Archivo de la etiqueta: puntos isotómicos

Geometría Moderna I: Teorema de Menelao

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión presentamos el teorema de Menelao, una herramienta muy útil que nos da condiciones necesarias y suficientes para que tres puntos, cada uno sobre los lados de un triángulo, sean colineales.

Teorema de Menelao

Teorema 1, de Menelao. Sean $\triangle ABC$ y $X$, $Y$, $Z$ puntos en los lados $BC$, $CA$ y $AB$ respectivamente, tal que uno o los tres puntos se encuentran en la extensión de los lados de $\triangle ABC$, entonces $X$, $Y$ y $Z$ son colineales si y solo si
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$.

Demostración. Supongamos que $X$, $Y$ y $Z$ son colineales, sea $D \in XYZ$ tal que $CD \parallel AB$ entonces $\triangle XZB \sim \triangle XDC$ y $\triangle YAZ \sim \triangle YCD$, esto es

$\dfrac{DC}{ZB} = \dfrac{XC}{XB} \Leftrightarrow DC = \dfrac{ZB \times XC}{XB}$,

$\dfrac{DC}{ZA} = \dfrac{YC}{YA} \Leftrightarrow DC = \dfrac{ZA \times YC}{YA}$.

Figura 1

Por lo tanto,
$ \dfrac{ZA}{YA} \dfrac{YC}{ZB} \dfrac{XB}{XC} = 1 \Leftrightarrow \dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$.

La última ecuación se obtiene al considerar segmentos dirigidos.

$\blacksquare$

Conversamente, ahora supongamos sin pérdida de generalidad que $Z$ e $Y$ se encuentran en $AB$ y $CA$ respectivamente y $X$ en la extensión de $BC$ (izquierda figura 1), el caso en que los tres puntos están en las extensiones de los lados es análogo, y supongamos que
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$.

Sea $X’ = YZ \cap BC$, entonces por la implicación que ya probamos tenemos que
$\dfrac{AZ}{ZB} \dfrac{BX’}{X’C} \dfrac{CY}{YA} = – 1$.

Esto, junto con nuestra hipótesis nos dice que $\dfrac{BX’}{X’C} = \dfrac{BX}{XC}$, es decir $BC$ es dividido exteriormente por $X$ y $X’$ en la misma razón.

Por lo tanto, $X = X’$, entonces $X$, $Y$ y $Z$ son colineales.

$\blacksquare$

Forma trigonométrica del teorema de Menelao

Lema de la razón. Considera $\triangle ABC$ y sea $X$ un punto en $BC$ o su extensión, entonces
$\begin{equation} \dfrac{BX}{XC} = \dfrac{AB}{CA} \dfrac{\sin \angle BAX}{\sin \angle CAX}. \end{equation}$.

Demostración. Aplicamos la ley de los senos a los triángulos $\triangle BAX$ y $\triangle XAC$ (figura 1),
$\begin{equation} \dfrac{BX}{\sin \angle BAX} = \dfrac{AB}{\sin \angle AXB}, \end{equation}$

$\begin{equation} \dfrac{CX}{\sin \angle CAX} = \dfrac{AC}{\sin \angle AXC}. \end{equation}$

Notemos que $\sin \angle AXB = \sin \angle AXC$, pues si $X$ está en la extensión de $BC$ entonces $\angle AXB = \angle AXC$ o si $X$ está en el segmento $BC$ entonces $\angle AXB$ y $\angle AXC$ son suplementarios.

Por lo tanto, haciendo el cociente de $(2)$ entre $(3)$ obtenemos $(1)$.

$\blacksquare$

Forma trigonométrica del teorema de Menelao. Sea $\triangle ABC$ y $X$, $Y$, $Z$ puntos en los lados $BC$, $CA$ y $AB$ respectivamente, tal que uno o los tres puntos se encuentran en la extensión de los lados de $\triangle ABC$, entonces $X$, $Y$ y $Z$ son colineales si y solo si

$\dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \angle CBY}{\sin \angle YBA} \dfrac{\sin \angle ACZ}{\sin \angle ZCB} = – 1$.

Demostración. Aplicamos el lema de la razón a $X$, $Y$ y $Z$, entonces:
$-1 = \dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA}$

$= (\dfrac{CA}{BC} \dfrac{\sin \angle ACZ}{\sin \angle ZCB}) (\dfrac{AB}{CA} \dfrac{\sin \angle BAX}{\sin \angle XAC}) (\dfrac{BC}{AB} \dfrac{\sin \angle CBY}{\sin \angle YBA})$

$= \dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \angle CBY}{\sin \angle YAC} \dfrac{\sin \angle ACZ}{\sin \angle ZCB}$.

En consecuencia, por el teorema de Menelao la igualdad es cierta si y solo si $X$, $Y$ y $Z$ son colineales.

$\blacksquare$

Bisectrices

Proposición 1.
$i)$ Dos bisectrices internas y la bisectriz externa del tercer ángulo de un triángulo intersecan a los lados opuestos del triángulo en tres puntos colineales,
$ii)$ las tres bisectrices externas de un triángulo intersecan a los lados opuestos del triángulo en tres puntos colineales.

Demostración. Sean $\triangle ABC$, $X’$, la intersección de la bisectriz externa de $\angle A$ con $BC$, $Y$ y $Z$ las intersecciones de las bisectrices internas de $\angle B$ y $\angle C$ con $CA$ y $AB$ respectivamente.

Figura 2

Por el teorema de la bisectriz tenemos las siguientes igualdades
$\dfrac{BX’}{X’C} = \dfrac{AB}{AC}$,
$\dfrac{CY}{YA} = \dfrac{BC}{BA}$,
$\dfrac{AZ}{ZB} = \dfrac{CA}{CB}$.

Considerando segmentos dirigidos,
$\dfrac{AZ}{ZB} \dfrac{BX’}{X’C} \dfrac{CY}{YA} = \dfrac{CA}{CB} \dfrac{AB}{AC} \dfrac{BC}{BA} = -1$.

Por lo tanto, $X’$, $Y$ y $Z$ son colineales.

Análogamente, si $Y’$ y $Z’$ son las intersecciones de las bisectrices externas de $\angle B$ y $\angle C$ con $CA$ y $AB$ respectivamente, entonces por el teorema de la bisectriz
$\dfrac{CY’}{Y’A} = \dfrac{BC}{BA}$,
$\dfrac{AZ’}{Z’B} = \dfrac{CA}{CB}$.

Por lo tanto
$\dfrac{AZ’}{Z’B} \dfrac{BX’}{X’C} \dfrac{CY’}{Y’A} = \dfrac{CA}{CB} \dfrac{AB}{AC} \dfrac{BC}{BA} = -1$.

Por lo tanto, por el teorema de Menelao, $X’$, $Y’$ y $Z’$ son colineales.

$\blacksquare$

Recta de Lemoine y recta de Gergonne

Teorema 2. Las rectas tangentes al circuncírculo de un triángulo a través de sus vértices intersecan a los lados opuestos del triángulo en tres puntos colineales.

Demostración. Sean $\triangle ABC$ y $\triangle DEF$ su triángulo tangencial, sean $X = EF \cap BC$, $Y = DF \cap CA$ y $Z = DE \cap AB$.

Figura 3

Como el ángulo semiinscrito $\angle XAB$ abarca el mismo arco que el ángulo inscrito $\angle ACB$ entonces son iguales, por criterio de semejanza AA, $\triangle AXB \sim \triangle CXA$, por lo tanto,
$\dfrac{AX}{CX} = \dfrac{AB}{CA}$ $\Leftrightarrow \dfrac{AX^2}{CX^2} = \dfrac{AB^2}{CA^2}$.

Por otro lado, la potencia de $X$ respecto al circuncírculo de $\triangle ABC $ es
$AX^2 = XB \times XC$.

Por lo tanto,
$\begin{equation} \dfrac{XB}{XC} = \dfrac{AB^2}{CA^2}. \end{equation}$

Igualmente podemos encontrar,
$\dfrac{YC}{YA} = \dfrac{BC^2}{BA^2}$ y $\dfrac{ZB}{ZA} = \dfrac{CB^2}{CA^2}$.

Por lo tanto,
$\dfrac{XB}{XC} \dfrac{YC}{YA} \dfrac{ZA}{ZB} = \dfrac{AB^2}{CA^2} \dfrac{BC^2}{BA^2} \dfrac{CA^2}{CB^2} = 1$.

Considerando segmentos dirigidos tenemos
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$.

Como resultado, por el teorema de Menelao, $X$, $Y$ y $Z$ son colineales.

A la recta $XYZ$ se le conoce como recta de Lemoine de $\triangle ABC$.

$\blacksquare$

Observación 1. Notemos que $X$, $Y$ y $Z$ son los centros de las circunferencias de Apolonio de $\triangle ABC$.

Observación 2. También hemos mostrado que la tangente al circuncírculo de un triangulo por uno de sus vértices divide al lado opuesto al vértice, en la razón de los cuadrados de los lados que concurren en el vértice, ecuación $(4)$.

Corolario. Los lados del triángulo cuyos vértices son los puntos de tangencia del incírculo de un triángulo dado con sus lados, intersecan a los lados opuestos del triángulo dado en tres puntos colineales.

Demostración. Notemos que en el teorema anterior si el triángulo dado es $\triangle DEF$, entonces su incírculo es el circuncírculo de $\triangle ABC$.

Por lo tanto, se tiene el resultado.

A la recta $XYZ$ se le conoce como recta de Gergonne de $\triangle DEF$.

$\blacksquare$

Teorema de Monge

Teorema 3. Las tangentes externas comunes a tres circunferencias, tales que ninguna esta completamente contenida en las otras dos, se intersecan dos a dos en tres puntos colineales.

Demostración. Sean $\Gamma(A)$, $\Gamma(B)$ y $\Gamma(C)$, tres circunferencias que cumplen las hipótesis. Sean $X = X_bX_c \cap X’_bX’_c$, $Y = Y_aY_c \cap Y’_aY’_c$ y $Z = Z_aZ_b \cap Z’_aZ’_b$, las intersecciones de las tangentes comunes a $\Gamma(B)$, $\Gamma(C)$; $\Gamma(A)$, $\Gamma(C)$  y $\Gamma(A)$, $\Gamma(B)$ respectivamente (figura 4).

Figura 4

Recordemos que la intersección de dos tangentes externas comunes a dos circunferencias es un centro de homotecia entre dichas circunferencias.

Entonces $X$ es un centro de homotecia para $\Gamma(B)$ y $\Gamma(C)$, por lo tanto
$\dfrac{XB}{XC} = \dfrac{BX_b}{CX_c}$.

Igualmente vemos que
$\dfrac{YC}{YA} = \dfrac{CY_c}{AY_a}$ y $\dfrac{ZB}{ZA} = \dfrac{BZ_b}{AZ_a}$.

Tomando en cuenta que $AZ_a = AY_a$, $BZ_b = BX_b$ y $CX_c = CY_c$, tenemos
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = \dfrac{- AZ_a}{BZ_b} \dfrac{- BX_b}{CX_c} \dfrac{- CY_c}{AY_a} = – 1$.

Por lo tanto, por el teorema de Menelao $X$, $Y$ y $Z$ son colineales.

$\blacksquare$

Puntos isotómicos

Proposición 2. Los puntos isotómicos de tres puntos colineales son colineales.

Demostración. Recordemos que dos puntos en uno de los lados de un triángulo son isotómicos si equidistan al punto medio de ese lado.

Sean $\triangle ABC$ y $X$, $Y$, $Z$ en los lados $BC$, $CA$ y $AB$ respectivamente tal que $XYZ$ es una recta, consideremos $X’$, $Y’$ y $Z’$ sus correspondientes puntos isotómicos.

Figura 5

Entonces
$\dfrac{AZ’}{Z’B} \dfrac{BX’}{X’C} \dfrac{CY’}{Y’A} = \dfrac{ZB}{AZ} \dfrac{XC}{BX} \dfrac{YA}{CY} = (\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA})^-1 = – 1$.

Por lo tanto, por el teorema de Menelao $X’$, $Y’$ y $Z’$ son colineales.

$\blacksquare$

Proposición 3. Si sobre los lados de $\triangle ABC$ tenemos pares de puntos isotómicos $X$, $X’ \in BC$, $Y$, $Y’ \in CA$ y $Z$, $Z’ \in AB$ entonces las áreas de los triángulos $\triangle XYZ$ y $\triangle X’Y’Z’$ coinciden.

Demostración. Sean $U = ZY \cap BC$ y $U’ = Z’Y’ \cap BC$, consideremos $D$ y $F$ las proyecciones de $X$ y $C$ en $ZU$, entonces $\triangle XDU \sim \triangle CEU$.

Figura 6

Entonces,
$\dfrac{(\triangle XYZ)}{(\triangle CYZ)} = \dfrac{XD}{CE} = \dfrac{XU}{CU}$.

Igualmente vemos que, $\dfrac{(\triangle X’Y’Z’)}{(\triangle BY’Z’)} = \dfrac{X’U’}{BU’}$.

Por la proposición anterior, el punto isotómico de $U$ debe ser colineal con $Y’$ y $Z’$, por lo tanto, $U$ y $U’$ son isotómicos $\Rightarrow CU = U’B$ y $XU = U’X’$.

Por lo tanto $\dfrac{(\triangle XYZ)}{( \triangle CYZ)} = \dfrac{(\triangle X’Y’Z’)}{( \triangle BY’Z’)}$.

Pero $(\triangle CYZ) = (\triangle AY’Z) = (\triangle BY’Z’)$.

Por lo tanto, $\triangle XYZ$ y $\triangle X’Y’Z’$ tienen la misma área.

$\blacksquare$

Más adelante…

Con la ayuda del teorema de Menelao, en la próxima entrada definiremos y estableceremos algunos resultados sobre triángulos en perspectiva. También mostraremos el teorema de Pascal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que si una recta que pasa por el centroide $G$ de un triangulo $\triangle ABC$ interseca a $AB$ y $AC$ en $Z$ e $Y$ respectivamente, entonces $AZ \times YC + AY \times ZB = AZ \times AY$.
  2. Una recta interseca los lados de un cuadrilátero $\square ABCD$, $BC$, $CD$, $DA$ y $AB$ en $X$, $Y$, $Z$ y $W$ respectivamente, muestra que $\dfrac{BX}{XC} \dfrac{CY}{YD} \dfrac{DZ}{ZA} \dfrac{AW}{WB} = 1$.
  3. Una circunferencia cuyo centro es equidistante a los vértices $B$ y $C$ de un triángulo $\triangle ABC$ interseca a $AB$ en $P$ y $P’$ y a $AC$ en $Q’$ y $Q$, las rectas $PQ$ y $P’Q’$ intersecan a $BC$ en $X$ y $X’$ respectivamente, muestra que:
    $i)$ $BX \times BX’ = CX \times CX’$,
    $ii)$ $X$ y $X’$ son puntos isotómicos.
  4. Sean $\triangle ABC$ y $B’$ el punto medio de $CA$, considera $G$ el centroide de $\triangle ABC$, sea $P$ tal que $B’$ es el punto medio de $GP$, la paralela a $AC$ por $P$ interseca a $BC$ en $X$, la paralela a $AB$ por $P$ corta a $AC$ en $Y$, la paralela a $BC$ por $P$ interseca a $AB$ en $Z$ (figura 7), muestra que $X$, $Y$ y $Z$ son colineales.
Figura 7
  1. Demuestra que las mediatrices de las bisectrices de los ángulos internos de un triángulo, intersecan a los lados opuestos a los ángulos desde donde se trazo la bisectriz, en tres puntos colineales. Considera el segmento de bisectriz formado por el vértice y el punto de intersección con el lado opuesto.
  2. Considera $XYZ$ y $X’Y’Z’$ dos rectas transversales a los lados de un triángulo $\triangle ABC$, tales que $X$, $X’ \in BC$, $Y$, $Y’ \in CA$ y $Z$, $Z’ \in AB$, sean $D = Z’Y \cap BC$, $E = X’Z \cap CA$ y $F = Y’X \cap AB$, prueba que $D$, $E$ y $F$ son colineales.
  3. Demuestra el teorema de la recta de Simson usando el teorema de Menelao.
  4. Dadas tres circunferencias tales que dos a dos sus interiores son ajenos, muestra que las tangentes comunes externas de dos de ellas se intersecan en un punto colineal con las intersecciones de las tangentes comunes internas de esas dos circunferencias con la tercera.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 153-158.
  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 57-68.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 36-42.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 85-88.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Circunferencias tritangentes

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión estudiaremos algunas propiedades de las circunferencias tritangentes de un triángulo, esto nos permitirá entre otras cosas, derivar formulas para el área del triángulo.

Definición 1. El incírculo $(I, r)$ y los tres excírculos $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ de un triángulo a veces son referidos como las circunferencias tritangentes del triángulo, sus centros como centros tritangentes y sus radios, radios tritangentes.

Centros tritangentes

Teorema 1. El segmento que une dos centros tritangentes de un triángulo es el diámetro de una circunferencia que contiene dos de los vértices del triángulo, los cuales no son colineales con los centros tritangentes considerados.

Demostración. Sean $\triangle ABC$, $\Gamma$ su circuncírculo, $I$, $I_a$, $I_b$ y $I_c$ sus centros tritangentes.

Consideremos la circunferencia $\Gamma(II_b)$ cuyo diámetro es $II_b$, como las bisectrices internas y externas de $\angle A$, $AI$ y $AI_b$ son perpendiculares entonces $A \in \Gamma(II_b)$, de manera análoga vemos que $C \in \Gamma(II_b)$.

Figura 1

Como $AC$ es cuerda de $\Gamma(II_b)$, entonces su mediatriz interseca a $II_b$ en el centro $P$ de $\Gamma(II_b)$. Ya que $AC$ es cuerda de $\Gamma$, entonces su mediatriz interseca al circuncírculo de $\triangle ABC$ en el punto medio del arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$.

Como $II_b$ es bisectriz de $\angle B$ entonces $II_b$ interseca al circuncírculo de $\triangle ABC$ en el punto medio del arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$.

Por lo tanto, el centro $P$ de $\Gamma(II_b)$ pertenece al circuncírculo de $\triangle ABC$.

Ahora consideremos la circunferencia $\Gamma(I_aI_c)$, cuyo diámetro es $I_aI_c$, como las bisectrices interna y externa de $\angle A$, son perpendiculares entonces $A \in \Gamma(I_aI_c)$, con un razonamiento análogo vemos que $C \in \Gamma(I_aI_c)$.

Considera el punto diametralmente opuesto a $P$, $P’$ en el circuncírculo de $\triangle ABC$ entonces $\angle PBP’$ es ángulo recto y como $BP$ es la bisectriz interna de $\angle B$ entonces $BP’$ es la bisectriz externa de $\angle B$.

Como $AC$ es cuerda de $\Gamma(I_aI_c)$ entonces su mediatriz $PP’$ interseca a $I_aI_c$ en su punto medio.

Por lo tanto, el punto medio, $P’$, del arco $\overset{\LARGE{\frown}}{AC}$, es el punto medio del diámetro, $I_aI_c$, de $\Gamma(I_aI_c)$.

Del mismo modo podemos ver que $\Gamma(II_c)$, $\Gamma(I_bI_a)$ pasan por los vértices $A$, $B$ y que $\Gamma(II_a)$, $\Gamma(I_bI_c)$ pasan por los vertices $C$, $B$.

$\blacksquare$

Puntos de contacto

Notación. Nos referiremos a los puntos de tangencia de los círculos tritangentes $(I, r)$, $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ con el lado $BC$ de un triángulo $\triangle ABC$ como $X$, $X_a$, $X_b$ y $X_c$ respectivamente. Usaremos las letras $Y$ y $Z$ para los lados $AC$ y $AB$ respectivamente.

Emplearemos la letra $s$ para referirnos al semiperímetro $\dfrac{a + b + c}{2}$ de un triángulo $\triangle ABC$ donde $BC = a$, $AC = b$  y $AB = c$.

Proposición 1. La distancia desde el vértice de un triángulo al punto de tangencia de su circuncírculo en uno de sus lados adyacentes es igual al semiperímetro menos la longitud del lado opuesto.

Demostración. Sea $\triangle ABC$ y $(I, r)$ su circuncírculo. Como las tangentes desde un punto exterior a una circunferencia son iguales entonces $AZ = AY$, $BZ = BX$ y $CX = CY$.

Figura 2

Por otra parte, $AZ + BZ + BX + CX + CY +AY = c + a + b = 2s$.

Por lo tanto, $AZ + BX + CX = s$.

Y así, $AY = AZ = s – a$.

Similarmente, $BZ = BX = s – b$ y $CX = CY = s – c$.

$\blacksquare$

Proposición 2. La distancia desde el vértice de un triángulo al punto de tangencia del excírculo opuesto, a uno de los lados adyacentes al vértice considerado es igual al semiperímetro del triángulo.

Demostración. Sea $\triangle ABC$ y $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ sus excentros (figura 2). Como las tangentes desde un punto exterior a una circunferencia son iguales entonces
$AZ_a = AY_a$, $BX_b = BZ_b$ y $CX_c = CY_c$.

Por otro lado,
$AZ_a + AY_a = AB + BZ_a + AC + CY_a $
$= AB + AC + BX_a + CX_a = AB + AC + BC = 2s$.

Por lo tanto, $AZ_a = AY_a = s$.

Igualmente, $BX_b = BY_b = CX_c = CY_c = s$.

$\blacksquare$

Corolario 1. $AZ_c = AY_c = s – b$, y $AY_b = AZ_b = s – c$.

Demostración. En la figura 2 tenemos lo siguiente:
$AY_c = CY_c – AC = s – AC$,
$AZ_b = BZ_b – AB = s – AB$.

Similarmente,
$BZ_c = BX_c = s – a$, $BX_a = BZ_a = s – c$,
$CX_a = CY_a = s – b$, $CY_b = CX_b = s – a$.

$\blacksquare$

Puntos isotómicos

Definición 2. Si dos puntos en uno de los lados de un triángulo equidistan al punto medio del lado considerado decimos que son puntos isotómicos.

Proposición 3. El punto de tangencia del incírculo con uno de los lados de un triángulo y el punto de tangencia del excírculo relativo al lado considerado, son puntos isotómicos.

Demostración. Por la proposición 1 y el corolario 1, tenemos que $BX = s – b = CX_a$ (figura 2).

Esto implica que el punto medio de $XX_a$ es el punto medio de $BC$, por lo tanto, $X$ y $X_a$ son puntos isotómicos.

Análogamente vemos que $Z$, $Z_c$ e $Y$, $Y_b$ son pares de puntos isotómicos.

$\blacksquare$

Proposición 4. Los dos puntos de contacto de un lado de un triángulo con los dos excírculos opuestos a los vértices que pasan por ese lado son isotómicos, además la distancia entre estos dos puntos es igual a la suma de los otros dos lados.

Demostración. En la figura 2, tenemos lo siguiente:
$BX_c = CX_c – BC = s – a$, $CX_b = BX_b – BC = s – a$.

Por lo tanto, el punto medio de $X_cX_b$ coincide con el punto medio de $BC$.

Por otro lado, $X_cX_b = BX_c + a + CX_b = a + 2(s – a) = 2s – a = c + b$.

Igualmente, $Y_aY_c = a + c$, $Z_aZ_b = a + b$.

$\blacksquare$

Radios tritangentes y área del triangulo

Proposición 5. El área de un triángulo es igual al producto del semiperímetro por el inradio.

Demostración. De la figura 2,
$(\triangle ABC) = (\triangle AIB) + (\triangle BIC) + (\triangle AIC) = \dfrac{cr}{2} + \dfrac{ar}{2} + \dfrac{br}{2} = sr$.

$\blacksquare$

Proposición 6. El área de un triángulo es igual al producto de un exradio por la diferencia entre el semiperímetro y el lado relativo al excírculo considerado.

Demostración. En la figura 2,
$(\triangle ABC) = (\triangle AI_aB) + (\triangle AI_aC) – (\triangle BI_aC) $
$= \dfrac{cr_a}{2} + \dfrac{br_a}{2} – \dfrac{ar_a}{2} = \dfrac{r_a}{2}(2s – 2a) = r_a(s – a)$.

$\blacksquare$

Corolario 2. El reciproco del inradio es igual a la suma de los recíprocos de los exradios.

Demostración. De las proposiciones 5 y 6 se sigue que
$\dfrac{1}{r_a} + \dfrac{1}{r_b} + \dfrac{1}{r_c} = \dfrac{(s – a) + (s – b) + (s – c)}{( \triangle ABC)}
= \dfrac{s}{(\triangle ABC)} = \dfrac{1}{r}$.

$\blacksquare$

Proposición 7. El área de un triángulo es igual al producto de sus lados sobre cuatro veces su circunradio.

Demostración. Sean $\triangle ABC$, $(O, R)$ su circuncírculo, $D$ el pie de la altura por $A$, y $A’$ el punto diametralmente opuesto a $A$.

Figura 3

$\angle ABD = \angle AA’C$, pues abarcan el mismo arco y $\angle ACA’ = \dfrac{\pi}{2}$ es recto ya que $AA’$ es diámetro, así que $\triangle ABD \sim \triangle AA’C$, por criterio de semejanza AA.

Esto es, $\dfrac{AB}{AA’} = \dfrac{AD}{AC}$.

Se sigue que, $bc = 2RAD$ y $abc = a2RAD = 4R(\triangle ABC)$.

Por lo tanto, $\dfrac{abc}{4R} = (\triangle ABC)$.

$\blacksquare$

Formula de Herón y teorema de Carnot

Teorema 2, fórmula de Herón. Podemos calcular el área de un triángulo mediante la fórmula
$(\triangle ABC) = \sqrt{s(s – a)(s – b)(s – c)}$.

Demostración. Como $\angle YCI$ y $\angle I_ACY_a$ son suplementarios, por criterio de semejanza AAA $\triangle YCI \sim \triangle Y_aI_aC$,
por lo tanto, $\dfrac{Y_aI_a}{YC} = \dfrac{Y_aC}{YI}$,
es decir, $\dfrac{r_a}{s – c} = \dfrac{s – b}{r}$.

También $\triangle AYI \sim \triangle AY_aI_a$,
por lo tanto, $\dfrac{Y_aI_a}{YI} = \dfrac{AY_a}{AY}$,  
es decir, $\dfrac{r_a}{r} = \dfrac{s}{s – a}$,
entonces $\dfrac{rs}{s – a} = \dfrac{(s – b)(s – c)}{r}$. 

Por la proposición 5, $(\triangle ABC) = rs$,
por lo tanto, $(\triangle ABC) = \dfrac{(s – a)(s – b)(s – c)}{\dfrac{(\triangle ABC)}{s}}$,
así que $(\triangle ABC)^2 = s(s – a)(s – b)(s – c)$.

En conclusión, $(\triangle ABC) = \sqrt{s(s – a)(s – b)(s – c)}$.

$\blacksquare$

Teorema 3, de Carnot. La suma de las distancias desde el circuncentro a los lados del triángulo es igual a la suma del circunradio y el inradio.

Demostración. Sea $\triangle ABC$ un triángulo acutángulo, $(O, R)$ su circuncírculo y $D$, $E$, $F$ las proyecciones de $O$ en $BC$, $AC$ y $AB$ respectivamente.

Figura 4

Aplicando el teorema de Ptolomeo a $\square AFOE$, $\square FBDO$ y $\square ODCE$ tenemos:
$AF \times OE + AE \times OF = OA \times EF$,
$BF \times OD + BD \times OF = OB \times DF$,
$CE \times OD + CD \times OE = OC \times DE$.

Por otra parte, como $O$ está en la mediatriz de $BC$, $AC$ y $AB$ entonces $D$, $E$ y $F$ son los respectivos puntos medios y podemos aplicar el teorema del segmento medio. Si nombramos $OD = x$, $OE = y$, $OF = z$, entonces:

$\dfrac{cy}{2} + \dfrac{bz}{2} = \dfrac{Ra}{2}$,
$\dfrac{cx}{2} + \dfrac{az}{2} = \dfrac{Rb}{2}$,
$\dfrac{bx}{2} + \dfrac{ay}{2} = \dfrac{Rc}{2}$.

Sumamos las tres expresiones,

$x(c + b) + y(a + c) + z(a + b) = R(a + b + c)$
$\Rightarrow x(2s – a) + y(2s – b) + z(2s – c) = R2s$
$\Rightarrow 2s(x + y + z) – (ax + by + cz) = R2s$
$ \Rightarrow 2s(x + y + z) – 2(\triangle ABC) = R2s$.

De la proposición 5 tenemos $(\triangle ABC) = rs$,
por lo tanto, $2s(x + y + z) – 2rs = R2s$.

Como resultado, $x + y + z = R + r$.

$\blacksquare$

Más adelante…

Con la ayuda de las formulas para el calculo del área de un triángulo vistas en esta entrada, en la próxima entrada mostraremos algunas desigualdades geométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que:
    $i)$ la bisectriz interna del ángulo de un triángulo es perpendicular al segmento que une los puntos donde las otras bisectrices internas intersecan al circuncírculo del triangulo,
    $ii)$ la bisectriz externa del ángulo de un triángulo es paralela al segmento que une los puntos donde las bisectrices externas (internas) de los otros dos ángulos intersecan al circuncírculo del triángulo.
  2. Demuestra que: 
    $i)$ la suma de los catetos de un triángulo rectángulo menos la hipotenusa es igual al diámetro de su incírculo,
    $ii)$ el área de un triángulo rectángulo es igual al producto de los segmentos en los cuales la hipotenusa es dividida por el punto de tangencia de su incírculo.
  3. Muestra que en la figura 2 se tienen las siguientes igualdades:
    $i)$ $XX_a = b – c$, $YY_b = a – c$, $ZZ_c = a – b$,
    $ii)$ $ZZ_a = YY_a = a$, $XX_b = ZZ_b = b$, $YY_c = XX_c = c$,
    $iii)$ $Y_bY_c = Z_bZ_c = a$, $X_aX_c = Z_aZ_c = b$, $X_aX_b = Y_aY_b = c$.
  4. Prueba que:
    $i)$ el producto de los cuatro radios tritangentes de un triángulo es igual al cuadrado del área del triángulo $(\triangle ABC)^2 = rr_ar_br_c$
    $ii)$ el reciproco del inradio de un triángulo es igual a la suma de los recíprocos de las alturas del triangulo, $\dfrac{1}{r} = \dfrac{1}{h_a} + \dfrac{1}{h_b} + \dfrac{1}{h_c}$,
    $iii)$ en la figura 2, $\dfrac{AZ \times BX \times CY}{r} = (\triangle ABC)$.
  5. Demuestra que la razón entre el área de un triangulo y el area del triángulo formado por los puntos de contacto de su circuncírculo con sus lados es igual a la razón entre el inradio y el circundiámetro. En la figura 2, $\dfrac{(\triangle XYZ)}{(\triangle ABC)} = \dfrac{r}{2R}$.
  6. Muestra que en el teorema de Carnot, cuando $\angle A$ es obtuso (figura 4), entonces $y + z – x = R + r$.
  7. Sean $\triangle ABC$, $\alpha = \angle BAC$, $\beta = \angle CBA$, $\gamma = \angle ACB$, $R$ el circunradio y $r$ el inradio, muestra que:
    $i)$ $\sin \dfrac{\alpha}{2} = \sqrt{\dfrac{(s – b)(s – c)}{bc}}$, $\sin \dfrac{\beta}{2} = \sqrt{\dfrac{(s – a)(s – c)}{ac}}$, $\sin \dfrac{\gamma}{2} = \sqrt{\dfrac{(s – a)(s – b)}{ab}}$
    $ii)$ $\cos \alpha + \cos \beta + \cos \gamma = 1 + \dfrac{r}{R}$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 73-79, 87-91.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 11-13.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 86-89, 97-98.
  • Quora
  • Cut the Knot

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»