ)a1σ(1)anσ(n)=detA.

◻

Teorema. Sea V un espacio vectorial de dimensión finita T:VV una transformación lineal. Se tiene que det(tT)=detT.

Demostración. Sea A la matriz asociada a T, entonces tA es la matriz asociada a tT. Luego det(tT)=det(tA)=detA=detT.

◻

Veamos un ejemplo de un problema en el que podemos aplicar algunas de las propiedades anteriores.

Problema. Sea AMn(F) una matriz antisimétrica para algún n impar. Demuestra que det(A)=0.

Demostración. Como A=At, entonces detA=det(tA), pero detA=det(tA).
Se sigue que
det(tA)=det(tA)=(1)ndet(tA)=det(tA).

Concluimos det(tA)=0

◻

Más adelante…

En esta entrada enunciamos y demostramos varias propiedades de los determinantes. Ahora, vamos a ponerlas en práctica resolviendo algunos problemas.

En las siguientes entradas, que constituyen la parte final del curso, vamos a hablar de diferentes técnicas para calcular el determinante de una matriz y obtendremos sus eigenvalores y eigenvectores. Vamos a ver cómo esto nos conduce a uno de los teoremas más importantes del curso de Álgebra Lineal I: el teorema espectral.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que al multiplicar una columna de una matriz por λ, entonces su determinante se multiplica por λ.
  • Demuestra que si una matriz tiene dos columnas iguales, entonces su determinante es igual a cero.
  • Analiza cómo es el determinante de una matriz antisimétrica AMn(F) con n par.
  • Formaliza la frase «el determinante detecta transformaciones invertibles» en un enunciado matemático. Demuéstralo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

6 comentarios en “Álgebra Lineal I: Propiedades de determinantes

  1. Daniela Torija

    Hola.
    En la parte donde se demuestra que A es invertible si y sólo si det(A)≠0 se tiene que 1=det(A)det(B) dice que como el lado izquierdo de la igual es 1, entonces ambos factores de lado derecho son distintos de 1. ¿no debería ser distintos de 0?

    Responder
    1. Ayax Calderón Autor

      Hola Sebastian,

      Eso sale por pura definición. Si tienes una transformación lineal S de F^n en F^n, entonces le llamamos A_S a la matriz asociada a S con respecto a la base canónica de F^n.

      Responder
      1. Sebastian

        Cuando hablan del det (T1°T2) = det_{(b_1, …b_n)}( T1(T2(b_1))…T1(T2(b_n))) esa igualdad me queda clara pero cuando escriben det(T1) det_{(b_1, …b_n)} (T2(b_1))…T2(b_n)) no me queda claro

  2. JP Antuna

    Buena tarde.
    Cuando dicen que el determinante es homogéneo, para el segundo punto del teorema se les pasó escribir detA
    det(\lambda A) = \lambda^n detA

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.