Archivo de la etiqueta: potencias

Álgebra Superior II: Multiplicación en forma polar y fórmula de De Moivre

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos de las coordenadas rectangulares y polares de un número complejo. También, definimos la forma polar de un número complejo. En esta entrada hablaremos de cómo con la forma polar, de los elementos de $\mathbb{C}$, podemos entender fácilmente su multiplicación. Además, usaremos esto para demostrar la fórmula de De Moivre, que nos dice cómo encontrar las potencias de un complejo.

Como pequeño recordatorio, la forma polar del complejo $z=x+iy$ es $z=r(\cos \theta + i \sin \theta)$, en donde $r$ es la norma de $z$ y $\theta$ es el ángulo que hace con el eje real positivo, pensándolo como el punto $(x,y)$. Esto queda resumido por la siguiente figura:

Complejo en forma rectangular y polar
Complejo en forma rectangular y polar

Forma polar, multiplicación y recordatorio trigonométrico

Para ver cómo la forma polar de los complejos nos ayuda a entender la multiplicación en $\mathbb{C}$, necesitamos recordar las siguientes fórmulas trigonométricas
\begin{align*}
\sin (\alpha+\beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha\\
\cos(\alpha+\beta) = \cos \alpha \cos \beta – \sin \beta \sin \alpha.
\end{align*}

Si tenemos dos números complejos en forma polar
\begin{align*}
w&=r (\cos\alpha+ i \sin \alpha)\\
z&=s(\cos \beta + i \sin \beta)
\end{align*}

y los multiplicamos con la definición, su producto tendría parte real $$rs(\cos\alpha\cos \beta – \sin \alpha\sin \beta) = rs\cos (\alpha+\beta)$$ y parte imaginaria $$rs(\sin \alpha \cos \beta+ \sin\beta\cos\alpha)=rs\sin (\alpha+\beta).$$

Además, como la norma es multiplicativa, tenemos que la norma de $wz$ es $rs$. Con esto mostramos que la forma polar de $wz$ es exactamente $$wz=(rs)(\cos(\alpha+\beta)+i\sin(\alpha+\beta)).$$ Esto queda resumido en el siguiente resultado

Proposición. Si tenemos dos números complejos en forma polar
\begin{align*}
w&=r \text{cis}(\alpha)\\
z&=s\text{cis}(\beta),
\end{align*} entonces la forma polar del producto es $$wz=rs\text{cis}(\alpha+\beta).$$

Otra forma de decirlo es que «al multiplicar complejos, multiplicamos normas y sumamos argumentos». Podemos también ver el resultado de forma geométrica mediante la siguiente figura, en donde marcamos con rojo y azul los factores, y con negro al producto.

Interpretación geométrica de la multiplicación en los complejos
Interpretación geométrica de la multiplicación en los complejos

Ejemplo. Vamos a encontrar la forma rectangular del producto de los complejos
\begin{align*}w& =7 \text{cis}\left( \frac{2\pi}{5} \right)\quad\text{y}\\ z&=2\text{cis}\left(\frac{3\pi}{5}\right).\end{align*}

Por la proposición anterior, el producto es exactamente el complejo
\begin{align*}
14 \text{cis}\left(\frac{2+3}{5}\pi \right)=14 \text{cis} (\pi).
\end{align*}

Esta es la forma polar del producto. Por un problema anterior, sabemos que $\text{cis}(\pi)=-1$, de modo que la forma rectangular del producto es $-14$.

Si tenemos un complejo no nulo en forma polar, podemos entender fácilmente su inverso multiplicativo. Esto está dado por la siguiente proposición, cuya demostración es sencilla y se deja como tarea moral.

Proposición. Sea $w\neq 0$ un complejo con forma polar $w=r\text{cis}(\theta)$. Su inverso multiplicativo es el complejo $r^{-1}\text{cis}(-\theta)$.

Ejemplo. Determinemos el inverso multiplicativo del complejo $$w=\sqrt{3}\text{cis}\left(\frac{3\pi}{7}\right).$$ Para ello, basta usar la proposición anterior, de donde $$w^{-1}=\frac{1}{\sqrt{3}} \text{cis}\left(-\frac{3\pi}{7}\right)=\frac{\sqrt{3}}{3}\text{cis}\frac{11\pi}{7}.$$

$\triangle$

Fórmula de De Moivre

La proposición para multiplicación de complejos se vuelve todavía más útil si la usamos iteradamente para hacer potencias de complejos.

Teorema (fórmula de De Moivre). Si $z$ es un complejo de norma $r$ y argumento $\theta$ y $n$ es un entero positivo, entonces $z^n$ es el complejo de norma $r^n$ y argumento $n\theta$. En otras palabras, si $z=r(\cos \theta + i \sin \theta)=r\text{cis}(\theta)$, entonces $$z^n=r^n (\cos (n\theta)+i\sin (n\theta))= r^n \text{cis} (n\theta).$$

Demostración. Procedemos por inducción sobre $n$. El caso $n=1$ es inmediato. Supongamos que el resultado es cierto para $n$, es decir, que $$z^n=r^n \text{cis} (n\theta).$$

Por hipótesis inductiva, tenemos entonces que la norma de $z^n$ es $r^n$, de modo que $z^{n+1}=z^n z$ tiene norma $r^nr=r^{n+1}$.

También por hipótesis inductiva, $z^n$ tiene argumento $n\theta$. Por cómo funciona la multiplicación compleja, el argumento de $z^{n+1}=z^n z$ es la suma de los argumentos de $z^n$ y $z$, es decir, $n\theta + \theta = (n+1)\theta$. Esto muestra que $$z^{n+1}=r^{n+1}\text{cis}((n+1)\theta),$$ y con esto acabamos el paso inductivo.

$\square$

Ejemplos de aplicación de fórmula de De Moivre

Ejemplo. Veremos quién es la décima potencia del complejo $$z=\sqrt{3}\text{cis} \left(\frac{4\pi}{5}\right).$$ Como este número ya está escrito en forma polar, podemos aplicarle directamente la fórmula de De Moivre:
\begin{align*}
z^{10}&=3^{10/2} \text{cis}\left(\frac{40\pi}{5}\right)\\
&=3^5 \text{cis} (8\pi)\\
&=3^5\\
&=243.
\end{align*}

$\triangle$

El ejemplo anterior nos dice que $z^{10}=243$. En otras palabras, $z$ es una raíz $10$-ésima de $243$. Pero existen otras raíces $10$-ésimas de 243, por ejemplo, tiene dos raíces reales $\sqrt[10]{243}$ y $-\sqrt[10]{243}$. ¿Cuántas raíces tiene entonces en total? ¿Quiénes son? Esto lo veremos en la siguiente entrada.

Veamos otro ejemplo en el que se aplica la fórmula de De Moivre.

Problema. Evalúa la expresión $(1+i)^{30}$, expresando el resultado final en forma rectangular.

Solución. Comenzamos expresando a $(1+i)$ en forma polar. Para ello, notamos que $\Vert 1+i \Vert = \sqrt{2}$, y que $1+i$ hace un ángulo de $\frac{\pi}{4}$ con el eje real positivo. Por el teorema de De Moivre, tenemos que

\begin{align*}
z^{30}&=\sqrt{2}^{30}\text{cis}\left(\frac{30\pi}{4}\right)\\
&=2^{15}\text{cis}\left(\frac{6\pi}{4} \right) \\
&=2^{15}\text{cis}\left(\frac{3\pi}{2} \right) \\
&=2^{15}(-i)\\
&=-2^{15}i.
\end{align*}

En la segunda igualdad usamos que $\frac{30\pi}{4}$ y $\frac{6\pi}{4}$ difieren en un múltiplo entero de $2\pi$. En la cuarta usamos la forma polar de $-i$.

$\triangle$

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que para un complejo $z\neq 0$ escrito en forma polar $z=r\text{cis}(\theta)$, su inverso multiplicativo tiene forma polar $r^{-1}\text{cis} (-\theta)$.
  2. Evalúa la multiplicación $wz$, donde $w=2\text{cis}\left(\frac{5\pi}{7}\right)$ y $z=-5\text{cis}\left(\frac{7\pi}{5}\right)$. Expresa la respuesta forma polar.
  3. Haz la multiplicación $wz$, donde $w=3\text{cis}\left(\frac{\pi}{2}\right)$ y $z=4\text{cis}\left(\frac{\pi}{3}\right)$. Expresa la respuesta en forma rectangular.
  4. Sea $z=7\text{cis}\left(\frac{5\pi}{7}\right)$. Expresa $z^3$ en forma polar.
  5. Sea $z=\sqrt[3]{5} \text{cis}\left(\frac{\pi}{3}\right)$. Expresa $z^9$ en forma rectangular.
  6. Toma el complejo $z=-2+2i$. Evalúa la expresión $$1+z+\ldots+z^{29}.$$ Sugerencia: Usa primero la fórmula de suma de términos de una sucesión geométrica, y después la fórmula de De Moivre.

Puedes practicar más estos temas viendo los videos y haciendo los ejercicios de la página de Khan Academy, de su sección de números complejos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Teoremas de Fermat y de Wilson

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores hablamos de congruencias, del anillo de enteros módulo $n$ y vimos algunos problemas. La gran ventaja de trabajar en $\mathbb{Z}_n$, o bien, de trabajar módulo $n$, es que para $n$ pequeña hay una cantidad pequeña de elementos y entonces las operaciones se vuelven muy sencillas.

Problema. Determina cuál es el residuo obtenido de dividir $705\cdot 702+714\cdot 711$ al dividirse entre $7$.

Solución. Tenemos que $705$, $702$, $714$ y $711$ los podemos poner como un múltiplo de $7$ más un residuo como sigue: $700+5$, $700+2$ y $714=714+0$, $711=707+4$. Así, $705\equiv 5\pmod 7$, $702\equiv 2 \pmod 7$, $714\equiv 0 \pmod 7$ y $711\equiv 4 \pmod 7$. Así, trabajando módulo $7$ tenemos que:

\begin{align*}
705\cdot 702+714\cdot 711 \equiv 5\cdot 2 + 0\cdot 4 \equiv 10 + 0 \equiv 10 \equiv 3 \pmod 7
\end{align*}
De esta forma, $705\cdot 702+714\cdot 711$ deja residuo $3$ al dividirse entre $7$.

$\square$

Trabajando de esta forma, podemos encontrar el residuo al dividirse por $n$ de expresiones que involucran sumas y productos. El objetivo de esta entrada es entender qué sucede cuando queremos encontrar el residuo de expresiones que tienen potencias y factoriales.

Pequeño teorema de Fermat

Intentemos entender qué sucede con las potencias de un número $a$ en cierto módulo $n$.

Ejemplo. Imagina que tomamos al número $3$ y queremos elevarlo a distintas potencias y entender el residuo que deja al dividirse entre $7$. Tenemos, trabajando módulo $7$:
\begin{align*}
3^0\equiv 1\\
3^1\equiv 3\\
3^2\equiv 9 \equiv 2\\
3^3=27\equiv 21+6\equiv 6
\end{align*}

Nota que podríamos seguir, poniendo $3^4=81$. Pero podemos ahorrarnos trabajo pues $3^4\equiv 3\cdot 3^3 \equiv 3 \cdot 6 \equiv 18\equiv 4$, en donde usamos que ya sabíamos que $3^3\equiv 6$. Del mismo modo, podemos seguir substituyendo cada potencia en la siguiente para obtener
\begin{align*}
3^5\equiv 3\cdot 4\equiv 12\equiv 5\\
3^6\equiv 3\cdot 5 = 15\equiv 1\\
3^7\equiv 3\cdot 1 = 3\\
3^8\equiv 3\cdot 3 = 9 \equiv 2
\end{align*}

Podríamos seguir y seguir, pero ya no tiene mucho caso. A partir de aquí es fácil convencerse de que los residuos se ciclan: $1,3,2,6,4,5,1,3,2,6,4,5,1\ldots$. Notemos que si la potencia es múltiplo de $6$, entonces el residuo será $1$, es decir, $3^{6k}\equiv 1 \pmod 7$. Esto es fantástico, pues entonces si queremos determinar el residuo de dividir, digamos, $3^{605}$ entre $7$, basta ver que módulo $7$ tenemos $$3^{605}=3^{600}\cdot 3^5 \equiv 1\cdot 5 \equiv 5,$$

en donde estamos usando lo que mencionamos para $k=100$ y que ya hicimos $3^5$ módulo $7$.

A partir del ejemplo anterior, nos damos cuenta de que es importante saber cuándo $a^m\equiv 1\pmod n$, pues en ese momento las potencias «se empiezan a ciclar». El pequeño teorema de Fermat es un resultado que podemos aplicar cuando trabajamos módulo un número primo $p$. Dice que la potencia $p-1$ funciona para esto.

Teorema. Si $p$ es un número primo y $p$ no divide a $a$, entonces $p$ divide a $a^{p-1}-1$ o, dicho en otras palabras $a^{p-1}\equiv 1 \pmod p$.

Demostración. Afirmamos que los números $a$, $2a$, $3a$, $\ldots$, $(p-1)a$ dejan todos ellos residuos distintos al dividirse entre $p$ y, además, que ninguno de esos residuos es $0$. Probemos esto. Tomemos $0<i<j<p-1$. En una entrada anterior vimos que $[a]_p$ tiene inverso en $Z_p$. Sea $[b]_p$ su inverso. Si $[ia]_p=[ja]_p$, entonces multiplicando por $[b]_p$ de ambos lados tendríamos $$[i]_p=[i(ab)]_p=[j(ab)]_p=[j]_p.$$

Pero como $i$ y $j$ están entre $1$ y $p-1$, esto implica que $i=j$. Ninguno es cero pues si $[ia]_p=[0]_p$, entonces al multiplicar por $b$ tendríamos la contradicción $[i]_p=[i(ab)]_p=[0b]_p=[0]_p$. Esto muestra la afirmación.

Así, usando la afirmación en el segundo paso de la siguiente cadena módulo $p$, tenemos:
\begin{align*}
(p-1)! a^{p-1} &= (a)(2a)(3a)\cdots((p-1)a)\\
&\equiv 1\cdot 2 \cdot \ldots \cdot (p-1)\\
&= (p-1)!.
\end{align*}

El número $(p-1)!$ no es divisible entre $p$, pues es producto de puros números menores que $p$, de modo que $\text{MCD}(p, (p-1)!)=1$, así que tiene inverso módulo $p$, de modo que podemos cancelarlo de la congruencia anterior multiplicando en ambos lados por su inverso. De aquí obtenemos la igualdad que queremos: $$a^{p-1}\equiv 1 \pmod p.$$

$\square$

Ya que demostramos este teorema, podemos aprovecharlo para resolver problemas que parecen ser difíciles.

Problema. Demuestra que $13$ divide a $25^{181}-181^{25}$

Solución. Notemos primero que $13$ es primo y que no divide ni a $25$ ni a $181$. Por el pequeño teorema de Fermat, tenemos módulo $13$ que $25^{12}\equiv 1$ y que $181^{12}\equiv 1$. Así, módulo $13$ tenemos que $$25^{181}\equiv 25^{15\cdot 12}\cdot 25 \equiv 25 \equiv 12,$$ y que $$181^{25}\equiv 181^{2\cdot 12}\cdot 181\equiv 181 \equiv 12.$$

De esta forma, $25^{181}-181^{25}\equiv 12-12\equiv 0\pmod {13}$, es decir, $13$ divide a $25^{181}-181^{25}$

$\triangle$

Teorema de Wilson

En la demostración del teorema de Fermat aparece la expresión $(p-1)!$. ¿Qué residuo dejará al dividirse entre $p$? Hagamos una prueba.

Problema. Encuentra el residuo que se obtiene al dividir $10!$ entre $11$.

Solución. Para no trabajar con números tan grandes, notemos que en $$10!=1\cdot 2\cdot 3\cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10$$ podemos cambiar a $6,7,8,9,10$ por $-5, -4, -3, -2, -1$ al trabajar módulo $11$, así que basta encontrar $-(1\cdot 2\cdot 3 \cdot 4 \cdot 5)^2$ módulo $11$. Notemos que $3\cdot 4\equiv 12 \equiv 1 \pmod {11}$ y que $2\cdot 5 =10 \equiv -1 \pmod {11}$. Así, $$10!\equiv -(1\cdot 2\cdot 3 \cdot 4 \cdot 5)^2 \equiv -(1\cdot 1 \cdot -1)^2 \equiv -1 \equiv 10 \pmod {11},$$

es decir, el residuo que deja $10!$ al dividirse entre $11$ es $10$.

$\triangle$

El teorema de Wilson ayuda a cuando queremos encontrar el residuo de un factorial al dividirse entre un número primo. Una de las ideas del ejercicio anterior fue buena: nos conviene agrupar a números del factorial en productos sencillos. Lo más conveniente es que agrupemos a cada número con su inverso multiplicativo, pues así obtendremos un $1$. Eso lo podemos hacer si el inverso es diferente. La siguiente proposición nos ayuda a entender cuándo pasa esto.

Proposición. Sea $p$ un número primo. Los únicos elementos en $\mathbb{Z}_p$ que son inversos de sí mismos son $[1]_p$ y $[p-1]_p$.

Demostración. Claramente $[1]_p$ y $[p-1]_p=[-1]_p$ son inversos multiplicativos de sí mismos, pues $1\cdot 1=1=(-1)\cdot(-1)$. Ahora, si tenemos $a$ tal que $a$ es inverso multiplicativo de sí mismo, tenemos que $[a^2]_p\equiv [1]_p$, que por definición quiere decir que $p$ divide a $a^2-1=(a+1)(a-1)$. Cuando un primo divide a un producto, tiene que dividir a uno de los factores. Entonces $p$ divide a $a+1$ o a $a-1$, y obtenemos, respectivamente, que $[a]_p=[-1]_p=[p-1]_p$ o que $[a]_p=[1]_p$, como queríamos.

$\square$

Estamos listos para enunciar y demostrar el teorema de Wilson.

Teorema. Si $p$ es un número primo, entonces $p$ divide a $(p-1)!+1$ o, dicho en otras palabras, $(p-1)!\equiv -1 \pmod p$.

Demostración. Si $p=2$, el resultado es inmediato. Supongamos que $p\geq 3$. En $(p-1)!$ aparecen todos los números de $1$ a $p-1$. Todos ellos son primos relativos con $p$, así que tienen inverso módulo $p$. Ese inverso también aparece en $(p-1)!$. Así, podemos agrupar esos números en $(p-3)/2$ parejas de inversos multiplicativos, en donde por la proposición anterior sólo nos va a sobrar el $1$ y el $-1$. De esta forma, $$(p-1)!\equiv (1)(-1)(1\cdot 1\cdot \ldots\cdot 1) \equiv -1 \pmod p,$$

en donde en la expresión intermedia tenemos un $1$, un $-1$ y $(p-3)/2$ unos, uno por cada pareja de inversos que se multiplicaron. Esto termina la prueba.

$\square$

Veamos una posible aplicación.

Problema. Determina el residuo que se obtiene al dividir $15!+16!+17!$ entre $17$.

Solución. Notemos que $17$ divide a $17!$, así que $17!\equiv 0 \pmod {17}$. Por el teorema de Wilson, $16!\equiv -1 \pmod {17}$. Podemos multiplicar esa igualdad por $-1$ para obtener módulo $17$ que $$15! = 15! (-1)(-1) \equiv 15! \cdot 16 \cdot (-1) \equiv 16! (-1)\equiv (-1)(-1)\equiv 1.$$ Así, $15!+16!+17!\equiv 1 + (-1) + 0 \equiv 0 \pmod {17}$.

$\square$

Una solución alternativa es darse cuenta de que $$15!+16!+17!=15!(1+16)+17\cdot 16!=17\cdot (15!+16!)$$ y por lo tanto es múltiplo de $17$. Aunque tengamos herramientas fuertes, ¡siempre hay que recordar los básicos!

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Busca una contradicción

Por Leonardo Ignacio Martínez Sandoval

HeuristicasTerminamos esta serie de técnicas de resolución de problemas con una de las técnicas más finas y más usadas en las matemáticas: las pruebas por contradicción.

La idea es la siguiente. Por un momento suponemos que lo que queremos demostrar es falso. Después trabajaremos haciendo todo lo demás correctamente. La idea es llegar a una contradicción con las hipótesis del problema, o bien a algo que sabemos que es imposible. De esta forma, sabemos que debe haber un error en la demostración de eso imposible. Y como lo único que hicimos mal fue suponer que lo original era falso, debemos tener que en realidad es verdadero.

En estos videos veremos varios ejemplos de este argumento para acostumbrarnos. Es súper útil pensar en estos argumentos casi automáticamente.

Ir a los videos…