Archivo de la etiqueta: Teorema Fundamental del Álgebra

Variable Compleja I: Consecuencias del teorema integral de Cauchy

Por Pedro Rivera Herrera

Introducción

En la entrada anterior establecimos una versión local, para discos, del teorema integral de Cauchy y vimos que una primera consecuencia de este resultado es la fórmula integral de Cauchy, la cual nos permitió establecer la existencia de las derivadas de todos los órdenes de una función analítica en un dominio.

En esta entrada probaremos algunas otras consecuencias de este teorema tan importante en el Análisis Complejo, como el teorema de Liouville, el teorema Fundamental del Álgebra, el teorema de Morera, entre otros.

Proposición 37.1. (Desigualdad de Cauchy.)
Sean DC un dominio, f:DC una función analítica en D, z0D y r>0 tal que C(z0,r)D. Entonces:
|f(n)(z0)|n!Mrrn,nN,donde Mr:=maxzC(z0,r)|f(z)|.

Demostración. Dadas las hipótesis, sea Mr:=maxzC(z0,r)|f(z)|.

Como f es analítica en D, en particular lo es en z0, por lo que de la proposición 36.5 tenemos que las derivadas de todos los ordenes de f en z0 existen en el interior de la circunferencia C(z0,r)D y están dadas por:
f(n)(z0)=n!2πiC(z0,r)f(z)(zz0)n+1dz,por lo que, de la proposición 34.3(5) se sigue que:
|f(n)(z0)|=|n!2πiC(z0,r)f(z)(zz0)n+1dz|=n!2π|C(z0,r)f(z)(zz0)n+1dz|n!2πC(z0,r)|f(z)||zz0|n+1|dz|n!2πMrrn+1C(z0,r)|dz|=n!2π2πrMrrn+1=n!Mrrn.

◼

Teorema 37.1. (Teorema de Liouville.)
Sea f:CC una función entera y acotada. Entonces f es constante.
\begin{proof}
Dadas las hipótesis, tenemos que f es analítica en todo punto del plano complejo. Sea ζC un punto arbitrario. De acuerdo con la desigualdad de Cauchy, para todo nN se cumple que:
|f(n)(ζ)|n!Mrrn,donde Mr=maxzC(ζ,r)|f(z)|.

Como f es acotada, entonces existe una constante M tal que MrM para todo zC. Entonces para n=1 se tiene que:
|f(ζ)|Mr.

Lo anterior se cumple para todo r>0, por lo que tomando el límite cuando r se sigue que:
|f(ζ)|=0f(ζ)=0.

Dado que ζC es arbitrario, para todo zC se cumple que f(z)=0 y como f es entera, entonces, de la proposición 19.2 se sigue que f es constante.

◼

Corolario 37.1.
Toda función no constante y entera no es acotada.

Demostración. Es inmediato del teorema de Liouville.

◼

Ejemplo 37.1.
La función sen(z) es entera y no es constante, por lo que no es acotada.

Corolario 37.2.
Sea f:CC una función entera tal que f(z)=u(x,y)+iv(x,y). Si u(x,y) es acotada para todo z=x+iyC, entonces u(x,y) y v(x,y) son funciones constantes.

Demostración. Dadas las hipótesis, sea |u(x,y)|M para todo z=x+iyC. Definimos a la función:
g(z)=ef(z).

Claramente g es una función entera tal que g(z)0 para todo zC. Por la proposición 20.2(4) tenemos que:
|g(z)|=|ef(z)|=eu(x,y)eM,zC,es decir g es una función acotada y entera, por lo que del teorema de Liouville se sigue que g es una función constante y por tanto f es función constante, por lo que u(x,y) y v(x,y) son constantes.

◼

Ejemplo 37.2.
Sean f,g:CC dos funciones enteras, tales que g(z)0 y |f(z)||g(z)| para todo zC. Veamos que existe una constante cC tal que f(z)=cg(z).

Solución. Definimos a la función:
h(z):=f(z)g(z),como g(z)0 para todo zC, entonces h está bien definida en C y es una función entera por ser el cociente de dos funciones enteras. Por hipótesis tenemos que:
|h(z)|=|f(z)g(z)|=|f(z)||g(z)|1,zC,es decir, h es una función acotada y entera, por lo que del teorema de Liouville se sigue que h(z)=c, para algún cC, entonces f(z)=cg(z).

Teorema 37.2. (Teorema Fundamental del Álgebra.)
Todo polinomio complejo p(z) de grado mayor o igual a 1, tiene al menos una raíz en C, es decir, existe z0C tal que p(z0)=0.

Demostración. Dadas las hipótesis, procedemos por contradicción. Supongamos que:
p(z)=c0+c1z++cn1zn1+cnzn0,para todo zC. Como p es de grado n1, entonces cn0 y |cn|>0.

Consideremos a la función f(z)=1/p(z), la cual está bien definida y es una función entera. Por la desigualdad del triángulo tenemos que:
|f(z)|=|1p(z)|=1|z|n1|c0zn+c1zn1++cn2z2+cn1z+cn|1|z|n1|c0zn|+|c1zn1|++|cn2z2|+|cn1z|+|cn|.

Notemos que:
|ckznk|=|ck||znk|=|ck||z|nk.

Por lo que, si n>k, entonces:
lim|z||ckznk|=lim|z||ck||z|nk=0,de donde:
lim|z|(|c0zn|+|c1zn1|++|cn2z2|+|cn1z|+|cn|)=|cn|>0,es decir:
lim|z||f(z)|=0,entonces, para ε=1 existe RR tal que:
R|z||f(z)|1.

Por otra parte, dado que el disco cerrado B(0,R) es un conjunto compacto y la función real:
|f(z)|=u2(x,y)+v2(x,y),es una función continua de las variables x e y, entonces, proposición 10.9, |f(B(0,R))| es un conjunto compacto, es decir, cerrado y acotado, por lo que existe K>0 tal que:
|f(z)|K,zB(0,R).

Considerando lo anterior, sea M:=max{K,1}, entonces para todo zC se cumple que |f(z)|M, es decir, f es una función acotada, por lo que del teorema de Liouville se sigue que f debe ser constante, entonces p es constante, lo cual es una contradicción, por lo que existe z0C tal que p(z0)=0.

◼

Corolario 37.3.
Un polinomio complejo p(z)=c0+c1z++cn1zn1+cnzn, de grado n1, tiene una factorización:
p(z)=c(zz1)(zz2)(zzn),donde z1,z2,,zn son las raíces de p y cC es una constante.

Demostración. Se deja como ejercicio al lector.

◼

Observación 37.1
Debe ser claro que raíces z1,z2,,zn del polinomio p en el resultado anterior no necesariamente son distintas. En general, los factores de p en el corolario 37.3 pueden agruparse en la forma:
p(z)=c(zz1)n1(zz2)n2(zzk)nk,donde z1,z2,,zk son raíces de p distintas, cC es una constante y n1,n2,,nk son números naturales que indican, respectivamente, la multiplicidad de cada raíz de p.

Ejemplo 37.3.
El polinomio p(z)=iz(z1)2(z+i)5 tiene a z1=0 como una raíz simple, mientras que z2=1 es una raíz doble o de multiplicidad 2 y z3=i es una raíz de multiplicidad 5.

Teorema 37.3. (Teorema de Morera.)
Sean DC una región y f:DC una función continua en D tal que:
γf(z)dz=0,para todo contorno cerrado en D. Entonces f es analítica en D.

Demostración. Dadas las hipótesis, tenemos que para todo contorno cerrado γ en D se cumple que:
γf(z)dz=0,por lo que, proposición 35.2, existe una primitiva de f en D, es decir, existe F:DC analítica tal que F(z)=f(z) para todo zD. Por el corolario 36.3, tenemos que FC(D), en particular, F(2)(z) existe y también es analítica en D, pero F(2)(z)=f(z) para todo zD. Por lo tanto, f es analítica en D.

◼

Corolario 37.4. (Teorema de Morera generalizado.)
Sean DC una dominio y f:DC una función continua en D y analítica en D{z0}, para algún z0D. Entonces f es analítica en D.

Demostración. Se sigue del teorema integral de Cacuhy generalizado (para discos), teorema 36.4 y del teorema de Morera, por lo que los detalles se dejan como ejercicio al lector.

◼

Observación 37.2.
La fórmula integral de Cauchy nos dice cómo el valor f(z0) es representado por alguna integral de contorno. En particular, si elegimos al contorno de integración γ como una circunferencia con centro en z0, entonces podemos ver que el valor de f(z0) es un tipo de promedio de los valores de f(z) en los puntos z que están sobre dicha circunferencia.

Proposición 37.5. (Teorema del valor medio de Gauss.)
Sean DC un dominio, f:DC una función analítica, z0D fijo y r>0 tal que C(z0,r)D, entonces:
(37.1)f(z0)=12π02πf(z0+eit)dt.

Demostración. Dadas las hipótesis, parametrizamos a C(z0,r) como γ:[0,2π], dada por γ(t)=z0+reit. Por la fórmula integral de Cauchy tenemos que:
f(z0)=12πiC(z0,r)f(z)zz0dz=12πi02πf(z0+eit)z0+reitz0ireitdt=12π02πf(z0+reit)dt.

◼

Definición 37.1. (Propiedad del valor medio.)
Sean DC un dominio y f:DC una función analítica en D. Se dice que f tiene la {\bf propiedad del valor medio} si para todo z0D y r>0 tal que B(z0,r)D se cumple que:
f(z0)=12π02πf(z0+eit)dt.

Corolario 37.5.
Si f(z)=u(x,y)+iv(x,y) es una función analítica en un dominio DC, entonces las partes real e imaginaria de f, es decir, las funciones reales u(x,y) y v(x,y) tienen la propiedad del valor medio en D, es decir:
u(z0)=12π02πu(z0+eit)dt,
v(z0)=12π02πv(z0+eit)dt.

Demostración. Es inmediata de la proposición 37.5 al tomar la parte real e imaginaria en ambos lados de la igualdad (37.1).

◼

Lema 37.1.
Sean [a,b]R, con a<b, un intervalo cerrado y g:[a,b]R una función continua en [a,b] tal que g(x)0 para todo x[a,b]. Si:
abg(t)dt=0,entonces g(x)=0 para todo x[a,b].

Demostración. Dadas las hipótesis, definimos a la función:
φ(x)=axg(t)dt,x[a,b].

Por el teorema Fundamental del Cálculo es claro que φ es una función diferenciable con derivada:
φ(x)=g(x),x[a,b].

Más aún, de las propiedades de la integral real se cumple que:
0φ(x)=axg(t)dtabg(t)dt=0,por lo que φ(x)=0 y φ(x)=0 para todo x[a,b], entonces g(x)=0 para todo x[a,b].

◼

Teorema 37.4. (Principio del módulo máximo.)
Sean DC un dominio y f:DC una función analítica en D. Si existe un punto z0D tal que |f(z)||f(z0)| para todo zD, es decir, el módulo |f(z)| alcanza su máximo en z0, entonces f es una función constante en D.

Demostración. Dadas las hipótesis, de acuerdo con la proposición 19.3, basta probar que |f(z)| es constante en D. Consideremos a la función g:DR dada por g(z)=|f(z)|. Procedemos a probar que g es constante en D.

Notemos que, como D es un dominio, en particular es abierto, por lo que para cada zD existe un disco abierto B(z,ρ)D. Si 0<r<ρ, entonces B(z0,r)B(z0,ρ)D. Por lo que, de la proposición 37.5 se cumple que:
f(z)=12π02πf(z+reit)dt,de donde:
g(z)=|f(z)|=|12π02πf(z+reit)dt|12π02π|f(z+reit)|dt(37.2)=12π02πg(z+reit)dt,para cualquier 0<r<ρ.

Sea M=g(z0)=|f(z0)|0 y definimos a los conjuntos:
U:={zD:g(z)=M},V:={zD:g(z)<M}.

Entonces D=UV y UV=. Veamos que V=. Para ello probemos que U y V son ambos abiertos y utilicemos el hecho de que D es conexo.

Sea zU y ρ>0 tal que se cumple (37.2) para 0<r<ρ. Notemos que para r fijo en este intervalo, como zU y g(z)M para todo en zD, entonces se cumple que:
M=g(z)12π02πg(z+reit)dt12π02πMdt=M.

Por lo que:
12π02πg(z+reit)dt=12π02πMdt,es decir:
12π02π[Mg(z+reit)]dt=0.

Dado que h(t)=Mg(z+reit)0 para todo t[0,2π] y g es una función continua, entonces por el lema 37.1 concluimos que:
M=g(z+reit),para todo t[0,2π], por lo que z+reitU. Es decir, la circunferencia con centro en z y radio r está contenida en U. Como esto se cumple para todo r(0,ρ), concluimos que el disco abierto B(z,ρ) está contendio en U. Dado que z es un punto arbitrario de U, entonces U es un conjunto abierto.

Ahora supongamos que zV, entonces g(z)<M. Puesto que g es una función continua en D, en particular lo es en z, por lo que para ε=Mg(z)>0 existe r>0 tal que si ζB(z,r), entonces |g(z)g(ζ)|<ε. De donde:
g(ζ)g(z)=|g(ζ)||g(z)||g(z)g(ζ)|<ε,por lo que:
g(ζ)=g(ζ)g(z)+g(z)<ε+g(z)=Mg(z)+g(z)=M,para cada ζB(z,r). Por lo que B(z,r)V y como z era arbitrario, entonces V también es abierto.

Notemos que U, ya que por definición al menos el punto z0D es un punto de U. Por lo tanto, dado que D es conexo, se sigue que V=, entonces g(z)=M para todo zD, es decir la función |f(z)| es constante en D, por lo que el resultado se sigue de la proposición 19.3.

◼

Observación 37.3.
Se puede probar el principio del módulo máximo para funciones complejas continuas que satisfacen la propiedad del valor medio. Esta es una clase más general de funciones e incluye a las funciones analíticas. Se puede consultar una prueba de este hecho en Complex variables theory and applications, de H.S. Kasana.

Reformulando el teorema 37.4, podemos decir que el módulo de una función compleja, que es analítica y no constante en un dominio D, no alcanza su valor máximo en D. El principio del módulo máximo tiene numerosas formulaciones, las siguientes son ejemplos de ellas.

Observación 37.2.
Si DC es un dominio, denotamos a la frontera de D como D, entonces D=DD es un dominio cerrado y acotado en C.

Corolario 37.6.
Sea DC un dominio acotado en el plano complejo y f:DC una función continua en D, que es analítica en D. Entonces |f(z)| alcanza su valor máximo en algún punto de la frontera de D.

Demostración. Dadas las hipótesis, como D es cerrado y acotado, entonces es un conjunto compacto, proposición 10.7, y como la función |f| es continua, entonces, proposición 10.10, alcanza su máximo en algún punto de D. Si |f| alcanza su máximo en algún punto de D=DD, entonces no hay nada que probar.

Supongamos que |f| alcanza su máximo en algún punto de D, entonces, por el principio del módulo máximo, tenemos que f es una función constante en D, por lo que, por la continuidad de f, se sigue que f es constante en D. En tal caso, |f| alcanza su valor máximo, el cual es único, en cada punto de D.

◼

Ejemplo 37.4.
Sea RC el dominio rectangular:
{z=x+iyC:0xπ,0y1},y sea f(z)=sen(z). Determinemos el valor máximo de |f| en R.

Solución. Sabemos que f es una función entera, por lo que en particular es analítica en intR y continua en R, entonces por el principio del módulo máximo sabemos que |f| alcanza su máximo en R.

Por la observación 22.5, para z=x+iyC tenemos que:
|f(z)|=|sen(z)|=sen2(x)+senh2(y).

Como z=x+iyR, figura 137, entonces sen(x) alcanza su máximo en π/2[0,π], mientras que senh(y) alcanza su máximo en 1[0,1], entonces el valor máximo de |f| en el dominio R se alcanza en z=π/2+i.

Figura 137: Dominio rectangular RC del ejemplo 37.4.

Teorema 37.5. (Principio del módulo mínimo.)
Sean DC un dominio y f:DC una función analítica en D tal que f(z)0 para todo zD. Si existe un punto z0D tal que |f(z0)||f(z)| para todo zD, es decir, el módulo |f(z)| alcanza su mínimo en z0, entonces f es una función constante en D.

Demostración. Dadas las hipótesis, como f(z)0 para todo zD, definimos a la función:
g(z)=1f(z), la cual es analítica en D. Como |f| alcanza su mínimo en z0D, entonces |g| alcanza su máximo en z0, por lo que, del principio del módulo máximo se sigue que g es una función constante en D y por tanto lo es f.

◼

Corolario 37.7.
Sea DC un dominio acotado en el plano complejo y f:DC una función continua en D, analítica en D y que cumple que f(z)0 para todo zD. Entonces |f(z)| alcanza su valor mínimo en algún punto de la frontera de D.
Demostración. Se deja como ejercicio al lector.

◼

Ejemplo 37.4.
Sea f(z)=z2+2. Determinemos el valor mínmo de |f| en el disco cerrado B(0,1).

Solución. Sabemos quue f es una función entera, por lo que en particular es continua en B(0,1) y analítica en B(0,1). Notemos que f(z)=0 para z=±2i, los cuales son puntos fuera de B(0,1), por lo que del principio del módulo mínimo |f| alcanza su valor mínimo en B(0,1).

Sea zB(0,1). Si escribimos a z en su forma polar, entonces:
z=eiθ,θ[0,2π].

Considerando la proposición 20.2 tenemos que:
|f(z)|=|z2+2|=|cos(2θ)+2+isen(2θ)|=(cos(2θ)+2)2+sen2(2θ)=4cos(2θ)+5.

Determinamos los puntos críticos de |f|:
d|f(z)|dθ=8sen(2θ)24cos(2θ)+5=0,de donde θ=0,π/2,π,3π/2 son los puntos críticos de |f|. Entonces, en θ=π/2 y θ=3π/2 la función |f(z)| alcanza el valor mínimo 1, en el disco cerrado B(0,1).

Cerraremos esta entrada con un resultado que es una aplicación del principio del módulo máximo. Aunque este resultado no es no de lo más básicos en la teoría de la Variable Compleja, nos permite ver el tipo de restricciones que la analiticidad de una función compleja impone.

Teorema 37.6. (Lema de Schwarz.)
Sea f una función analítica en el disco unitario abierto B(0,1)C, tal que |f(z)|1 para zB(0,1). Entonces |f(z)||z| para todo zB(0,1) y |f(0)|1. Más aún, si |f(z0)|=|z0| para algún z0B(0,1) tal que z00 ó |f(0)|=1, entonces f(z)=cz para todo zB(0,1) y para alguna constante cC tal que |c|=1.

Demostración. Dadas las hipótesis, definimos a la función g:B(0,1)C como:
g(z)={f(z)z,siz0,f(0),siz=0.

Notemos que g es una función continua en B(0,1) ya que:
limz0g(z)=limz0f(z)z=f(0).

Por otra parte, g es analítica en B(0,1)=B(0,1){0}. Entonces, por el teorema de Morera generalizado, g es analítica en B(0,1).

Sea 0<r<1, por lo que B(0,r)B(0,1). Entonces g es analítica en B(0,r) y para zB(0,1) se tiene que:
|g(z)|=|f(z)z|1r.

Por el principio del módulo máximo tenemos que:
|g(z)|1r,zB(0,r).

Notemos que si zB(0,1) es fijo, al tomar el límite cuando r1, se tiene que |g(z)|1, entonces |f(z)||z| para todo zB(0,1). Además |f(0)|=|g(0)|1.

Por otra parte, si |f(z0)|=|z0| para algún z0B(0,1), entonces |g(z0)|=1, es decir, el máximo del módulo de g se alcanza en un punto interior del disco abierto B(0,1), por lo que del principio del módulo máximo se tiene que g es una función constante, es decir, g(z)=c, con cC tal que |c|=1. Del mismo modo, si |f(0)|=1, entonces |g(0)|=1 y el máximo del módulo de g se alcanza en z=0, por lo que del principio del módulo máximo se concluye que g es constante.

◼

Tarea moral

  1. Sea R el dominio rectangular {z:∈C:|Re(z)|4,|Im(z)|3}. Supón que f es una función analítica en R tal que |f(z)|1 para todo zR, entonces muestra que:
    |f(0)|149π.
  2. Sea f una función analítica en un dominio DC y z0D. Muestra que:
    f(n)(z0)=12πrn+102πf(z0+reit)eintdt,si B(z0,r)D, con r>0.
  3. Muestra que:
    02πcos(cos(t))cosh(sen(t))dt=2π.Hint: Utiliza la proposición 37.5.
  4. Sea DC un dominio con frontera D. Sea f(z) una función no constante definida en D=DD, tal que |f(z0)|>m para algún z0D y |f(z)|m para todo zD. Entonces,
    a) si f es analítica en D, muestra que existe un punto en D donde f no es continua;
    b) si f es continua en D, muestra que existe un punto en D donde f no es analítica.
  5. Sean DC un dominio acotado con frontera D y f(z)=u(x,y)+iv(x,y) una función analítica en D y continua en D. Muestra que las siguientes funciones alcanzan su máximo en la frontera del dominio D.
    a) (x2+y2)eu(x,y).
    b) (u2(x,y)+v2(x,y))eu(x,y).
    c) (sen2(x)+senh2(y))eu(x,y).
    d) (cos2(x)+senh2(y))eu(x,y).
    Hint: En cada caso, define a la función g(z) cuya parte real corresponde con la función dada y aplica el principio del módulo máximo.
  6. Sea f una función entera tal que |f(z)|c|z|λ+d para todo zC, con λ,c y d constantes positivas. Prueba que f es necesariamente un polinomio complejo cuyo grado no es mayor que λ.
    Hint: Modifica la prueba del teorema de Liouville.
  7. Prueba la siguiente generalización del lema de Schwarz. Si f es una función analítica en el disco B(z0,r) y m es una constante tal que |f(z)f(z0)|m para todo zB(z0,r), entonces |f(z0)|m/r y |f(z)f(z0)|(m/r)|zz0| se cumple para todo zB(z0,r).
  8. Sea f una función entera tal que f(0)=0 y lim|z|Ref(z)=0. Prueba que f(z)=0 para todo zC.

Más adelante…

En esta entrada hemos abordado algunas de las consecuencias más importantes del teorema integral de Cauchy.

En la siguiente entrada veremos la versión homótopica del teorema de Cauchy y con ella generalizaremos el resultado para ciertos dominios del plano complejo C, llamados dominios simplemente conexos, lo cual nos permitirá extender nuestra versión local, para discos, de dicho resultado.

Entradas relacionadas

Álgebra Lineal II: El teorema de clasificación de transformaciones ortogonales

Por Ayax Calderón

Introducción

En la entrada anterior definimos las transformaciones ortogonales y probamos algunas de sus propiedades relacionadas con el producto interior, norma y la transformación adjunta. Vimos también que el conjunto de todas las transformaciones ortogonales de un espacio euclideano V forma un grupo O(V) bajo composición.

En esta entrada queremos entender mucho mejor dicho grupo. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es Rn). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.

El lema de los subespacios estables

Lo primero que veremos es que las transformaciones ortogonales preservan completamente los subespacios estables, así como sus espacios ortogonales. Este es el resultado que nos permitirá un poco más adelante trabajar inductivamente.

Lema. Sean V un espacio euclidiano, TO(V) y W un subespacio de V estable bajo T.

  1. Se tiene que T(W)=W y T(W)=W.
  2. Se tiene que T|WO(W) y T|WW.

Demostración. 1. Como T(W)W y T|W es inyectiva (pues T es inyectiva en V), se sigue que T|W:WW es suprayectiva y por lo tanto T(W)=W. Veamos ahora que W también es estable bajo T. Tomemos xW y yW. Queremos demostrar que T(x)W, es decir, que T(x),y=0. Como T es ortogonal, entonces T=T1 y por lo tanto
T(x),y=x,T1(y).

Como T|W:WW es biyectiva, se tiene que W es estable bajo T1. Entonces T1(y)W, y como xW, entonces x,T1(y)=0. Por lo tanto T(x),y=0. Esto muestra que W es estable bajo T y por la primer parte de este inciso, llegamos a T(W)=W.

2. Para todo xW se tiene que
||T|W(x)||=||T(x)||=||x||,
lo que significa que T|WO(W). De manera análoga se tiene que TWO(W).

◻

El lema de la invarianza de una recta o un plano

Para poder aplicar el lema de la sección anterior, tendremos que poder encontrar subespacios estables. El siguiente lema nos dice que siempre podemos encontrar subespacios estables en espacios euclideanos.

Lema. Sea V un espacio euclidiano y T una transformación lineal sobre V. Entonces existe una recta (subespacio de dimensión 1) o un plano (subespacio de dimensión 2) en V estable bajo T.

Demostración. El polinomio mínimo de T es un polinomio μT(x) con coeficientes reales. Si tiene una raíz real, se sigue que T tiene un eigenvalor y por consiguiente, la recta generada por un eigenvector es estable bajo T.

Ahora supongamos que μT(x) no tiene raíces reales. Sea z una raíz compeja de μT(x), que existe por el teorema fundamental del álgebra. Como μT(x) tiene coeficientes reales, entonces z también es raíz de μT(x).Por lo tanto, Q(x)=(xz)(xz) divide a μT(x).

Es imposible que Q(T) sea una matriz invertible, pues de serlo, tendríamos que μTQ(x) sería un polinomio de grado más chico que μT(x) y anularía a T. Esto nos dice que existe xV distinto de 0 tal que Q(T)(x)=0. Si Q(x)=x2+ax+b, esto se traduce a T2(x)+aT(x)+bx=0. De aquí, se tiene que x y T(x) generan un plano estable bajo T.

◻

Las transformaciones ortogonales en dimensión 2

Los lemas de las secciones anteriores nos permitirán ir partiendo a un espacio euclideano T en «cachitos estables» ya sea de dimensión 1 o de dimensión 2. En los de dimensión 1 ya sabemos cómo debe verse una matriz que represente a T: simplemente corresponden a eigenvectores y entonces consistirán en reescalamientos (que deben de ser por factor 1 ó 1 para tener ortogonalidad). Pero, ¿cómo se verá matricialmente la transformación T en subespacios estables de dimensión 2 que no se puedan descomponer más? Esto es lo que nos responde el siguiente lema.

Lema. Sea V un espacio euclidiano de dimensión 2 y TO(V) sin eigenvalores reales. Entonces existe una base ortonormal de V tal que la matriz asociada a T en dicha base es de la forma
Rθ=(cosθsinθsinθcosθ).

Demostración. Sea β={e1,e2} una base ortonormal de V y escribimos T(e1)=ae1+be2 para algunos números reales a,b. Como
a2+b2=||T(e1)||2=||e1||2=1, entonces podemos encontrar un número real θ tal que (a,b)=(cosθ,sinθ).

Para que T(e1),T(e2)=0, necesitamos que exista un c tal que T(e2)=c(sinθe1+cosθe2). Finalmente, ya que ||T(e2)||=||e2||=1, debemos tener |c|=1 y así c{1,1}.

El caso c=1 podemos descartarlo pues la matriz que representa a T en la base β sería
(cosθsinθsinθcosθ),
cuyo polinomio caracterísitco es x21 y por lo tanto tiene a 1 como eigenvalor, lo cual no entra en nuestras hipótesis. Así, c=1 y por lo tanto la matriz que representa a T en la base β es
(cosθsinθsinθcosθ),

como queríamos.

◻

El teorema de clasificación

Con lo visto hasta ahora, ya estamos listos para demostrar el teorema fundamental de clasificación de transformaciones lineales ortogonales de un espacio euclidiano.

Teorema (clasificación de ortogonales). Sea V un espacio euclidiano y TO(V). Entonces podemos encontrar una base ortonormal β de V tal que la matriz asociada a T con respecto a la base β es de la forma
(1)A=(Ip0000Iq0000Rθ10000Rθk),
donde θ1,,θk son números reales y
Rθ=(cosθsinθsinθcosθ).

Demostración. Procederemos por inducción sobre dimV. Si dimV=1, entonces ya terminamos, pues se tendría que T=±id (esto quedó de tarea moral en la entrada anterior).

Supongamos que el resultado se satisface para todos los espacios euclideanos de dimensión a lo más n1. Tomemos V un espacio euclideano de dimensión n y T una transformación ortogonal de V. Por el lema de la invarianza de una recta o un plano, o bien V tiene una recta estable bajo T, o bien un plano estable bajo T.

El caso en que T tiene una recta estable bajo T corresponde a que T tiene un eigenvalor real t con eigenvector, digamos, e1. Entonces |t|||e1||=||te1||=||T(e1)||=||e1||,
por lo cual t{1,1}. Sea W la recta generada por e1.

Tenemos que V=WW. Por el lema de subespacios estables, T(W)=W y T|W es ortogonal de W. Por hipótesis inductiva, W tiene una base ortonormal {e2,,en} tal que la matriz asociada a dicha base y restringida a W es de la forma (1). Añadiendo el vector e1||e1|| se añade un 1 o 1 en la diagonal, así que, posiblemente permutando la base ortonormal resultante {e1||e1||,e2,,en} de V obtenemos una base ortonormal tal que la matriz asociada a T con respecto a esta base es de la forma (1).

Ahora supongamos que T no tiene valores propios reales, es decir, que estamos en el caso de tener un plano estable bajo T. Como T es ortogonal, el espacio W también es estable bajo T, y las restricciones de T a W y W son transformaciones otogonales sobre estos espacios. Por hipótesis inductiva, W tiene una base ortonormal {e3,,en} tal que la matriz asociada a T|W con respecto a esta base es una matriz diagonal de bloques de la forma Rθi. Por el lema de transformaciones ortogonales en dimensión 2, el subespacio W tiene una base ortonormla {e1,e2} tal que la matriz asociada a T|W con respecto a esta base es de la forma Rθ. Como V=WW, entonces la matriz asociada a T con respecto a la base {e1,,en} es de la forma (1), con lo cual concluimos con la prueba deseada.

◻

También podemos enunciar el teorema anterior en términos de matrices:

Corolario. Sea AMn(R) una matriz ortogonal. Entonces existen enteros p,q,k que satisfacen p+q+2k=n, una matriz ortogonal PMn(R) y números reales θ1,,θn tales que
A=P1(Ip0000Iq0000Rθ10000Rθk)P.

Observación. El determinante de la matriz
(Ip0000Iq0000Rθ10000Rθk)
es (1)q{1,1} (estamos usando detRθi=1 para 1ik). Se sigue que detT{1,1} para cualquier TO(V).

Más adelante…

Por lo platicado en esta entrada, ya podemos decir cómo es cualquier transformación ortogonal, y no es tan complicado: simplemente en alguna base apropiada, se rota en pares de coordenadas, o bien se refleja en coordenadas, o bien no se hace nada en alguna coordenada (o una combinación de estas cosas). Todo esto intuitivamente deja fijas las normas y el teorema de clasificación nos dice que si se fijan normas entonces debe ser así. Por ello, podemos pensar a las transformaciones ortonormales como «sencillas» o por lo menos «entendibles».

Aprovecharemos esto en el siguiente tema, pues enunciaremos el teorema espectral real, que nos dice que las transformaciones simétricas se entienden muy bien a partir de las ortogonales y de las diagonales. Así, las transformaciones simétricas también serán «entendibles». Finalmente, con el teorema de descomposición polar llevaremos este entendimiento a todas, todas las matrices.

Tarea moral

  1. Verifica que, en efecto, las matrices Rθ de la entrada tienen determinante igual a 1.
  2. Sea V un espacio euclidiano y T:VV una transformación lineal. Demuestra que T es ortogonal si y sólo si ||T(x)||=||x|| para los vectores x de norma 1.
  3. Encuentra la matriz de rotación de ángulo π3 alrededor de la recta generada por el vector (1,1,1).
  4. Describe todas las matrices en M3(R) que son simultaneamente ortogonales y diagonales.
  5. Describe todas las matrices en M3(R) que sean simultáneamente ortogonales y triangulares superiores.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»